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Abstract:	Frequency-specific	oscillations	and	phase-coupling	of	neuronal	populations	have	
been	proposed	as	an	essential	mechanism	for	the	coordination	of	activity	between	brain	
areas	during	cognitive	tasks.	To	provide	an	effective	substrate	for	cognitive	function,	we	
reasoned	that	ongoing	functional	brain	networks	should	also	be	able	to	reorganise	and	
coordinate	in	a	similar	manner.	To	test	this	hypothesis,	we	use	a	novel	method	for	
identifying	repeating	patterns	of	large-scale	phase-coupling	network	dynamics,	and	show	
that	resting	networks	in	magnetoencephalography	are	well	characterised	by	visits	to	short-
lived	transient	brain	states,	with	spatially	distinct	power	and	phase-coupling	in	specific	
frequency	bands.	Brain	states	were	identified	for	sensory,	motor	networks	and	higher-order	
cognitive	networks;	the	latter	include	a	posterior	higher-order	cognitive	network	in	the	
alpha	range	(8-12Hz)	and	an	anterior	higher-order	cognitive	network	in	the	delta/theta	
range	(1-7Hz).	Both	higher-order	cognitive	networks	exhibit	especially	high	power	and	
coherence,	and	contain	brain	areas	corresponding	to	posterior	and	anterior	subdivisions	of	
the	default	mode	network.	Our	results	show	that	large-scale	cortical	phase-coupling	
networks	operate	in	very	specific	frequency	bands,	possibly	reflecting	functional	
specialisation	at	different	intrinsic	timescales.		
	
Introduction	
	
Efficient	neuronal	coordination	between	regions	across	the	entire	brain	is	necessary	for	
cognition	(Salinas	and	Sejnowski,	2001;	Varela	et	al.,	2001;	Buschman	and	Miller,	2007;	
Siegel	et	al.,	2012).	A	proposed	mechanism	for	such	coordination	is	oscillatory	
synchronisation;	that	is,	populations	of	neurons	transmit	information	by	coordinating	their	
oscillatory	activity	with	the	oscillations	of	the	receptor	population	at	certain	frequencies.	
Furthermore,	different	frequencies,	or,	more	generally,	different	oscillatory	patterns,	
subserve	different	functions	(Buzsáki	and	Draguhn,	2004).	At	the	same	time,	phase-coupling,	
or	equivalently	coherence,	between	neuronal	populations	in	specific	frequency	bands	has	
been	proposed	as	a	mechanism	for	regulating	the	integration	and	flow	of	cognitive	content	
(Fries,	2005;	Fries,	2015;	Engel	et	al.,	2013,	Marzetti	et	al.,	2013).	The	role	of	phase-coupling	
at	distinct	frequencies	has	also	been	demonstrated	in	tasks	at	the	large-scale,	where	task-
relevant	information	is	effectively	transmitted	through	phase-locking	between	separate	
cortical	regions	(Palva	et	al.,	2005;	Hipp	et	al.,	2011;	Fries	2015;	Fell	and	Axmacher,	2011).	

Using	fMRI,	it	has	been	shown	that	large-scale	networks	activated	in	tasks	are	also	
spontaneously	recruited	in	the	resting	state	(Smith	et	al.,	2009).	These	networks	have	
previously	been	shown	to	have	distinct	band-limited	power	in	electroencephalography	(EEG)	
and	magnetoencephalography	(MEG)	(Laufs	el	al.,	2003;	Brookes	et	al.,	2011;	de	Pasquale	et	
al.	2010;	Ganzetti	and	Mantini,	2013;	Hipp	and	Siegel,	2015;	Colclough	et	al.	2017).	If	these	
spontaneously	occurring	networks	are	to	provide	an	effective	substrate	for	cognitive	
processes,	then	they	might	also	be	expected	to	exhibit	the	same	fast	changing	phase-
coupling	activity	observed	in	tasks	(Womelsdorf	et	al.,	2007;	Bosman	et	al.,	2012;	Fries,	
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2015).	However,	the	evidence	for	frequency	specific	phase-coupling	in	spontaneous	activity	
at	timescales	associated	with	fast	cognition	is	limited.	
	
Here,	we	propose	that	cortical	activity	at	rest	can	be	described	by	transient,	intermittently	
reoccurring	events	in	which	large-scale	networks	activate	with	distinct	spectral	and	phase-
coupling	features.	To	identify	the	possible	presence	of	these	events,	we	use	a	new	analysis	
approach	based	on	the	Hidden	Markov	Model	(HMM;	Rabiner,	1989).	For	the	first	time,	this	
allows	for	the	identification	of	brain-wide	networks	(or	brain	states)	characterised	by	
specific	patterns	of	power	and	phase-coupling	connectivity,	which,	crucially,	are	spectrally-
resolved	(i.e.	power	and	phase-coupling	are	defined	as	a	function	of	frequency).	These	
patterns	are	also	temporally-resolved,	meaning	that	the	method	provides	a	probabilistic	
estimation	of	when	the	different	networks	are	active	(see	Fig.	1a).	Notably,	applying	this	
approach	to	resting	MEG	recordings	of	healthy	human	subjects	revealed	the	distinct	
temporal	and	spectral	properties	of	anterior	versus	posterior	regions	of	the	default	mode	
network.	The	joint	description	of	the	spectral,	temporal	and	spatial	properties	of	ongoing	
neuronal	activity	provides	new	insight	into	the	large-scale	circuit	organization	of	the	brain	
(Woolrich	and	Stephan,	2013).	
	
Results	
	
Using	concatenated	MEG	resting-state	data	from	55	subjects,	mapped	to	a	42-region	
parcellation	using	beamforming	(Van	Veen	et	al.,	1997;	Woolrich	et	al.,	2011)	with	reduction	
of	spatial	leakage	in	order	to	diminish	the	effects	of	volume	conduction	(Colclough	et	al,	
2015),	we	identified	12	HMM	states	using	a	novel	approach	that	we	refer	to	as	time-delay	
embedded	HMM.	Essentially,	this	technique	finds,	in	a	completely	data-driven	way,	
recurrent	patterns	of	network	(or	HMM	state)	activity.	Each	HMM	state	has	parameters	
describing	brain	activity	in	terms	of	power	covariations	and,	crucially,	phase-coupling	
between	every	pair	of	regions.	The	method	provides	information	that	is	both	spectrally-
resolved	(power	and	phase-coupling	are	defined	as	a	function	of	frequency)	and	temporally-
resolved	(different	networks	are	described	as	being	active	or	inactive	at	different	points	in	
time).	Importantly,	while	the	spatial	and	spectral	description	of	the	states	is	common	to	all	
subjects,	each	subject	has	their	own	state	time	course,	representing	the	probability	of	each	
HMM	state	being	active	at	each	instant	(see	Methods	for	further	details).	See	Fig.	1	for	a	
graphical	example,	and	Fig.	SI-1	for	an	illustration	of	the	entire	pipeline.		
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Fig.	1.		Schematic	illustration	of	the	method.	(a)	Each	state	is	defined	as	having	its	own	distinct	
temporal,	spatial	and	spectral	characteristics.	The	temporal	information	is	given	by	when	the	state	is	
active	(red	boxes).	The	spatial	and	spectral	descriptions	of	the	power	maps	and	phase-coupling	
networks	are	contained	in	the	parameters	of	each	state.	(b)	Schematic	of	the	iterative	model	
inference.	The	state	parameters	are	estimated	using	those	segments	of	the	data	for	which	the	state	is	
currently	estimated	to	be	active.	In	turn,	the	estimation	of	when	a	state	is	active	is	based	on	the	how	
well	each	state	can	explain	each	time	point	(i.e.	according	to	the	current	estimate	of	the	
spatial/spectral	state	parameters).		
	
