Reconstruction of atomistic structures from coarse-grained models for protein-DNA complexes

Masahiro Shimizu and Shoji Takada*

Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 Japan.

KEYWORDS
Multi-scale modeling, molecular dynamics simulation, protein-DNA interface, DNA modeling

ABSTRACT

While coarse-grained (CG) simulations have widely been used to accelerate structure sampling of large biomolecular complexes, they are unavoidably less accurate and thus the reconstruction of all-atom (AA) structures and the subsequent refinement is of desire. In this study we developed an efficient method to reconstruct AA structures from sampled CG protein-DNA complex models, which attempts to model protein-DNA interface accurately. First we developed a method to reconstruct atomic details of DNA structures from a 3-site per nucleotide CG model which uses a DNA fragment library. Next, for the protein-DNA interface, we referred to the sidechain orientations in the known structure of the target interface when available. The other parts are modeled by existing tools. We confirmed the accuracy of the protocol in various aspects including the structure deviation in the self-reproduction, the base pair
reproducibility, atomic contacts at the protein-DNA interface, and feasibility of the posterior AA simulations.

INTRODUCTION

Although numerous structures of biomolecules and their complexes have been experimentally characterized, they are mostly limited to stable structures. However, biomolecular processes are dynamic, in which biomolecules bind and dissociate each other. Transient complex structures appeared in the dynamic processes have been difficult to characterize. In this sense, molecular dynamics (MD) simulations became increasingly important to “watch” how biomolecules move and what transient complexes are formed. Yet, at the moment, the gold-standard atomistic MD simulations are limited to relatively short time scales, typically some microseconds, which is often much shorter than the biologically relevant time scales. This is especially the case in the cellular nucleus processes where most proteins are highly flexible and form many transient complexes with DNA, which are keys to any molecular genetic processes1–3. In this context, coarse-grained (CG) MD simulation is a useful approach to study such dynamic and transient states of large protein-DNA complexes4–11. By reducing the resolution, the CGMD reduces the computation cost remarkably and thus enables us to explore much larger conformational space, while it is unavoidably less accurate than atomistic MD. Recently, the CGMD has been applied to various protein-DNA transient complexes, such as the full-length p53 sliding along DNA and the DnaA molecules forming the replication initiation complex at the bacterial ori\textit{C} region10,11.
When we obtain novel transient structures by CGMD simulations, their accuracies are always of question. To assess the stabilities and accuracies of these structures, it must be very useful if one can reconstruct fully-atomistic structures from the low resolution models obtained by the CGMD simulations, which we call the reconstruction or the reverse-mapping. Once reconstructed, starting from the reconstructed structures we can perform posterior all-atom (AA) MD simulations and evaluate their stability. Salt bridges and/or hydrogen bonds, for example, observed in AAMD simulations, for example, can be further confirmed by biochemical assays with mutant proteins.

By now, some reverse-mapping methodologies for biomolecules have been developed for homology modeling, protein designs, and multi-scales simulations12–44. The reconstruction of protein sidechains onto given main chains is a popular example of the reverse mapping. This is usually achieved by selecting a sidechain conformation from a library of rotamers, a prepared discrete set of sidechain conformations. Many approaches have been proposed to choose suitable rotamers or conformers31–40. The reconstruction of a main chain of a protein from its Cα atom positions has also been studied intensively. Most methods reconstruct main chains using a fragment library taken from a set of known structures24,30,41–44. A geometrical method is also proposed13.

When the reverse mapping is discussed in the context of multi-scale simulations, often this is achieved via the two steps: The placement of atoms associated with every CG particles is followed by the energy minimization with AA force field12–14,16–22,25–27,45. The relative weights of the two steps vary among different methods. In one extreme, Rzepiela et al arranged atoms around each CG particle rather randomly, which is followed by the extensive simulated annealing with an AA force field12. On the other hand, Wassenaar et al developed a method to
place higher-resolution particles with correct topology while bond lengths and/or bond angles are of low accuracy. Subsequently, they performed several rounds of structural relaxation. In another example, Liu et al proposed a reverse mapping methodology based on configuration-bias Monte Carlo. Notably, since a given CG particle position is usually compatible with an ensemble of AA structures, the reconstruction is not a unique process. Thus, posterior structural relaxation via AAMD is a reasonable approach to obtain a locally stable reverse-mapped structure. For CG models with relatively high resolution, atomistic details can be recovered directly by geometric calculations, where the subsequent structural relaxation is not important.

In this study, we develop a new reverse-mapping method for protein-DNA complexes and test its performance. Although the method is of general nature, to make arguments unambiguous, we focus on the reconstruction of atomistic structure from a CG model of a particular resolution; one CG particle per amino acid in proteins and three CG particles per deoxyribonucleotide in DNA, each representing sugar, phosphate, and base. This resolution is taken in the general biomolecular CGMD software, CafeMol, which we have been developing so that the current method can directly be applied to the output snapshots from CafeMol. Given many existing tools for the protein reverse mapping from this resolution, in this study we pay attentions to the two points; 1) the reconstruction of DNA structures and 2) the reconstruction at the interface between proteins and DNAs.