	
The	states	exhibit	specific	phase-locking	connectivity	
	
Fig.	2	shows	spatial	maps	of	power	and	phase-coupling	connectivity,	both	averaged	across	a	
wideband	frequency	range	(1-30Hz),	for	four	of	the	12	estimated	states.	The	maps	are	
thresholded	for	ease	of	visualisation.	Fig.	SI-2	shows	the	remaining	eight	states,	four	of	
which	exhibit	reduced	power	and	connectivity	relative	to	the	grand	average.	The	power	
maps	and	phase-coupling	connectivity	of	each	state	tend	to	be	(although	not	exclusively)	
bilateral,	with	strong	increases	in	power	tending	to	(although	not	exclusively)	accompany	
increases	in	phase-locking.	We	refer	to	two	of	the	states	(left)	as	being	“higher-order	
cognitive”,	in	accordance	with	the	brain	areas	they	incorporate	and	previous	literature	
(Smith	et	al,	2009;	Svoboda	et	al.,	2006;	van	Overwalle,	2009;	Mason	et	al.,	2007).	The	other	
two	states	(right)	correspond	well	to	visual	and	motor	systems.	The	two	higher-order	
cognitive	networks	involve	regions	that	together	form	the	default	mode	network	(DMN).	
This	affords	the	interpretation	that	the	DMN,	when	analysed	at	the	finer	time	scales,	can	be	
decoupled	into	two	separate	components.	The	anterior	higher-order	cognitive	state	includes	
the	temporal	poles	(often	associated	with	semantic	integration;	Tsapkini	et	al.,	2011)	and	
the	ventromedial	prefrontal	cortex	(typically	implicated	in	emotion	regulation	and	decision	
making;	Fellows	and	Farah,	2007),	exhibiting	a	strong	connectivity	with	the	posterior	
cingulate	cortex	(PCC),	which	is	a	key	region	of	the	DMN	(Fransson	and	Marrelec,	2008).	The	
posterior	higher-order	cognitive	network	encompasses	the	PCC/precuneus,	bilateral	
superior	and	inferior	parietal	lobules,	bilateral	intraparietal	sulci,	bilateral	angular	and	
supramarginal	gyri,	and	bilateral	temporal	cortex.	These	regions	are	classically	associated	
with	integration	of	sensory	information,	perceptual-motor	coordination	and	visual	attention,	
as	well	as	processing	of	sounds,	biological	motion	and	theory	of	mind	(Culham	and	
Kanwisher,	2001).		
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Fig.	2.	Brain	states	identified	using	Hidden	Markov	Modelling	represent	strong	coherent	(phase-
coupling)	networks,	with	strong	increases	in	power	tending	to	accompany	increases	in	phase-
coupling.	Wideband	(1-30Hz)	thresholded	power	maps	and	phase-coupling	are	displayed	for	the	two	
higher-order	cognitive	(anterior	and	posterior)	states,	and	the	visual	and	motor	states.	The	
two	higher-order	cognitive	networks	contain	regions	that	suggest	a	subdivision	of	the	default	mode	
network.	Power	maps	are	relative	to	the	temporal	average,	i.e.	they	are	globally	centred	such	that	
blue	colours	reflect	power	that	is	lower	than	the	average	over	states,	and	red/yellow	colours	reflect	
power	that	is	higher	than	the	average	over	states.	The	coherence	networks	only	show	high-valued	
connections	(see	Methods	for	thresholding).	In	the	circular	phase-coupling	plots,	each	numbered	dot	
represents	one	brain	region.	Fig.	SI-1	shows	the	same	information	for	the	other	eight	states.	
	
	
Higher-order	cognitive	states	have	distinct	spectral	characteristics	
	
Previous	work	looking	at	the	global	(temporally	averaged)	estimates	of	large-scale	functional	
connectivity	has	demonstrated	that	different	brain	networks	show	correlation	of	power	in	
different	frequency	bands	(Hipp	et	al.,	2012).	Leveraging	the	fact	that	our	model	is	spectrally	
resolved,	we	sought	to	investigate	how	power	and	phase-coupling	varies	with	frequency	in	
the	different	brain	states.		
	
For	the	four	states	shown	in	Fig.	2,	Fig.	3a	shows	power	versus	coherence,	with	dots	
representing	each	brain	region.	These	results	are	shown	wideband	(1-30Hz)	and	for	three	
different	frequency	modes.	The	frequency	modes	were	estimated	following	a	data-driven	
approach	(non-negative	matrix	factorisation,	see	Methods),	which	produced	four	frequency	
modes	that	approximately	correspond	to	the	classic	delta/theta	(0.5-10Hz),	alpha	(5-15Hz),	
beta	(15-30Hz)	and	low	gamma	bands	(30-45Hz).	Possibly	due	to	the	relatively	low	signal-to-
noise	ratio	in	higher	frequency	bands,	we	found	that	the	low	gamma	band	mode	did	not	
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exhibit	any	strong	state-specific	differences,	and	so	we	only	show	results	for	the	delta/theta,	
alpha,	and	beta	modes.	Strong	increases	in	power	tended	to	(although	not	exclusively)	
accompany	increases	in	coherence.	Interestingly,	the	differences	in	coherence	between	the	
states	are	much	more	pronounced	than	the	differences	in	power.		
	
To	expand	on	the	specific	spectral	differences	between	the	higher-order	cognitive	and	the	
visual	and	motor	states,	Fig.	3b	shows	power	and	coherence	averaged	across	all	brain	
regions	as	a	function	of	frequency.	This	shows	frequency	at	full	spectral	resolution	rather	
than	the	frequency	modes	used	in	the	previous	Fig.	3a.	The	anterior	higher-order	cognitive	
state	is	characterised	by	strong	power	and	coherence	in	the	slowest	frequencies	
(delta/theta),	whereas	the	posterior	higher-order	cognitive	is	dominated	by	the	alpha	
frequency.	More	specifically,	there	is	a	strong	component	at	~4Hz	for	the	anterior	higher-
order	cognitive	state	in	both	power	and	coherence,	and	a	component	at	10Hz	for	the	
posterior	higher-order	cognitive	state	also	in	both	power	and	coherence.	These	results	
reveal	that	the	two	higher-order	cognitive	states,	which	may	correspond	to	subdivisions	of	
the	DMN,	exhibit	more	power	and	coherence	than	the	visual	and	motor	states.	Moreover,	
they	have	very	different	dominant	frequencies.	
	
Given	the	key	role	attributed	to	the	PCC	and	the	medial	prefrontal	cortex	(mPFC)	within	the	
DMN	and	resting-state	networks	more	broadly	(Fransson	and	Marrelec,	2008;	van	den	
Heuvel	and	Sporns,	2013),	we	next	examined	the	state-specific	frequency	profile	of	the	PCC	
and	the	mPFC	to	see	if	their	spectral	characteristics	in	the	higher-order	cognitive	states	are	
significantly	different	to	the	other	(less	cognitive)	states.	Fig.	3c	shows	the	power	in	the	PCC	
and	the	mPFC	as	well	as	the	coherence	between	these	two	regions.	The	four	considered	
states	were	compared	to	the	global	average	(solid	black	lines;	shaded	areas	represent	the	
standard	deviation	across	states),	which	corresponds	to	the	power	and	coherence	computed	
from	a	static	(rather	than	dynamic)	perspective.	The	PCC	has	more	power	across	all	
frequencies	in	the	posterior	higher-order	cognitive	state,	although	the	power	in	the	slow	
frequencies	for	the	anterior	higher-order	cognitive	state	is	also	significantly	above	the	global	
average.	By	contrast,	the	mPFC	shows	high	power	in	the	anterior	higher-order	cognitive	
state,	particularly	in	the	delta/theta	frequency	range.	Finally,	global	phase-coupling	is	high	in	
the	anterior	higher-order	cognitive	state	in	delta/theta,	whereas	the	posterior	higher-order	
cognitive	state	exhibits	high	PCC	connectivity	in	alpha	and	beta.	Altogether,	these	results	
suggest	that	(i)	the	PCC	has	spectral	properties	that	are	unique	to	the	higher-order	cognitive	
states	(consistent	with	the	idea	of	the	PCC	being	a	hub	region),	(ii)	the	anterior	higher-order	
cognitive	state	involves	the	PCC	in	slower	frequencies	than	the	posterior	higher-order	
cognitive	state	for	both	power	and	phase-coupling	connectivity,	and	(iii)	these	properties	are	
only	observed	when	we	compute	power	and	coherence	specifically	within	the	fast	transient	
events	that	correspond	to	the	HMM	brain	states,	whereas	the	global,	temporally	averaged	
properties	of	the	PCC	(black	line)	are	far	less	striking.	
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Fig.	3.	The	two	higher-order	cognitive	states	have	distinct	spectral	characteristics	compared	with	the	
visual	and	motor	states,	including	strong	differences	in	PCC	and	mPFC	activity.	(a)	Total	connectivity	
of	each	region	(defined	as	the	sum	of	the	values	of	coherence	of	the	region	with	the	rest	of	the	
regions)	against	power,	for	wideband	and	the	three	estimated	frequency	modes	(see	Methods),	
where	each	dot	represent	a	different	brain	region.	Both	power	and	connectivity	are	higher	for	the	
higher-order	cognitive	than	for	the	visual	and	motor	states,	with	coherence	exhibiting	the	largest	
difference.	(b)	Spectral	profiles	of	the	two	higher-order	cognitive	(anterior	and	posterior)	and	the	
visual	and	motor	states,	in	terms	of	power	averaged	across	brain	regions	(left)	and	coherence	
averaged	across	all	pairs	of	brain	regions	(right);	shaded	areas	represent	the	standard	deviation	
across	brain	regions	(or	pairs	of	regions).	Fig.	SI-4	shows	the	power	spectra	for	the	anterior/posterior	
precuneus	alongside	the	PCC’s.	(c)	Power	for	PCC	(top	left),	power	for	mPFC	(bottom	right)	and	
coherence	between	mPFC	and	PCC	(bottom	left),	for	the	four	considered	states	in	comparison	to	the	
grand	average	(black	line,	with	the	shaded	areas	representing	standard	deviation	across	states).	The	
temporally	average	global	power	and	coherence	has	a	relative	lack	of	spectral	detail	compared	with	
the	individual	brain	states.		
	
	
We	next	examined	the	spatial	distribution	of	these	spectral	differences	using	the	frequency	
modes	identified	in	Fig.	3.	Fig.	4	shows	power	and	phase-coupling	in	brain	space	for	each	
cognitive	state	and	frequency	mode	(Fig.	SI-3	presents	a	similar	view	for	the	visual	and	
motor	states).	This	view	clearly	reflects	that	the	two	higher-order	cognitive	states	have	a	
distinct	spatial	distribution	of	power	and	connectivity.	For	example,	we	observe	strong	
phase-coupling	between	frontal	areas,	mPFC	and	the	PCC	specifically	in	the	delta/theta	
mode	for	the	anterior	higher-order	cognitive	state.	By	contrast,	the	posterior	higher-order	
cognitive	state	is	characterised	by	pronounced	intraparietal	and	PCC/precuneus	connectivity	
(specifically	in	the	alpha	frequency	mode),	and	by	some	slow	frequency	power	and	phase-
coupling	in	the	temporal	regions.	As	observed	in	Fig.	2,	both	power	and	connectivity	exhibit	
strong	interhemispheric	symmetry.			
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Fig.	4.	Frequency-specific	relative	power	maps	and	phase-coupling	(see	Fig.	2	for	details)	for	the	
anterior	and	posterior	higher-order	cognitive	states,	and	for	the	three	data-driven	estimated	
frequency	modes.	Whereas	activity	(power	and	phase-locking)	is	dominant	in	the	delta/theta	
frequencies	for	the	anterior-cognitive	state,	the	posterior-cognitive	state	is	dominated	by	alpha.	Both	
states	exhibit	strong	phase-coupling	with	the	PCC,	but	in	different	frequency	bands.	Fig.	SI-3	shows	a	
similar	view	of	the	visual	and	motor	states.	
	
	
Higher-order	cognitive	states	have	distinct	temporal	characteristics	
	
Together	with	the	state	distributions,	the	HMM	inference	also	estimates	the	time-courses	of	
the	visits	to	each	of	the	brain	states.	We	used	these	to	look	at	the	extent	to	which	the	
temporal	characteristics	of	the	higher-order	cognitive	states	differed	to	the	visual	and	motor	
states.		
	
Fig.	5a	shows	for	each	state:	the	dwell	times	(or	life-times,	i.e.	the	amount	of	time	spent	in	a	
state	before	moving	into	a	new	state),	the	interval	times	between	consecutive	visits	to	a	
state,	and	the	fractional	occupancies	(reflecting	the	proportion	of	time	spent	in	each	state).	
All	HMM	states	were	on	average	short-lived,	their	dwell	times	lasting	on	average	between	
50-100ms.	(Note	that,	as	shown	empirically	in	the	SI,	phase-coupling	can	still	be	reliably	
measured	for	short	state	visits	even	at	the	slowest	frequencies.)	We	observed	longer	dwell	
times	for	the	posterior	higher-order	cognitive	state	than	for	the	states	that	were	not	higher-
order	cognitive	states	(permutation	testing,	p-value<0.001).	However,	the	largest	
differences	are	found	in	the	interval	times.	Both	of	the	anterior	and	posterior	higher-order	
cognitive	states	have	visits	that	are	much	more	temporally	separated	than	the	other	states	
(permutation	testing:	p-value<0.001	for	both	tests).	The	interval	time	distributions	of	the	
posterior	higher-order	cognitive	state	and,	to	a	lesser	extent,	of	the	anterior	higher-order	
cognitive	state,	have	pronounced	tails	for	higher	interval	times;	as	indicated	by	the	mean	of	
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the	distribution	being	much	larger	than	the	median.	To	further	illustrate	this,	Fig.	5b	shows	
the	cumulative	density	function	(CDF)	of	the	interval	times,	which	evaluates	the	proportion	
of	intervals	(Y-axis)	that	are	longer	than	any	given	interval	duration	(X-axis).	The	CDF	is	
particularly	useful	to	examine	the	differences	between	the	tails	of	the	distributions.	We	
observe	that	both	higher-order	cognitive	states	have	significantly	larger	CDF	values	than	the	
other	states	(significance	for	a	confidence	level	of	0.01	is	indicated	by	the	lines	on	top	of	the	
panel,	using	permutation	testing).	For	example,	the	time	between	state	visits	is	longer	than	
1s,	in	~40%	of	the	higher-order	cognitive	state	visits,	as	compared	to	only	~20%	of	the	time	
for	the	other	states.	Importantly,	this	is	not	due	to	differences	in	fractional	occupancy	
(depicted	in	the	bottom	panel	of	Fig.	5a),	given	that	the	fractional	occupancies	of	the	higher-
order	cognitive	states	are	not	significantly	different	from	the	visual	and	motor	states.	In	
summary,	these	results	indicate	that	the	higher-order	cognitive	states	tend	to	last	longer,	
but	are	not	revisited	for	longer	periods,	than	the	visual	and	motor	states.		
	

	
	
Fig.	5.	The	higher-order	cognitive	states	have	distinct	temporal	features	compared	with	the	other	
states.	The	states	depicted	in	brown	colours	are	depicted	in	Fig	SI-2,	in	an	order	that	consistent	with	
this	figure	(i.e.	the	first	four	are	states	with	positive	activation	and	the	second	four	have	a	negative	
activation).	(a)	Distribution	of	state	dwell	times	(time	spent	in	each	state	visit),	distribution	of	interval	
times	between	state	visits,	and	fractional	occupancies	(proportion	of	time	spent	in	each	state).	The	
dwell	times	are	significantly	longer	for	the	posterior	higher-order	cognitive	state	than	for	all	the	other	
non-cognitive	states	(p-value<0.001),	and	the	interval	times	are	significantly	longer	for	the	two	
higher-order	cognitive	states	than	for	the	other	states	(p-value<0.001).	(b)	Cumulative	density	
function	(CDF)	for	the	interval	times,	reflecting	much	larger	tails	for	the	interval	time	distribution	of	
the	two	higher-order	cognitive	states;	both	of	which	have	significantly	larger	CDF	values	than	the	
other	states	(permutation	testing;	statistical	significance	for	a	confidence	level	of	0.01	is	indicated	by	
the	lines	on	top	of	the	panel).	(c)	Spectral	analysis	of	a	point	process	representing	the	onset	of	the	
state	events,	computed	separately	for	each	state	(99%	confidence	intervals	are	indicated	by	shaded	
areas);	no	slow	oscillatory	modes	in	the	state	occurrences	themselves	is	revealed.	The	higher-order	
cognitive	states	have	a	stronger	power	in	the	1.5	to	5Hz	range	of	frequency	than	the	rest	of	the	states	
(statistical	significance	using	permutation	testing	is	indicated	on	top,	using	a	confidence	level	of	0.01).	
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We	also	investigated	whether	brain	states	are	visited	rhythmically,	i.e.	aligned	to	the	peaks	
and	troughs	of	a	possible	oscillation.	Modelling	the	state	events	as	a	point	process	(where	a	
state	occurrence	is	defined	at	the	onset	of	the	state	visit),	we	computed	the	spectra	of	these	
processes	to	find	if	there	were	any	strongly	characteristic	frequencies.	Fig	5c	shows	the	
power	of	the	event	point	process	for	all	states	(shaded	areas	reflect	99%	confidence	
intervals),	which	does	not	show	any	strong	frequency	mode	and	has	particularly	low	power	
in	the	slow	frequencies.	This	is	in	line	with	recent	findings	in	task	(Sherman	et	al,	2016),	
where	it	is	only	through	trial-averaging	(given	the	temporal	variability	of	the	task-related	
events	within	each	trial),	that	these	events	appear	as	sustained	oscillations.	Also,	
consistently	with	the	above	results,	we	observed	a	higher	power	in	between	1	and	5Hz	for	
the	higher-order	cognitive	states	(significance	for	a	confidence	level	of	0.01,	using	
permutation	testing,	is	indicated	on	top),	reflecting	the	longer	dwell	and	interval	times	for	
these	states.		
	