First, we constructed a DNA fragment library and fitted the most suitable nucleotide in the library to every segment in the target CG DNA structure. Both in the self-reproduction test from the crystal structures and in the test that used CGMD snapshots, we could reproduce the original structures and their interaction feature quite well. Our method reproduced the tilt of bases and Watson-Crick base pairing with high probabilities.
Accurate modeling of the protein-DNA interface is particularly important for functional studies, but, due to high atomic density at the interface, protein sidechain optimization at the interface is a rather challenging problem. When our target is the reconstruction of some transient protein-DNA complex structures for which the stable structure information is available, we can utilize that interface information as much as possible. We took the sidechain orientation in the stable (X-ray) structure only to the protein-DNA interface, while other parts are modeled with existing tools, PD2 CA2MAIN30 and SCWRL431. This hybrid reconstruction not examined before, to our knowledge, showed a good performance in the test. The subsequent energy minimization further improved the local structures of the reconstructed protein-DNA complexes such as bond lengths and Watson-Crick base pairings.

METHODS

Outline of the reconstruction method

In this work, we consider the general case where a coarse-grained (CG) model for a protein-DNA complex is given from prior CGMD simulations. Thus, the given CG model may have low-accuracy corresponding to the resolution taken in the CG simulations. Given that condition, our goal is to provide a reasonably accurate all-atom (AA) structure that is compatible with the given CG model. More specifically, we try to reconstruct an atomic structure that capture crucial inter-molecular interactions and from which standard AAMD simulations can be performed. The procedure can be divided into four parts (Fig. 1).

1) Refinement of the CG model by a CG simulated annealing run,

2) Reconstruction of an AA DNA structure

3) Reconstruction of an AA protein structure compatible with the AA DNA structure
4) Refinement of the AA structure by the energy minimization with an AA force field.

To make the description unambiguous, we assume to use the specific CG model for proteins and DNAs. For DNAs, we use the 3SPN.2C model, in which each nucleotide is represented by three CG particles (Fig. 2A). The CG particles representing sugar, phosphate, and base are placed at the centers of mass (COM) of the corresponding groups. For proteins, we use a CG model where each amino acid is represented by one CG particle placed at the Cα atom position. We note, however, that the method can easily be generalized to other CG models.

Preparation of the DNA fragment library

As a pre-process of the DNA reconstruction, we made a library of DNA short fragment structures.

First, we downloaded X-ray crystal structures that include DNA and that have the resolutions not larger than 2.2 Å from Protein Data Bank (PDB, the structures available on March 28th, 2017). We classified them into 3 groups; protein-DNA complexes with single DNA chains, protein-DNA complexes with multiple DNA chains, and the other complexes or molecules with DNA chains. For each group, we randomly chose a half set of structures and included them into the library data set (the other half set is used for the test later). For an atom with its occupancy less than 1.0 and for which more than one coordinates are given, we included the model with the highest occupancy. From each DNA structure, we extracted the structures of every deoxyribonucleotides (i-th nucleotide; except the 5’ and 3’- end nucleotides) in addition to their 5’- neighboring sugar groups, and 3’- neighboring phosphate and sugar groups. These correspond to 6 CG particles. The structure that corresponds to the 5 CG particles (excluding the
3’- neighboring sugar) is used for modeling non-edge nucleotides (denoted as the sugar \(S_{i-1} \), the phosphate \(P_i \), the sugar \(S_i \), the base \(B_i \), and the phosphate \(P_{i+1} \)) (see Fig. 2B) (the nucleotide ID increases from 5’ end to the 3’ end as usual). The 3’- neighboring sugar group is used for modeling the nucleotides at the 5’ ends. The extracted structure is called the DNA fragment in this study. We excluded the DNA fragments with missing atoms. For each DNA fragment, we calculated the coordinates of the 6 CG particles. In addition, for these 6 CG particles and all the atoms associated to these 6 CG particles, we calculated the local Cartesian coordinates \(\mathbf{r} = (X, Y, Z) \) defined as the following manner. The vector pointing from \(P_i \) to \(P_{i+1} \) is parallel to the X axis. \(S_i, P_i, \) and \(P_{i+1} \) are placed on the XY plane. The geometric center of the \(S_i, P_i, \) and \(P_{i+1} \) is set as the origin (Fig. 2B). These local Cartesian coordinates of the 6 CG particles and the AA included therein are tabulated.

Using each extracted fragments, we constructed DNA fragment library, which include atom coordinates of center nucleotide, COM of base, sugar, phosphate of center nucleotide, and COM adjacent sugars, and phosphates.

As a result, 22,347 DNA fragments were prepared, in which 5,118 structures with thymine base, 5,940 structures with cytosine base, 4,980 structures with adenine base, and 6,309 structures with guanine base. We extracted a subset of fragments from the fragment library whose bases form the Watson-Crick pairing in crystal structures. The base-pairing criteria are defined below (Criteria for Watson-Crick pairing based on CG particles). We named this template group as “group A”.

Criteria for Watson-Crick pairing based on CG particles
We defined the criteria for Watson-Click base pairing in terms of the positions of CG particles (the positions of COM of sugar and base groups for AA structures). When a pair of base particles satisfies all the following four criteria, we regarded it as forming Watson-Crick type base pairing.

Base pairing criteria in terms of the CG representation

A-1) Adenine-thymine pair or guanine-cytosine pair which do not adjoin in DNA sequence.

A-2) The distance between two base particles is less than 6.3 Å.

A-3) We prepared representative positional relationship of 4 particles based on B-DNA structure generated by NAB, which are 2 base particles and 2 sugar particles of base-pairing deoxyribonucleotides. The RMSD is less than 0.65 Å when corresponding 4 particles are superposed on the representative model.

A-4) When a pyrimidine base belongs to several pairs satisfy the standard above, a pair with smallest RMSD to the representative model is chosen.

In CGMD, the CG particles tend to fluctuate more largely than the corresponding positions in AA molecules. In order not to exclude base pairs which should form Watson-Crick pairing in the process of reconstruction, these are slightly lax criteria (See Fig. S1).

Reconstruction of an AA DNA structure
Given a CG model of DNA and the DNA fragment library, we reconstruct AA structure of every deoxyribonucleotide one by one.

For every deoxyribonucleotide in the target CG DNA model, we calculate the local Cartesian coordinates of the 5 CG particles that include the three particles for the central nucleotide, the 5’ neighboring sugar, and the 3’ neighboring phosphate. Then, in the DNA fragment library, we seek the best template that minimizes the distance F from the target defined as

$$F = \sum_{j \in \{S_{i-1}, P_i, B_i, S_{i+1}, P_{i+1}\}} k_j (r_j - r_{j, \text{template}})^2$$ \hspace{1cm} (1)

where the coefficients k_j weights the relative importance of 5 CG particles and are tuned later. Using the local Cartesian coordinates of the F-minimized template, we determined the position of atoms. The same procedure is repeated for all CG nucleotides.

Nucleotides at 5’ ends are modeled as follows. We calculated 6 distances, the distance between S_i and B_i (denoted as $D_{S_i-B_i}$), that between S_i and P_{i+1} ($D_{S_i-P_{i+1}}$), that between S_i and S_{i+1} ($D_{S_i-S_{i+1}}$), that between B_i and P_{i+1} ($D_{B_i-P_{i+1}}$), that between B_i and S_{i+1} ($D_{B_i-S_{i+1}}$), and that between P_{i+1} and S_{i+1} ($D_{P_{i+1}-S_{i+1}}$). From database, we sought the best template that minimizes the deviation $F_{5'}$ given by,

$$F_{5'} = \sum_{j \in \{B_i, S_i, S_{i+1}, P_{i+1}, B_i-B_{i-1}, S_{i+1}-S_i, P_{i+1}-P_i, P_i-S_{i+1}\}} (D_j - D_{j, \text{ref}})^2$$ \hspace{1cm} (2)

For the best template, we fitted the fragment to the CG model using S_i, B_i, S_{i+1}, and P_{i+1}. The reverse-mapped structure is the atom coordinates of the nucleotide fragment after superposition. The 3’ end nucleotide was reconstructed in the same way with $F_{3'}$ defined in the same way as (2).
Prior to calculate the F, F_5, and F_3, we searched Watson-Crick pairings based on the positions of CG particles and divided CG deoxyribonucleotides into 2 groups; its base particle forming base-pairing or not. For the former group, we used only the group A structures in the fragment library. For the latter group, we used all the templates in the fragment library.

Reconstruction of an AA protein structure compatible with the AA DNA structure

We reverse mapped a sampled transient CG protein model in which each CG particle is located at the $C\alpha$ position of each amino acid to obtain an AA structure. We assume here that there exists high-resolution structure information for the target protein in its stable form. For this, we take three complementary approaches. First, we superpose the high-resolution structure on the given CG model using $C\alpha$ atom positions. This procedure is denoted as “Superposition”. Second, we apply existing modeling tools to reconstruct the AA details. Specifically, we modeled main chains and $C\beta$ atoms by PD2 CA2MAIN without minimization, followed by the sidechain reconstruction by SCWRL430,31. While sidechain modeling, we use the pre-reconstructed AA DNA structure as an additional steric boundary, to which hydrogens are added by gmx pdb2gmx program52,53. This is denoted as “PD2+SCWRL4”.

Third, we develop a hybrid approach to the case that there exists a reference known structure of the protein-DNA complex (outline depicted in Fig. 3). For the residues in the vicinity of the interface to DNA, we take the sidechains conformations from the known 3D structure and superpose them on the target CG structure. We note that when a heavy atom in an amino acid is within 6.5 Å from one of DNA atoms, we regard the corresponding amino acid as the interface to DNA. For the rest of amino acids, we simply use existing tools as above. The procedure goes in
the following way. First, we reconstruct main chain AA structure by PD2 CA2MAIN without minimization. Next we superpose a known protein-DNA structure on the CG model using Cα atom positions. For each amino acid at the protein-DNA interface, we displaced in parallel the amino acid so that its Cβ atom is matched to the reconstructed backbones. Thus, the structure at the interface to DNA is composed of main chain atoms modeled by PD2 CA2MAIN and sidechain atoms by superposition followed by the parallel translation. For the rest, we reconstructed sidechains by SCWRL4. In SCWRL4, we specified reconstructed atomistic DNA and amino-acid sidechains at the interface to DNA as steric boundary condition and treated amino acids at the interface to DNA as glycine. Before applying SCWRL4, we added hydrogen atoms by gmx pdb2gmx program52,53. We excluded Cβ atom and Cβ atom-binding hydrogens from steric boundary condition.

Coarse-grained MD simulations

We used the software CafeMol 3.0 for CGMD simulations49. The CG model approximates proteins as a chain of amino acids, each of which is represented by one bead placed at its Cα position and DNA at a resolution of three beads per nucleotide; each representing phosphate, sugar, and base. For unambiguity, in this study, we use the AICG2+ model for proteins and 3SPN.2C model for DNA throughout although different models are applicable as well46,48,54. Since these models are described previously, we only briefly summarize the energy function in Supporting Information.