Methods		
	
Data	and	preprocessing	
	
As	part	of	the	UK	MEG	Partnership,	77	healthy	participants	were	recruited	at	the	University	of	
Nottingham.	A	final	cohort	of	55	participants	(mean	age	26.5y,	maximum	age	48y,	minimum	age	18y,	
35	males)	was	selected	for	analysis,	discarding	22	subjects	because	of	excessive	head	motion	or	
artifacts.	To	avoid	effects	of	tissue	magnetisation,	MEG	data	were	acquired	prior	to	participants	
entering	the	MRI.	Resting-state	MEG	data	were	acquired	using	a	275-channel	CTF	MEG	system	(MISL,	
Coquitlam,	Canada)	operating	in	third-order	synthetic	gradiometry	configuration,	at	a	sample	
frequency	of	1200Hz.	MRI	data,	used	here	for	the	purpose	of	MEG	coregistration,	were	acquired	
using	a	Phillips	Achieva	7T	system.	(See	Hunt	et	al.,	2016	for	further	details	about	MEG	and	MRI	
acquisition).	MEG	data	were	then	downsampled	to	250Hz,	filtered	between	1	and	45Hz	and	source-
reconstructed	using	LCMV	beamforming	(Van	Veen	et	al.,	1997;	Woolrich	et	al.,	2011)	to	42	dipoles	
covering	the	entire	cortex	excluding	subcortical	areas	(MNI	coordinates	are	shown	in	Table	SI-1).	Bad	
segments	were	removed	manually	and	correction	for	spatial	leakage	was	applied	using	the	technique	
described	by	Colclough	et	al.	(2015).	The	effect	of	using	alternative	methods	for	leakage	reduction	is	
discussed	in	the	SI.	

	
The	Hidden	Markov	Model	
	
As	a	general	framework,	the	Hidden	Markov	model	(HMM)	assumes	that	a	time	series	can	be	
described	using	a	hidden	sequence	of	a	finite	number	of	states,	such	that,	at	each	time	point,	only	
one	state	is	active.	In	practice,	because	the	HMM	is	a	probabilistic	model,	the	inference	process	
acknowledges	uncertainty	and	assigns	a	probability	of	being	active	to	each	state	at	each	time	point.	
Effectively,	this	amounts	to	having	a	mixture	of	models	(or	states)	explaining	the	data	at	each	time	
point,	where	the	mixture	weights	are	the	state	probabilities.	Importantly,	the	probability	of	a	state	
being	active	at	time	point	t	is	modelled	to	be	dependent	on	which	state	was	active	at	time	point	t-1	
(i.e.,	it	is	order-one	Markovian).	The	model	then	assumes	that	the	data	observed	in	each	state	are	
drawn	from	a	probabilistic	observation	model.	The	observation	distribution	is	of	the	same	family	for	
all	states,	whereas	the	observation	model	parameters	are	different	for	each	state.	The	different	
varieties	of	the	HMM	are	thus	given	by	which	family	of	probabilistic	observation	distribution	is	chosen	
to	model	the	states.	This	is	useful	because	different	observation	distributions	can	be	adequate	for	
different	data	modalities	(Baker	et	al,	2014;	Vidaurre	et	al,	2016;	Vidaurre	et	al	2017)	while	preserving	
a	common	framework.	This	can	facilitate	integration	of	results	across	modalities.	The	variety	of	the	
HMM	introduced	in	this	paper	is	presented	in	the	next	section	along	with	some	theoretical	and	
practical	discussion	about	its	properties.	Whichever	choice	of	the	HMM	state	distribution,	the	model	
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can	be	applied	to	each	subject	independently	or	to	the	concatenated	data	of	all	subjects,	such	that	a	
group	estimation	of	the	states	may	be	obtained.	In	this	paper,	the	states	were	defined	at	the	group-
level;	however,	the	information	of	when	a	state	becomes	active	(i.e.	the	state	time	course)	is	still	
specific	to	each	subject.	Inference	on	the	model	(i.e.	the	estimation	of	the	parameters	of	the	
posterior	distribution)	is	carried	out	using	variational	Bayes	(VB),	a	method	providing	an	analytical	
approximation	at	a	reasonable	cost	by	assuming	certain	factorisations	in	the	posterior	distribution;	
we	refer	to	(Vidaurre	et	al,	2016)	for	further	details	about	the	inference	scheme.	Still,	because	of	the	
high	sampling	rate	of	our	MEG	data	(250Hz)	and	the	relatively	high	number	of	subjects	(55),	standard	
VB	becomes	both	time	and	memory	consuming.	On	these	grounds,	we	used	stochastic	inference	to	
further	alleviate	computation	time	(Vidaurre	et	al,	2017b)	such	that	an	average	run	would	take	
approximately	5h	using	a	standard	workstation	with	manageable	memory	usage.	After	the	inference	
process,	the	Viterbi	path	is	computed;	this	is	defined	as	the	most	probable	sequence	of	(hard	
assigned,	i.e.	non-probabilistic)	states,	and	can	be	analytically	computed,	given	the	current	estimation	
of	the	state	observation	models,	using	a	modification	of	the	standard	HMM	state	time	course	
inference	(Rabiner	1989).		
	
The	embedded	Hidden	Markov	Model	
	
Here,	we	apply	a	novel	variety	of	the	HMM	to	raw	(instead	of	power	envelope;	Baker	et	al.,	2014)	
time-courses.	This	allows	us	to	detect	changes	not	only	in	power	but	also	in	phase-locking.	Although	
this	was	already	the	case	with	the	HMM-MAR	(Vidaurre	et	al.,	2016),	the	MAR	observation	model	
works	optimally	with	a	limited	number	of	regions	and	does	not	scale	to	whole-brain	analysis.	In	this	
approach,	our	definition	of	observation	distribution	describes	the	neural	activity	over	a	certain	time	
window	using	a	Gaussian	distribution	with	zero	mean	(i.e.	using	the	covariance	matrix)	to	model	the	
entire	window;	this	is	equivalent	to	saying	that	our	observation	model	corresponds	to	the	data	
autocovariance	across	regions	(sometimes	referred	to	as	lagged	cross	covariance)	within	such	
window.	For	example,	if	we	use	a	time	window	of	60s,	having	time	point	t	assigned	to	a	certain	state	
means	that,	for	our	current	250Hz	sampling	rate	and	42-region	parcellation,	the	activity	of	the	42	
channels	over	a	window	of	15	time	points	centered	at	t	gets	described	by	such	state’s	(15	x	42	by	15	x	
42)	autocovariance	matrix.	This	multivariate	autocovariance	matrix	can	effectively	capture	patterns	of	
linear	synchronisation	in	oscillatory	activity	for	those	time	points	when	a	particular	state	is	active,	i.e.	
our	model	can	describe	state-wise	phase-locking.	This	is	mathematically	equivalent	to	using	a	
standard	HMM	with	a	Gaussian	observation	model	on	an	“embedding”	transformation	of	the	original	
data	(see	Fig.	SI-1	for	an	illustration	of	the	entire	pipeline).	In	our	case,	with	55	subjects	and	5min	of	
data	at	250Hz	per	subject,	this	amounts	to	running	the	HMM	on	a	large	(4125000	by	630)	volume	of	
data.	As	a	result	of	the	computational	advantages	of	stochastic	inference	(Vidaurre	et	al,	2017b),	it	is	
still	possible	to	handle	such	large	amounts	of	data.	However,	it	requires	estimating	(630	x	629)	/	2	=	
198135	parameters	within	the	multivariate	autocovariance	matrix	per	state,	which,	above	and	
beyond	computational	considerations,	can	lead	to	severe	overfitting	problems.	To	avoid	this	issue,	we	
ran	the	HMM	on	a	PCA	decomposition	of	the	“embedded”	space.	This	not	only	greatly	reduces	the	
complexity	of	the	state	distributions	but	also	naturally	focuses	the	slower	frequencies	in	the	data.	
This	is	a	consequence	of	PCA	aiming	to	explain	the	highest	possible	amount	of	variance	in	the	time	
series,	in	combination	with	the	1/f	nature	of	electrophysiological	data	(i.e.	that	most	of	the	power,	or	
variance,	is	concentrated	in	the	slow	frequencies).	In	particular,	we	use	twice	principal	components	as	
the	number	of	channels	(i.e.	84	principal	components).	Note	that	given	that	the	time-series	from	the	
source-space	parcellation	are	orthogonal	after	leakage	correction	(Colclough	et	al,	2015),	the	PCA	
step	can	only	leverage	autocorrelations	and	non-zero	lag	cross-channel	correlations	to	achieve	an	
optimal	decomposition.	Since	the	non-zero	lag	cross-channel	correlations	are	very	small	in	
comparison	with	the	within-channel	autocorrelation	of	the	data	(as	shown	in	Vidaurre	et	al,	2016),	we	
chose	a	number	of	PCA	components	that	is	a	multiple	of	the	number	of	channels;	otherwise,	because	
of	the	very	nature	of	PCA,	the	“extra”	PCA	components	will	be	explaining	variance	from	just	a	few	
channels.	Precisely	which	channels	is	mostly	arbitrary,	given	that	all	channels	were	standardised	to	
have	the	same	variance.	For	example,	for	our	42-regions	parcellation,	using	100	PCA	components	will	
result	in	(100	–	42x2	=)	16	PCA	components	explaining	variance	from	a	(mostly)	random	subset	of	16	
regions.			
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Source-reconstructed	dipole	ambiguity			
	