We performed CGMD simulations on the test set A (defined below). For each structure in the test set A, first we performed the constant temperature simulations at 300 K for 104 MD steps.
We subsequently performed simulated annealing simulations. We tested two different annealing schedules: The system was cooled down linearly from 300 K to 1 K during 10^3 MD steps in one schedule and 10^4 MD steps in the other. The temperature was reduced in every 50 MD steps. We repeated this set of simulations 20 times changing the random seed in Langevin dynamics.

Atomistic MD simulations

All atom (AA) MD simulations were performed by GROMACS 5.1.152,53,55. We performed energy minimization and subsequent short NVT simulation. Since the MD method used is a standard one and the results do not depend on the details, we describe the MD details in Supporting Information.

Evaluation of our modeling method

Dataset for testing the reconstruction method. For testing our methods, we used the following two sets of structures. The PDB entries are listed in Table S1.

Test set A: This is the primary test set. We prepared 180 protein-DNA complex structures. This set was used for all data except those in Fig. 4.

Test set B: This is used to test reconstruction of non-canonical DNA in Fig. 4. We prepared 30 protein-DNA complex structures with single stranded DNA, 642 protein-DNA complex structures with multiple DNA chains, 39 A-type DNA structures, 29 Z-type DNA structures, and 22 G-quadruplex structures.
All the structures used are X-ray crystal structures with the resolution not larger than 2.2 Å. Structures used in the DNA fragment library were excluded. In order to perform reverse mapping and MD simulations easily, we screened the structures and edited the coordinate file. In test-set A, we excluded any structures in which DNA contained the internal deoxyribonucleotides with missing atoms or with base other than adenine, cytosine, guanine, or thymine. We also excluded any structures which contained internal incomplete amino acids or internal residues other than canonical 20 species or selenomethionine (selenomethionines were treated as methionines). In test-set B, we excluded any deoxyribonucleotides with missing atoms or with base other than adenine, cytosine, guanine, or thymine.

The root mean square deviation (RMSD). As a first and quick test of the DNA reconstruction, we converted DNA X-ray crystal structures into the CG DNA model (3SPN.2C model), followed by reconstruction of the AA DNA model. To evaluate the reconstruction performance in this process, we utilized the root mean square deviation (RMSD) of each nucleotide between the initial crystal structure and the reverse-mapped structure. The RMSD was calculated without rotation or superposition of each nucleotide.

Base-pairing reproducibility. When CG DNA model form base-pairings, our reverse-mapping method should reproduce Watson-Crick pairing hydrogen bonds at the atomic resolution. We use it as a mean of evaluation of the reconstruction method, comparing base-pairings in the reverse-mapped structure with those in the CG structure. For each model, we calculated the ratios of the atomically reproduced base pairings relative to the total number of the base pairings in the CG
structure. Subsequently we calculated the distribution of the ratio. For CG models, the criteria for
the base pairings are shown above. When several “base-pairs” we defined share the same purine
base, we referred reverse-mapped model and adopted the pair whose maximal donor-acceptor
distance was minimum. In fact, these shared purines were very rare (< 0.11%). For reverse-
mapped AA models, the criteria for the base-pairings are as follows. When the distance is less
than 3.5 Å for all donor-acceptor atom pairs of a Watson-Crick pair, we regarded the two bases
as forming base-pairing.

Joint property. Since we reverse-map DNA by each deoxyribonucleotide, the connectivity
between adjacent nucleotides can be problematic. We checked if the bond lengths and bond
angles between two nucleotides are close to those expected. For the test, we used the length of
covalent bonds between P atom and O3’ atom, as well as the angle formed by O5’, P, and O3’
atoms.

Reproducibility of protein-DNA atomic interactions. We examined whether the protein-DNA
interface at the initial structure was maintained after reverse mapping from a snapshot of CGMD
simulations. For some atom pairs which are frequently close each other in known structures (e.g.
Nζ atom of lysine and OP1 atom of DNA backbone), we calculated the corresponding distances.
We picked up atom pairs whose distance is less than 6.5 Å at initial structure and measured the
distance of the atom pair. After reverse mapping of CG MD snapshot, we calculated the distance
of the same pair again. When the distance was within ±1 Å from its original value, we regarded
the interaction of the atom pair was reproduced. We numerated the number of reproduced interactions in the dataset and obtained the reproduction ratio.

RESULTS AND DISCUSSION

Examination of DNA reconstruction by the self-reproduction

First, we examine the method for the reconstruction of atomic DNA structures for the target CG models that were created directly from the atomic structures (termed “self-reproduction”). In this test, we can clearly measure the performance of the method; the better the method is, the smaller the deviation between the original and the reconstructed structures is. However, we also note that, in this examination, the given CG models are limited to “high-quality” ones which are perfectly compatible with atomic structures. Importantly, this is not the case for practical applications, where CG models are created by CGMD or modeling so that the CG models are not perfectly compatible with atomic structures. Yet, we consider this self-production test is useful because it is the necessary condition for the method to be a good reconstruction tool.

First we performed the self-reproduction test for five sets of protein-DNA complexes with broad range of DNA structures (termed the test-set B); 1) 30 protein-DNA complexes with single-stranded DNA chain, 2) 642 protein-DNA complexes with multiple DNA chains (dominated by duplex DNAs), 3) 39 A-type DNAs, 4) 29 Z-type DNAs, and 5) 22 quadruplex DNAs. Here, we used the parameters $k_{Bi} = 2.0$, $k_{Si-1} = 0.1$, $k_{Pi} = 1.0$, $k_{Si} = 1.0$, and $k_{Pi+1} = 1.0$ (See Methods), which were tuned in advance. Four representative cases are depicted in Fig. 4A where
the original and the reconstructed DNA structures are drawn in pink and green, respectively. These illustrate that, in most cases, our reconstruction method work well not only for B-type duplex DNA, but also for single-stranded DNA, Z-type duplex DNA, and quadruplex DNA. For each nucleotide that is not the terminus, we calculated the RMSD between the crystal structures and the reconstructed atomic models. Statistically, in every set, the RMSD distribution had its peak around 0.1-0.2 Å, suggesting that our method is applicable to most structures of DNA (Fig. 4B).