It	is	an	acknowledged	issue	that	source-localised	EEG	and	MEG	data	have	an	arbitrary	sign	as	a	
consequence	of	the	ambiguity	of	the	source	polarity.	As	source	reconstruction,	in	this	case	through	
beamforming	(Hillebrand	and	Barnes,	2005),	is	done	for	each	subject	separately,	the	sign	of	the	
reconstructed	dipoles	risks	being	inconsistent	across	subjects.	This	is	not	a	problem	when	modelling	
the	power	time	courses,	but	is	a	cause	of	concern	for	models	based	on	the	raw	signal	because	
connectivity	between	any	pair	of	regions	can	cancel	out	at	the	group	level	if	regions	have	their	time	
courses	flipped	for	a	subset	of	the	subjects.	Here,	we	extend	and	generalise	the	basic	idea	in	
(Vidaurre	et	al,	2016)	to	multiple	leakage-corrected	channels,	making	the	assumption	that	the	lagged	
partial	correlation	between	each	pair	of	brain	regions,	across	several	different	lags,	has	the	same	sign	
across	subjects.	(We	choose	to	use	partial	correlation	instead	of	simple	correlation	because	this	is	a	
direct	measure,	i.e.	there	are	no	other	channels	interfering	in	the	``sign	relation''	between	every	pair	
of	channels).	More	explicitly,	for	all	lags	(for	example,	in	between	α=-10	and	α=+10),	we	aim	to	find	a	
combination	of	sign	flips	for	each	subject	such	that	the	function	
	

Gain(f)	=	Σj1,j2	Σα	|	Σs	ρ(fs,j1	xs,j1,0	,	fs,j2	xs,j2,α)	/	N	|,	
	
is	maximised.	Here,	s	cycles	through	the	N	subjects,	j1	and	j2	cycle	through	regions,	xs,j1,α	represents	
the	data	time	series	for	subject	s	and	source	j1	that	have	been	lagged	α	time	points,	fs,j1	takes	the	
value	-1	or	+1	and	represents	whether	channel	j1	is	flipped	for	subject	s,	ρ()	represents	the	partial	
correlation	between	a	pair	of	time	series,	and	||	is	absolute	value.	The	idea	is	that,	provided	the	
aforementioned	assumption,	Gain(f)	will	be	maximised	when	the	signs	are	correctly	aligned.	For	
example,	if	there	is	a	strong	genuine	anti-phase	relationship	(leading	to	negative	correlation)	between	
a	given	pair	of	regions,	the	sign	for	these	regions	will	be	pertinently	flipped	for	those	subjects	having	
an	in-phase	relation	(leading	to	positive	correlation)	such	that	the	negative	correlations	do	not	get	
partially	cancelled	out	by	the	occasional	positive	correlations	when	averaging	across	subjects.		
	
To	find	the	best	combination	of	sign	flips	such	that	Gain(f)	is	maximised	is	an	integer	programming	
problem,	and,	thus,	finding	an	exact	solution	is	NP-hard.	The	computationally	expensive	step	is	to	
compute	the	(no.	of	channels	by	no.	of	channels)	partial	correlation	matrix	for	each	subject	and	lag	(in	
our	data,	21lags	x	55subjects	matrix	inversions	of	size	42regions	by	42regions).	Once	this	is	computed,	
it	is	relatively	inexpensive	to	evaluate	the	function	Gain(f)	given	the	equivalence	
	
	 ρ(xs,j1,0	,	-	xs,j2,α)	=	-	ρ(xs,j1,0	,	xs,j2,α).	
	
Therefore,	we	can	afford	to	evaluate	many	different	solutions,	for	example	by	multiple	instantiations	
of	a	greedy	algorithm	with	random	initialisations	of	the	signs.	Although	in	this	paper	we	limited	
ourselves	to	this	simple	approach,	other	more	sophisticated	search	procedures	can	easily	operate	on	
this	scheme.		
	
Extracting	spectral	information	
	
Once	the	HMM	has	found	the	states	on	the	basis	of	the	data’s	transient	spectral	properties,	a	logical	
further	question	is	how	can	we	extract	and	represent	the	states’	spectral	properties	in	an	informative	
way.	We	can	extract	the	spectral	information		(power	and	phase-coupling)	from	the	multivariate	
autocovariance	matrix	in	each	state’s	observation	model	as	it	has	a	direct	correspondence	to	the	
parameters	of	a	MAR	model	(Lütkepohl,	2005),	which	contains	the	spectral	information	in	the	system.	
However,	this	estimation	is	biased	towards	the	low	frequencies	due	to	the	PCA	dimensionality	
reduction	step	discussed	in	the	previous	section.	So	that	we	can	effectively	access	high	frequency	
information,	we	instead	made	use	of	the	state-wise	multitaper	approach	introduced	in	(Vidaurre	at	al,	
2016),	which	will	provide	us	with	power	and	phase-locking	coherence	for	each	frequency	bin	(chosen	
to	be	in	between	1	and	45Hz)	and	state	without	any	PCA-induced	bias.		
	
Once	we	have	estimated	power	and	coherence	for	each	state,	we	factorise	this	information	into	
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different	components	or	frequency	modes	for	ease	of	interpretation	and	visualization.	We	could	use	
the	traditional	frequency	bands	for	this	matter,	but	instead	we	opted	for	estimating	these	in	a	data-
driven	fashion.	To	do	this,	we	constructed	a	matrix	by	concatenating	the	spectrally	defined	coherence	
(the	spectral	feature	that	is	more	interesting	for	our	purposes)	across	all	states	and	pairs	of	regions.	
We	shall	denote	this	matrix	as	A.	More	specifically,	A	has	(12	states	x	861	pairs	of	regions	=)	10332	
rows	and	90	columns,	90	being	the	number	of	frequency	bins	that	we	obtained	from	the	multitaper	
analysis.	We	then	applied	a	non-negative	matrix	factorisation	(NNMF)	algorithm	(Berry	et	al.,	2007)	
on	A,	asking	for	four	components.	NNMF	aims	to	find	a	factorisation	A	=	WH,	where	W	has	dimension	
(10332	by	4)	and	H	has	dimension	(4	by	90),	such	that	all	the	elements	in	W	and	H	are	positive.	Each	
row	of	H,	then,	represents	the	spectral	profile	of	this	component,	inferred	from	the	data.	These	
components	turn	out	to	roughly	correspond	to	the	canonical	delta/theta,	alpha,	beta	and	(lower)	
gamma	bands.	Of	these,	our	interpretations	are	focused	on	the	first	three	components	(displayed	in	
Fig.	4,	left	panels),	excluding	the	fourth	(gamma	band)	component	for	being	potentially	less	relevant	
to	understanding	large-scale	synchronisation.	Having	four	frequency	modes	allowed	us,	however,	to	
have	beta	separated	from	gamma,	providing	a	cleaner	view	on	the	data.	With	the	component	spectral	
profiles	H	in	hand	(referred	to	as	frequency	modes	throughout	the	paper),	it	is	straightforward	to	
obtain	values	of	coherence	for	each	state,	pair	of	regions	and	NNMF	component.	We	do	so	by	simply	
multiplying	the	respective	(1	by	90)	vector	of	coherence	values	by	the	corresponding	transposed	row	
of	H	(90	by	1).	For	power,	we	follow	the	same	procedure,	reusing	the	component	spectral	profiles	
that	we	computed	for	coherence.	Wideband	results	(Fig.	1)	correspond	to	a	simple	average	across	all	
frequency	bins.		
	
For	purposes	of	visualization,	in	Fig	1,	Fig.	4	and	Fig.	SI-1,	we	showed	only	the	functional	connections	
that	were	the	strongest	in	absolute	value.	To	avoid	setting	an	arbitrary	threshold,	we	separately	
fitted,	for	each	state	and	NNMF	frequency	mode	(and	wideband),	a	mixture	of	two	Gaussian	
distributions	to	the	population	of	functional	connections,	such	that	we	only	show	the	connections	
that	have	more	probability	of	belonging	to	the	Gaussian	distribution	representing	the	strongest	
connections.	When	the	population	of	functional	connections	is	well	represented	by	a	single	Gaussian	
distribution,	that	is	indicative	that	there	are	no	connections	that	are	pronouncedly	stronger	than	the	
average	connectivity	within	the	state,	in	which	case	we	do	not	show	any.	
	
Discussion	
	
We	show	that	large-scale	networks	in	resting-state	magnetoencephalography	can	be	well-
described	by	repeated	visits	to	short-lived	transient	brain	states.	Here,	a	state	is	defined	as	a	
distinct	spatially-	and	spectrally-defined	pattern	of	network	activity	across	the	set	of	
considered	regions,	which	span	the	whole	brain	.	These	patterns	of	activity	and	phase-
coupling	were	found	to	be	largely	symmetric	across	hemispheres,	and	corresponded	to	
plausible	functional	systems	including	sensory,	motor	and	higher-order	cognitive	networks.	
Two	higher-order	cognitive	brain	states	(or	networks)	contained	regions	suggesting	a	
subdivision	of	the	default	mode	network	(DMN).	These	subdivisions	operated	in	distinct	
frequency	bands,	with	one	state	corresponding	to	a	posterior	network	with	high	power	and	
coherence	in	the	alpha	range	(8-12Hz),	and	the	other	to	an	anterior	network	with	high	
power	and	coherence	in	the	delta/theta	range	(1-7Hz).		
	
Fast	Transient	Brain	States	and	Slow	Rhythms	
	
In	previous	work	on	resting-state	MEG,	an	HMM	was	used	to	identify	fast	transient	brain	
states	characterised	by	co-modulations	in	power	(Baker	et	al.,	2014).	This	approach	could	
identify	brain	states	that	corresponded	well	with	canonical	resting-state	networks	in	fMRI,	
and	showed	states	switching	on	~100-200ms	time	scales.	However,	being	based	on	band-
limited	power	time	courses,	it	was	unable	to	identify	potentially	faster	phenomena	that	are	
only	apparent	in	the	raw	electrophysiological	time-courses.	By	contrast,	the	approach	
presented	in	this	paper	can	find	brain	states	with	distinct,	brain-wide	networks	of	spectrally	
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resolved	power	and	phase-locking	from	raw	MEG	time-courses.	As	a	consequence,	states	
were	found	to	switch	on	~50-100ms	time	scales,	revealing	fast	dynamic	power	and	phase-
locking	information	not	apparent	from	a	static	perspective.	Being	able	to	identify	phase-
coupling	is	crucial,	as	this	has	been	proposed	as	an	important	mechanism	for	regulating	the	
integration	and	flow	of	cognitive	content	(Fries,	2005;	Fries	2015;	Engel	et	al.,	2013).	The	
identification	of	large-scale	networks	of	phase-locking	in	the	present	work	is	consistent	with	
the	idea	that	the	brain	spontaneously	evokes	the	same	network	dynamics	that	we	see	in	
task	(Smith	et	al.,	2009).		
	
But,	how	can	the	fact	that	state	visits	are	often	under	100ms	in	duration	be	compatible	with	
the	slow	frequencies	(e.g.	delta/theta	bands)	that	characterise	the	states?	For	example,	an	
8Hz	theta	cycle,	which	is	in	the	realms	of	the	frequencies	reported	here,	has	a	period	of	
125ms.	This	can	be	reconciled	by	noting	that,	although	we	do	not	in	general	capture	
prolonged	oscillations,	spectral	estimation	does	not	actually	require	entire	cycles.	Unlike	
sliding	window	approaches,	the	HMM	provides	a	large	number	of	separated	sub-cycle	wave	
segments,	with	which	the	spectral	estimation	at	the	slow	frequencies	is	possible.	This	is	
because	frequency	is	defined	instantaneously,	and	depends	on	the	gradient	on	the	signal	
(Huang	et	al.,	2009),	which	is	theoretically	defined	at	each	time	point.	We	have	performed	
simulations	to	prove	this	empirically	(see	SI	and	Fig.	SI-6).		
	
	
Subdivision	of	the	Default	Mode	Network	
	
Our	results	identified	two	higher-order	cognitive	states	or	networks	that	showed	particularly	
high	power	and	coherence	in	comparison	with	the	other	states.	These	higher-order	cognitive	
networks	also	exhibited	different	temporal	dynamics	in	their	state	occurrences,	notably	with	
longer	periods	of	times	between	state	visits.	One	of	these	states	represents	a	posterior	
network	including	PCC,	precuneus	and	bilateral	intraparietal	regions.	The	other	
encompasses	anterior	areas	including	mPFC	and	temporal	poles,	exhibiting	strong	
connectivity	with	the	PCC.	Consistently	with	previous	studies	in	fMRI	(Smith	et	al.,	2012),	
these	results	afford	the	interpretation	of	the	DMN	being	separable	into	anterior	and	
posterior	subdivisions.	The	present	work,	however,	offers	an	important	new	insight	into	the	
electrophysiological	properties	of	these	distinct	subnetworks.	Here,	the	two	subdivisions	are	
distinguished	from	each	other	by	operating	within	very	different	frequency	bands:	in	the	
alpha	band	for	the	posterior	network,	and	in	the	delta/theta	band	in	the	anterior	network.	
Furthermore,	the	PCC	may	be	acting	as	a	link	between	the	two	higher-order	systems,	given	
that	it	is	present	in	both	networks	and	has	particularly	strong	delta/theta	band	connectivity	
with	the	mPFC	in	the	anterior	higher-order	cognitive	state.	This	is	consistent	with	previous	
work	where,	based	on	band-limited	power	correlations	yet	ignoring	phase-coupling,	the	PCC	
was	proposed	to	serve	as	a	hub	(de	Pasquale	et	al.,	2012).	
	
The	operation	of	these	large-scale	cortical	phase-coupling	networks	in	very	different	
frequency	bands	may	reflect	the	different	intrinsic	timescales	that	they	specialise	in	within	
the	temporal	domain.	Spike	count	autocorrelograms	from	single	neurons	vary	across	region,	
with	parietal/prefrontal	regions	showing	exhibiting	shorter/longer	timescales	respectively	
(Murray	et	al.,	2014).	This	can	be	accounted	for	using	a	model	that	accounts	for	variation	in	
both	long-range	connectivity	and	local	circuit	dynamics	(Chaudhuri	et	al.,	2015),	and	such	
properties	may	explain	variation	in	‘temporal	receptive	windows’	across	brain	regions	within	
temporally	extended	tasks	(Lerner	et	al.,	2011).	How	these	within-region	properties	may	
interact	with	changes	in	interregional	phase-coupling	during	tasks	remains	unclear,	and	is	an	
important	area	for	future	investigation.		
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Posterior	Cingulate	Cortex	in	Resting-state	MEG	
	
Despite	having	been	attributed	a	key	role	in	the	resting-state,	and	in	particular	in	the	DMN	
(Buckner	et	al.,	2008;	Fransson	and	Marrelec,	2008),	the	PCC	has	been	somewhat	under-
represented	in	the	resting	M/EEG	literature,	possibly	due	to	the	relatively	low	signal-to-
noise	ratio	(and,	hence,	visibility)	in	M/EEG	(Hillebrand	and	Barnes,	2002).	For	example,	
previous	analyses	of	resting	MEG	data	reported	putative	DMN	networks	that	did	not	include	
the	PCC	(Brookes	et	al.,	2011,	Baker	et	al.,	2014;	Hipp	et	al.,	2012).	One	possible	reason	is	
that	the	PCC’s	role	as	a	hub	potentially	involves	many	different	network	states,	in	such	a	way	
that	is	supressed	when	examining	differences	between	networks	or	states	(Baker	et	al.,	
2014).	Notably,	in	a	resting	MEG	study	that	used	time-windows	of	high	band-limited	power	
correlation	between	nodes	of	the	DMN,	the	PCC	exhibited	the	highest	of	these	correlations	
(de	Pasquale	et	al.,	2012).	Here,	the	PCC	is	highly	visible	when	networks	are	characterised	by	
phase-coupling,	especially	in	the	anterior	and	posterior	higher-order	cognitive	states.	
	