Next, using a smaller test set (termed the test-set A) that contain 180 X-ray crystal structures of DNA, we conducted more systematic test of reconstruction. By the same self-reproduction test as above, the distribution of RMSD (Fig. 5A) shows its peak near 0.13 Å, 68% of nucleotides had the RMSD within 0.25 Å, and 91% of them fall within 0.5 Å. Therefore our method was able to reproduce experimentally determined structures rather accurately in this test set too. By visual inspection, we found that our method can reproduce the tilt of bases even though we did not take into consideration of the base-stacking interaction or repulsive interactions between base planes, implying that the tilt of base is highly restricted in most cases.

As outliers in the self-reproduction of the test-set A, we found eleven deoxyribonucleotides with the RMSDs larger than 2.0 Å. In these cases, bases were rotated nearly 180° along the bond connecting sugar and base groups (See Fig. S2A). In these cases, the nucleotides did not form base pairing or stable base stacking in the crystal structure. Thus, the reconstruction of non-duplex DNA is considerably more difficult.

Next, in the test set A, we discuss the reconstruction of the end nucleotides for which, as described in Method, we used a different method. The RMSD for 5’ end nucleotides was
modestly larger than the internal and 3’ end nucleotides (See Fig. S3A). We consider that it is easy to relax end nucleotides by posterior atomistic MD. Thus we did not consider any additional improvement.

As a quick benchmark test of computational time, we modeled 145-base pair DNA (PDBID : 3UT9) for 1000 times, which took 144-150 seconds with Intel(R) Core(TM) i7-3770 CPU at 3.40GHz. We performed the test using single core. Thus the computer time for the reconstruction is about 0.001 second / base pair. This is sufficiently fast, for example, to reconstruct atomic structures for all the snapshots along a CGMD trajectory.

Examination of DNA reconstruction from CGMD simulation data

Next we tested whether our reverse mapping method is applicable to CG structures obtained from CGMD simulations. Unlike the reconstitution in the previous section, CGMD snapshots may include less accurate local structures sampled by the CGMD. As described in Methods, we begin with the quick simulated annealing (SA) minimizations by the CG model, which is followed by the DNA reconstruction in the same way as above. We note that the SA here is short enough so that it can relaxes the local structures, but does not significantly affect large-scale conformations.

For the 180 crystal structures in the test-set A, we first performed short-time constant-temperature CGMD simulations, of which the final structures are the target of our reconstruction. We tested the two cooling schedules of the SA; SA with 1,000 MD steps and that with 10,000 MD steps.
First we compared the CG virtual-bond distances between the base particle and the adjacent sugar particle in the initial (crystal) structures with those after the constant temperature CGMD, those after the following 1,000-step SA, and those after the 10,000-step SA (Fig. 5B-C). In the crystal structure, there are two sharp peaks near 4.3Å and 4.9Å, which, respectively, correspond to the distances of sugar-pyrimidine base and sugar-purine base (Fig. 5B). After the CGMD, the distribution was smoothed out due to high degree of fluctuations showing only one broad peak around 4.6Å. Although the 1,000-step SA did not improve the distribution, the SA run of 10,000-steps partially recovered the two-peak feature observed in the crystal structures (green curve in Fig. 5C). Therefore, the SA run of not-too-few steps can improve less accurate local bond lengths appeared in the CGMD snapshots.

We also plotted the virtual bond lengths between the sugar particles and the adjacent phosphate particles. The change in this distance after SA was a little (Fig. S4A). For virtual bond angles, we plotted the angle formed by phosphate, sugar, and base in the same nucleotide (Fig. S4B). Although the SA runs made virtually no difference, the angle after CGMD simulations showed sharper distribution than that in the crystal structures.

Next, we examined the base-pairings in the reconstructed DNA structures. First we checked Watson-Crick pairing in CG models based on our criteria (See Method). Then we examined the reproducibility of base pairings in the reverse-mapped structures (Fig. 5D) as a test of our method. The detail definition of the reproducibility is described in Methods. When we performed the self-reproduction from the crystal structures as in the previous section, we reproduced the base pairing with very high probabilities; for 63% of DNA crystal structures in the test-set A, we
reproduced all the base-pairs (Fig. 5D, black solid curve). On the other hand, for the CG models after CGMD simulations (or those after the subsequent 1,000-step SA), the probabilities of the base-pairing reproducibility in each target were between 0.3 and 1.0 (Fig. 5D red dashed curve and blue dotted curve). The probability of the reproducibility markedly recovered after the 10,000-step SA (Fig. 5D green). The number of structures with the reproducibility >0.8 increased significantly, and those with the perfect reproducibility also increased. Thus, sufficiently long SA improves the Watson-Crick pairing reproducibility. Even for the structures with reproducibility value around 0.5, the tilt of base was not so problematic in most cases (Fig. 5E).