Given	the	issues	in	representing	the	PCC	in	MEG,	it	is	often	merged	with	precuneus.	
However,	these	are	remarkably	different	regions,	with	different	structural	connectivity	
profiles	and	distinct	functional	roles	(Leech	et	al.,	2011).	Here,	we	used	a	parcellation	that	
separated	the	PCC,	the	anterior	precuneus	and	the	posterior	precuneus.	Fig.	SI-4	shows	
power	and	phase-coupling	with	mPFC	for	each	state	and	each	of	the	three	regions.	Some	
differences	can	be	clearly	recognised	between	regions	and,	in	particular,	between	the	PCC	
and	the	two	precuneus	regions.	Remarkably,	coherence	with	mPFC	is	three	times	higher	for	
the	PCC	than	the	precuneus	(both	anterior	and	posterior)	in	the	anterior	higher-order	
cognitive	state.	Also,	in	the	anterior	higher-order	cognitive	state	the	PCC	exhibits	strong	
activity	in	the	delta/theta	frequency	mode	whereas	the	precuneus	does	not.		
	
Relationship	between	Power	and	Coherence	
	
The	approach	we	use	identifies	brain	states	characterized	by	distinct	power	and	phase-
coupling.	We	find	that	states	that	show	increase	in	power,	often,	although	not	exclusively,	
also	show	increases	in	coherence.	However,	it	is	well	known	that,	due	to	changes	in	the	
signal-to-noise	ratio,	increases	in	power	can	augment	the	estimated	coherence	even	in	the	
absence	of	an	actual	change	in	the	interactions	between	the	regions.	The	same	phenomena	
can	cause	increases	in	variance	to	effect	correlation-based	measures	of	functional	
connectivity	(Cole	et	al.,	2016;	Duff	et	al.,	2017).	Therefore,	some	of	the	observed	changes	in	
coherence	between	states	might	be	caused	by	differences	in	power.	Notably,	while	we	find	
that	power	and	coherence	are	generally	positively	correlated,	there	are	various	aspects	of	
phase-coupling	that	cannot	be	explained	by	changes	in	power.	For	example,	the	differences	
between	the	states	are	much	stronger	in	coherence	than	in	power	(see,	e.g.,	Fig.	3a).	Also,	
whereas	the	PCC	has	slightly	more	(low-frequency)	power	in	the	anterior	higher-order	
cognitive	state	than	in	the	other	states,	phase-coupling	is	the	feature	most	strongly	stands	
out	from	the	rest	(see	Fig.	3c).	
	
Gamma-band		
	
This	study	focused	on	lower	frequency	bands	(1-45Hz).	Because	of	the	methodological	
considerations	discussed	in	the	Methods	section,	and	because	of	the	higher	signal-to-noise	
ratio	in	lower	frequency	bands	(1-30Hz),	low	Gamma	frequencies	(30-45Hz)	did	not	reveal	
any	clear	state-specific	differences.	However,	we	would	expect	there	to	be	different	
patterns	in	gamma,	given	the	possible	top-down	modulation	of	these	frequencies	by	the	
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slow	frequencies	(Canolty	et	al.,	2006).	Because	of	the	crucial	importance	of	gamma	in	
cognition,	having	a	key	role	in	information	transference	between	regions	and	plasticity	
(Martínez	et	al.,	1999;	Miltner	et	al.,	1999;	Mehta	et	al.,	2002;	Fries	et	al.,	2007;	Buzsáki	and	
Draguhn,	2004;	Fries	2015),	it	is	of	primary	interest	to	understand	how	gamma	frequency	is	
modulated	at	the	whole-brain	level	across	different	states.	This	will	be	an	important	area	for	
future	studies.		
	
Number	of	Brain	States	
	
A	central	parameter	in	our	approach	is	the	number	of	HMM	states.	Here,	we	have	chosen	it	
to	be	twelve.	Of	note,	we	do	not	claim	this	number	to	be	closer	to	any	biological	ground-
truth	than,	for	example,	eight	or	sixteen.	Although	it	is	possible	to	guide	the	choice	of	the	
number	of	states	using	quantitative	measures	like	the	free	energy	(Vidaurre	et	al.,	2016),	or	
even	using	non-parametric	approaches	that	automatically	determine	the	number	of	states	
(Beal	et	al.,	2002),	different	numbers	of	states	in	practice	just	offer	different	levels	of	detail	
of	brain	dynamics.	Indeed,	examining	different	degrees	of	“abstraction”	can	itself	reveal	
useful	insights.	For	example,	when	we	ran	the	proposed	approach	with	six	states	(see	Fig.	SI-
5a)	the	posterior	higher-order	cognitive	state	was	fused	with	the	SM/precuneus	and	
VIS/precuneus	states	(depicted	in	Fig.	SI-2).	This	is	unsurprising	considering	their	relatively	
similar	spectral	and	spatial	features.	In	this	analysis,	the	left	and	right	temporal	states	(see	
Fig.	SI-2),	which	are	characterised	by	high	asymmetry	and	are	possibly	related	to	language,	
were	also	merged	into	a	single	symmetric	state	containing	the	patterns	of	both.	In	summary,	
running	the	HMM	with	different	numbers	of	states	and	combining	the	results	in	a	principled	
way	can	provide	a	hierarchical	view	of	the	data	that	is	hidden	to	other	approaches.	Thanks	
to	the	stochastic	scheme	of	inference	(Vidaurre	et	al.,	2017b),	HMM	runs	are	not	
computationally	expensive	to	produce,	facilitating	these	exploratory	analyses.		
	
State	exclusivity		
	
The	model	specification	of	the	HMM	assumes	that	only	one	state	is	active	at	each	point	in	
time.	However,	the	HMM	inference	actually	assigns	a	probability	to	each	state	at	each	time	
point,	so	the	strict	exclusivity	assumption	is	effectively	relaxed	in	the	estimation.	Further,	it	
is	possible	for	network	multiplexing	to	be	expressed	in	the	correlation	of	state	fractional	
occupancies	at	slower	time	scales.	Addressing	the	information	contained	in	the	state	time	
courses	at	multiple	time	scales	is	an	important	area	for	future	investigations.		
	