Finally we examined the AA local structure between adjacent nucleotides in the reconstructed AA DNA models. Notably, in the reconstruction, we superimposed each nucleotide AA structure one by one. Thus, while each intra-nucleotide structure is always accurate, the connectivity between two nucleotides is not guaranteed. We calculated the distances between O3’-P that should make covalent bonds (For connectivity between inner nucleotides in Fig. 5F, and that between 5’- or 3’ end and inner nucleotide in Fig. S3B) and the bond angle for O5’, P, and O3’ atoms (Fig. 5G and S3C). We found that the peaks of the distributions were well maintained for both distances and angles although the distributions became broader than those in the crystal structures. In these cases, the short or long SA did not improve the quality of these local structures at boundary of two nucleotides. We considered that our reverse mapped models are good enough to subsequent atomistic MD simulations. In fact, these values were drastically improved by minimization with AA force filed, as discussed below.
Parameter tuning for DNA reconstruction

Throughout the tests above, the parameters in the distance function F (Eq. (1)) for measuring the similarity between the target and the database DNA structures were set $k_{Bi} = 2.0$, $k_{Si-1} = 0.1$, $k_{Pi} = 1.0$, $k_{Si} = 1.0$, and $k_{Pi+1} = 1.0$. Before the tests above, we had tuned the parameters. Here, we discuss these parameters comparing the reconstruction results with different parameter sets. Specifically, we changed the k_{Bi} and k_{Si-1}, those for the base bead and 5’-neighboring sugar bead, respectively. First we examined whether these two particles are required for modeling or not. When k_{Bi} was set to zero, the average RMSD in the self-reproduction increased; the peak around 0.1-0.2 Å clearly disappeared. When k_{Si-1} is set to 10.0, the RMSD increased moderately from the best parameter set. Some more detailed comparisons were given in Fig. S5A-D.

We also examined the parameter dependency of the base-pair reproducibility. When k_{Bi} is 0.0 or a small value, the reproducibility decreased drastically. We noticed that small k_{Si-1} values improved the base-pair reproducibility. Probably this is because a small k_{Si-1} reduces the weight of base positions in the evaluation function. On the other hand, the O3’-P bond length distributed in narrower range when k_{Bi} is small or k_{Si-1} is large. The angle formed by O5’, P, and O3’ atoms hardly changed except when $k_{Si-1} = 0.0$ (Fig. S5E-G).

From these results, we decided to set $k_{Si-1} = 0.1$ and $k_j = 2.0$.

We further examined what kind of structures cannot be reverse-mapped correctly regardless of the parameter tuning. We listed some of the nucleotides with RMSD more than 1.5 Å when self-reconstructed from the crystal structures (Table. S2). In these nucleotides, the RMSD values are...
large regardless of the parameters. The parameters we tested are listed in Table S3. Most of these nucleotides are relatively free of interactions, without forming the Watson-Crick pair or the base-stacking (Fig. S2B). Therefore it is difficult for our methods to accurately reverse map nucleotides whose bases can rotate rather freely around the bond connecting sugar and base groups. We guess that it is inherently difficult even for the other reverse-mapping methods.

Examination of the protein reconstruction at the interface to DNA

In the protein reconstruction, accurate modeling of the sidechain orientation at protein-DNA interface is of crucial importance. We consider the two cases; 1) protein-DNA complexes of which stable structures are experimentally known and from which structures were perturbed during CGMD simulations while maintaining protein-DNA interaction interface, and 2) protein-DNA complexes for which new interactions are formed in CGMD simulations. In the case 1), it is probably better to use the known structural information as much as possible. For the case 2, it should be noted that, without any experimental structure of the complex, we cannot obtain accurate sidechain orientations in CGMD simulations. The preferred sidechain orientation can only be elucidated by AAMD simulations after the reverse-mapping.

Focusing on the case 1, we decided to utilize sidechain orientations of the known structure at protein-DNA interface. To maintain the interface as much as possible and to account for significant structural change in proteins, we devised a hybrid approach where sidechain orientation of known protein-DNA complex structure is applied only to interaction interface. The rest of protein region is modeled by the existing general sidechain modeling tool, SCWRL4.
We performed the protein reverse mapping after CGMD simulation and the DNA reconstruction. Prior to test our hybrid approach, we confirmed that the distance between two amino acid beads converged to that observed experimentally. The Cα-Cα distance distribution has sharp peak at 3.8 Å except for the case of cis proline. By 10,000-step of SA, the virtual bond lengths came close to those in the initial structure of CGMD simulations (Fig. S6).

We tested the reproducibility of interactions between protein and DNA. We regarded 10,000-step CGMD simulations as short enough and thus assumed that protein-DNA interface was intact at the end of CGMD simulation. We picked up atom pair of 15 kinds and calculated the reproducibility of the atom-atom contact after reverse mapping. The detail definition of inter-atom interaction reproducibility is shown in Methods. Results are shown in Fig. 6A and Table S4. Our hybrid approach presented similar quality to the overall superposition method. Our methods successfully reproduced the sidechain orientation of crystal structure at the protein-DNA interface. In many cases, the reproducibility by PD2+SCWRL4 methods was worse than the other two approaches. As contacting amino acid sidechain atoms are more distant from the main chain, the reproducibility by PD2+SCWRL4 becomes worse. For example, the reproducibility for the pair of lysine Nζ atom and DNA OP1 atom is clearly low while that of serine Oγ atom and OP1 atom pair is similar level to the other 2 approaches. Probably, choice of sidechain rotamer different from known structure reflects these results. Once the main chain was modeled, the position of Cγ atom is nearly determined. Interestingly, our hybrid approach recorded the best result at the pair of an atom in DNA base and an atom in protein sidechain. This may be explained by the existence of structure-based potential between the amino acid and base particle in CGMD simulations. In this condition, the method which reproduces both sidechain orientation
and the position of Cα is advantageous. Therefore our hybrid approach is effective for protein-DNA complex in the case 1 situation.

We also checked the bond angles. Notably, the Cβ atom is the boundary of superposed structure and the main chain reconstructed by PD2 CA2MAIN, and thus the reconstruction of the correct bond angle is not trivial. We confirmed the angle distributed around that observed in the crystal structures. A subsequent energy minimization run in the AA model of protein-DNA complex made the angles close to those found in the experiment (Fig. S7). We note that our hybrid strategy is applicable also to protein-protein complexes and protein-ligand systems generally.

Examination of the energy minimization after the reconstruction

Finally, we examined the effect of energy minimization by an AA force field after reconstructing the AA structure. For proteins, we used the AA structure reconstructed by the hybrid method. After the reconstruction, the protein-DNA complex was solvated and was energy-minimized by the steepest descent run with a standard AA force field.

First we checked the base-pairing reproducibility. After the energy-minimization, the reproducibility was higher than 0.8 for almost all the complex structures and 1.0 for more than 45% structures (Fig. 7A), which is remarkably higher than that before the minimization. When we plotted the distribution of the donor-acceptor distance of the Watson-Crick pair, the distance was mainly between 2.7 to 3.2 Å, which is much narrower range than that in the self-reproduction run and that before the minimization of the reconstructed structure from CGMD
runs (Fig. 7B). By taking into consideration of the AA energy, backbone structures were markedly improved: Both the O3’-P bond lengths and the O5’-P-O3’ bond angles converged to those in the crystal structure (Fig 7 C-D, S3 D-E). Thus, the posterior energy minimization with an AA force field significantly improved the quality of the protein-DNA complex AA structures.

When proteins were modeled by PD2+SCWRL4 method, the reproducibility of DNA-protein interface was not very good. Can the steepest descent minimization refine DNA-protein contact of these poor interfaces? To test it, we performed the steepest descent run for protein-DNA complexes entirely reconstructed by PD2+SCWRL4. The reproducibility is listed in Fig 6B and Table S4 right. Although the reproducibility improved in both “PD2+SCWRL4” and “Hybrid”, the value by PD2+SCWRL remained lower than that by the hybrid method. Thus, when the initial structure is poor, it was not easy to improve sidechain orientations at protein-DNA interfaces merely by the steepest-descent run. For the structures obtained by our hybrid approach, the reproducibility was considerably better. If proteins, DNA, and their interface were accurately reverse-mapped, the steepest descent energy minimization with an AA force field refined the local structures markedly.

From the structure after the energy-minimization, we performed short constant-temperature AAMD simulations with bond length constrained by LINCS56. We used GROMACS 5.1.152,53. The MD runs completed without the error for the 95% of the cases, while 5% of the cases stopped because of unusual structure, in most case with LINCS warnings. Therefore, for majority of cases, these reverse-mapped complexes can be further analyzed by the posterior AAMD simulations. We note that most of the structures stopped contained non B-form duplex DNAs, perhaps because the 3SPN.2C DNA CG model is less accurate for non B-form duplex DNA.
Comparison with other reconstruction methods

Rzpiera et al and Wassenaar et al reported general methods for reverse mapping of biomolecular systems12,13. In their methods, they allow structural distortion at the first step of atom arrangement. They confirmed that their approach can work well in reconstructing atomic detail from a CG protein-lipid model that has a higher resolution than that in this work, and in reconstructing a higher-resolution CG lipid model from a lower-resolution CG model. Both methods could reintroduce detailed structure well.

There are several reports discussing reverse-mapping from CG DNA model to atomistic model. Naômé et al, reconstructed atomistic detail from 1 site per nucleotide model29. They utilized the methods by Rzpiera et al. described above12. Other groups performed reverse mapping of AA DNA structure from a higher resolution CG model than 3SPN.2C model14,26,28,45. In these cases AA structure can be determined nearly uniquely by the CG DNA structure. Our fragment-library-based method can reconstruct a reasonable AA structure from a lower-resolution CG model even before we perform energy minimization with an AA force field. The library-based approach is significantly faster than the MD-based approaches. Therefore our approach can have advantage to reconstruct thousands / millions of structures of flexible molecules (e.g. comparison to small angle X-ray scattering25).

However, when one tries to reconstruct AA structure from a low-resolution protein model that does not possess sidechain conformation information, there exist a characteristic difficulty. Once
wrong sidechain conformations are introduced in a high-density environment, such as a tightly-packed interface, they cannot easily be corrected. In this context, a general MD-based approach above may have risks. In this study, we attempt to avoid the risks by utilizing sidechain orientations in known 3D structures as much as possible. Indeed, the reproducibility of protein-DNA interaction was significantly superior to the methods that do not use known structure information. Notably, while a direct superposition of known 3D structure has been proposed previously, our method utilizes known structure information only for the sidechains at the interface to DNA. By this way, our approach can incorporate overall conformation changes sampled by CGMD simulations.

CONCLUSION

In this study, we developed a new reconstruction method of AA structures from CG structural models for protein-DNA complexes. Our primary targets were CG models of protein-DNA complexes represented with one-site-per amino acid in proteins and three-sites-per-nucleotide in DNAs. First we tested our new method for the DNA reconstruction. The method reproduced the tilt of base plane well in most cases and was applicable to non-canonical DNA structures. For snapshots of CGMD simulations, we performed short simulated annealing minimization before the reconstruction. Combining the simulated annealing run and our DNA reverse-mapping method, many Watson-Crick base pairs were well reproduced even though the method does not take into consideration of the hydrogen-bond interaction energy.
Second, we developed the reverse-mapping method from Cα-protein model to atomistic model in which we combined superposition of known atomistic structures with existing modeling tools. By this hybrid method, we successfully reproduced protein-DNA contacts in known 3D structures. The reproducibility of interaction in our hybrid method is equal to or better than the interface obtained after superposition of X-ray crystal structure on CG model. The merit of our approach is that we can treat not only a part where the conformation of sidechains is similar to known structure, but also the other part where the structure is different from experimentally determined structure. This approach should also be applicable to multi-protein systems and other protein-ligand systems.

We proposed a reverse-mapping method for protein-DNA complexes obtained by prior CGMD simulations, which is composed of SA in the CG resolution, DNA reverse-mapping, protein reverse-mapping, and AA energy minimization. After the final minimization run, local structures of atomistic model converged to that observed in X-ray crystal structure. Furthermore, we could perform subsequent constant-temperature AAMD simulations. Therefore, the reverse-mapped structures must have quality usable for further analysis by atomistic MD simulations.

FIGURES
Figure 1. A flowchart of the reconstruction methods for protein-DNA complexes.
Figure 2. The DNA reconstruction method. A) AA and CG representations of DNA. B) The DNA reconstruction procedure.
Figure 3. The protein reconstruction protocol. Proteins are in light cyan for main chain and C_β atoms, and in purple for the other atoms. DNAs are in green. CG models are shown by wire and AA models are shown by spheres.
Figure 4. Self-reproduction test of various DNA structures. We tested single-stranded DNA in complex with proteins, multiple-chain DNA in complex with proteins, A-DNA, Z-DNA, and quadruplex DNA. A) Comparison between X-ray crystal structures (pink) and reconstructed structures (green). B) The distribution of RMSD between the original X-ray crystal structures and the self-reproduced AA structures for nucleotides that are not at the terminus in single-chain DNAs and multiple-chain DNAs (left) and in A-DNAs, Z-DNAs, and quadruplex DNAs (right).
Figure 5. The DNA reconstruction for the test set A. A) Self-reproduction test. The RMSD distribution of inner nucleotides is shown. B) The distribution of the distance between the center of mass (COM) of the base group and the COM of sugar of each deoxyribonucleotide in the original crystal structures. C) The distribution between the CG base particle and the CG sugar particle after CGMD simulations. D) The Watson-Crick base pairing reproducibility. E) Some examples of reconstructed DNAs with their Watson-Crick pairing reproducibility. F) The distribution of O3’-P covalent bond length. G) The distribution of O3’-P-O5’ covalent bond angle. “CGMD” means snapshots after CGMD, “+CGSA” denotes the structures after CGMD and the subsequent simulated annealing by the CG model. “Crystal” means the result for the original crystal structures. In “CGMD” and “+CGSA” cases, the error bars represent standard errors in 20 independent simulations.
Figure 6. The reproducibility of atom contacts at protein-DNA interface. A) The contact reproducibility of reconstructed models before energy minimization. The error bars represent standard deviations in 20 independent simulations. B) The contact reproducibility of reconstructed models after energy minimization with an AA force field. We used structures which did not stop in subsequent NVT simulation. “Superposition”; the high-resolution structure is superimposed on the given CG model using Cα atom positions. “PD2+SCWRL”; PD2 CA2MAIN is used to model main chains and Cβ atoms and SCWRL is used to model sidechain conformations. “Hybrid”; PD2 CA2MAIN is used to model main chains and the sidechain orientation of known protein-DNA complex structure is applied to the interface residues. “DG” represents guanine and “DT” represents thymine, respectively.
Figure 7. Refinement of local structures by energy minimization with an AA force field for the test-set A. A) The Watson-Crick base pairing reproducibility. B) The distance between donor and acceptor atoms in Watson-Crick pairs. C-D) The distance of O3’-P covalent bond (C) and of O3’-P-O5’ bond angle (D). “Crystal” means crystal structures. “Before AAEM” denotes the reconstructed DNA model without the energy minimization and “After AAEM” means the reconstructed model with the subsequent energy minimization. In “After AAEM” case, we used structures which did not stop in following NVT simulation.

ASSOCIATED CONTENT

Supporting Information. The following files are available free of charge.

Details of simulation methods and further analysis of the reconstruction method (PDF)

PDB entries of dataset we used for testing the reconstruction method (SI_Table_S1.xlsx)
Notes

The developed program is available at http://www.cafemol.org/download.php.

AUTHOR INFORMATION

Corresponding Author

*(S.T.) E-mail: takada@biophys.kyoto-u.ac.jp

Funding Sources

The study was supported partly by JSPS KAKENHI grant 25251019(ST), 16KT0054(ST), and 16H01303 (ST), 15H01351(ST) by the MEXT as “Priority Issue on Post-K computer”(ST), and by the RIKEN Pioneering Project “Dynamical Structural Biology”(ST).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank Mr. Toru Niina for helping us with debugging our DNA reconstruction program. We also thank Dr. Cheng Tan and Mr. Diego Ugarte La. Torre for useful discussions.

REFERENCES

(52) Pall, S.; Abraham, M. J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In *SOLVING*