Summary	
	
We	have	proposed	an	analysis	approach	that	allows	the	investigation	of	dynamic	changes	in	
whole-brain	phase-coupling	in	the	resting	state.	Our	study	revealed	that	at	these	fast	time	
scales,	higher-order	regions	within	the	default	mode	network	dissociate	into	two	spatially,	
temporally	and	spectrally	distinct	states.	These	states	potentially	index	different	higher-
order	cognitive	processes	that	themselves	operate	at	different	timescales.	Although	we	have	
focused	on	this	particular	aspect	of	the	data,	the	wealth	of	information	contained	in	the	
model	output	opens	many	avenues	for	future	analyses,	hypotheses	and	questions.	These	
include	the	dynamics	of	specific	phase	relations	between	areas,	the	whole-brain	dynamics	of	
gamma	at	rest,	and	the	existence	of	changing	patterns	of	communication	between	
processes	operating	at	different	frequencies.		
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Supplementary	Information	
	
Slow-frequency	spectral	properties	within	fast	state	visits	
	
We	obtained	state	visits	that	were	often	well	under	100ms	(Fig.	5).	How	can	this	be	
compatible	with	the	slow	frequencies	(e.g.	delta/theta	bands)	that	characterise	the	states?	
Here,	we	show	that	this	is	theoretically	and	practically	possible	through	simulations.	We	
have	simulated	data	where	segments	of	an	8Hz	theta	wave	are	interspersed	with	
unstructured	signal.	We	have	performed	three	sets	of	simulations.	In	each	of	them,	the	
duration	of	the	wave	segments	(which	are	selected	at	random	points	of	the	theta	period)	
are	sampled	from	a	Poisson	distribution	with	mean	0.025s,	0.05s,	and	0.1s,	respectively.	The	
separation	between	segments	is	sampled	from	a	Poisson	distribution	with	mean	1s	in	all	
cases,	which	makes	the	different	wave	occurrences	to	be	completely	phase-independent.	
Small-variance	Gaussian	noise	is	added	to	the	generated	signals.	We	simulated	20min	of	
data	at	250Hz	for	each	simulation,	and	assumed	a	state	time	course	that	is	active	only	at	the	
time	of	the	wave	segments	occurrences.	Hence,	the	duration	of	the	wave	segments	
corresponds	to	the	duration	of	the	state	visits.	We	then	used	the	state-wise	multitaper	used	
in	Results	and	in	(Vidaurre	et	al.,	2016)	to	assess	the	spectral	content	of	the	signal.	Fig.	SI-6	
shows	the	spectral	estimation	on	the	top,	and	an	example	of	a	wave	segments	for	each	
mean	dwell	time	in	the	bottom.	In	the	three	cases,	and	despite	the	short	state	visits,	the	
state-wise	multitaper	is	able	to	find	the	correct	frequency,	even	when	the	frequency	
resolution	is	degraded	somewhat	as	we	make	the	wave	segments	(state	visits)	shorter,	
leaking	power	toward	faster	frequencies.		
	
	
Leakage	reduction	and	phase-locking	coherence	estimation	
	
In	this	work,	we	used	the	method	proposed	by	Colclough	et	al.	(2015)	in	order	to	reduce	the	
effect	of	signal	leakage	(volume	conduction).	Without	this	step,	the	estimation	of	phase-
locking	gets	dominated	by	a	pattern	of	artefactual	local	connections	that	is	common	to	all	
states.	While	the	Colclough	et	al.	approach	has	been	shown	to	work	well	in	the	context	of	
MEG	amplitude	correlations	[Colclough	et	al.	(2015)],	its	application	for	phase-locking	
networks	is	less	well	established.	Recently,	Pascual-Marqui	et	al.	(2017)	have	challenged	
Colclough	et	al.’s	approach,	particularly	within	the	context	of	estimating	phase-locking	
measures,	showing	that	under	certain	conditions,	artefactual	connections	may	arise.	The	
authors	also	provide	an	alternative	approach	based	on	the	multivariate	autoregressive	
model	that	may	overcome	these	issues.		
	
To	check	the	Colclough	et	al.	approach	in	the	context	of	phase-locking,	we	also	applied	the	
Pascual-Marqui’s	approach	on	our	real	data,	and	compared	the	resulting	state-specific	
phase-locking	with	the	estimations	depicted	in	Fig.	2.	In	Fig	SI-7,	phase-locking	connectivity	
is	shown	for	the	same	four	HMM	states,	after	applying	Pascual-Marqui’s	method.	As	
observed,	the	differences	between	Fig	SI-7	and	Fig.	2	are	limited,	with	the	method	proposed	
by	Pascual-Marqui	and	colleagues	being	slightly	more	conservative.	The	main	features	of	the	
HMM	states	are	however	preserved.	
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Index	 Area	 MNI	Coordinates	(X,Y,Z)	
1	 Medial	PFC		 (2,50,0)	
2	 Right	Frontal	Lobe	 (42,34,16)	
3	 Right	Frontal	Lobe	 (26,10,56)	
4	 Right	Frontal	Lobe	 (18,42,40)	
5	 Right	Frontal	Lobe	 (42,50,0)	
6	 Right	Frontal	Lobe	 (26,50,24)	
7	 Right	Temporal	Lobe	 (58,-22,8)	
8	 Right	Temporal	Lobe	 (58,-46,0)	
9	 Right	Temporal	Lobe	 (50,10,-24)	
10	 Right	Visual	Cortex	 (10,-94,24)	
11	 Right	Visual	Cortex	 (26,-94,8)	
12	 Right	Visual	Cortex	 (50,-70,8)	
13	 Right	Visual	Cortex	 (42,-78,-8)	
14	 Right	Sensorimotor	Cortex	 (58,-6,32)	
15	 Right	Sensorimotor	Cortex	 (42,-22,56)	
16	 Right	Sensorimotor	Cortex	 (10,-30,72)	
17	 Right	Parietal	Lobe	 (18,-70,56)	
18	 Right	Parietal	Lobe	 (34,-78,40)	
19	 Right	Parietal	Lobe	 (-54,-46,40)	
20	 Right	Parietal	Lobe	 (50,-70,16)	
21	 Posterior	Precuneus	 (-6,-70,32)	
22	 Posterior	Cingulate	Cortex	 (2,-46,24)	
23	 Anterior	Precuneus	 (2,-54,48)	
24	 Left	Parietal	Lobe	 (-22,-62,56)	
25	 Left	Parietal	Lobe	 (-38,-78,40)	
26	 Left	Parietal	Lobe	 (58,-46,40)	
27	 Left	Parietal	Lobe	 (-46,-70,16)	
28	 Left	Sensorimotor	Cortex	 (-54,-6,32)	
29	 Left	Sensorimotor	Cortex	 (-46,-22,56)	
30	 Left	Sensorimotor	Cortex	 (-6,-30,72)	
31	 Left	Visual	Cortex	 (-14,-94,24)	
32	 Left	Visual	Cortex	 (-22,-94,8)	
33	 Left	Visual	Cortex	 (-46,-70,8)	
34	 Left	Visual	Cortex	 (-38,-86,0)	
35	 Left	Temporal	Lobe	 (-62,-22,8)	
36	 Left	Temporal	Lobe	 (-62,-46,0)	
37	 Left	Temporal	Lobe	 (-46,10,-24)	
38	 Left	Frontal	Lobe	 (-46,34,16)	
39	 Left	Frontal	Lobe	 (-22,10,56)	
40	 Left	Frontal	Lobe	 (-14,42,48)	
41	 Left	Frontal	Lobe	 (-38,50,0)	
42	 Left	Frontal	Lobe	 (-22,58,16)	

	
Table	SI.	List	of	regions	used	in	the	analysis,	with	their	MNI	coordinates.	Numerical	indexes	
correspond	to	those	shown	in	Fig.	2,	Fig.	4,	and	Fig.	SI-2.	
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Fig.	SI-1.	Schematic	overview	of	the	proposed	method.	(Related	to	Fig.	1).	After	
preprocessing	(source	reconstruction,	parcellation,	leakage	correction	and	sign	
disambiguation	–	see	Methods),	the	data	channels	X	are	temporally-embedded	(using	L	
lags),	PCA	is	applied	for	dimensionality	reduction	(producing	PCA	components	Y),	and	HMM	
inference	is	then	used	to	find	the	state	time	courses	and	the	state	parameters.		
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Fig.	SI-2.	The	remaining	eight	states	of	the	HMM	model,	four	of	which	(in	the	bottom)	
correspond	to	depressed	(with	regard	to	average)	power	and	connectivity.	(Related	to	Fig.	2)	
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Fig.	SI-3.	Frequency-specific	power	and	phase-locking	connectivity	for	the	visual	and	motor	
states,	for	the	three	data-driven	estimated	frequency	modes	(see	Methods).	(Related	to	Fig.	
4).	With	regard	to	connectivity,	only	the	connections	with	highest	absolute	value	are	shown	
(see	Methods).		
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Fig.	SI-4.	The	spectral	profile	of	the	three	regions	is	distinct	when	considered	state	by	state.	
(Related	to	Fig.	3).	The	top	three	panels	represent	power	as	a	function	of	frequency	for	the	
PCC	and	the	two	precuneus	regions,	separated	by	state	and	including	the	global	power.	The	
bottom	panels	reflect	connectivity	with	the	mPFC	region.		
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Fig.	SI-5.	Spatial	power	maps	for	an	HMM	run	with	6	states,	where	some	states	from	the	
original	12	state	analysis	are	now	fused	into	fewer	states.		
	 	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 20, 2017. ; https://doi.org/10.1101/150607doi: bioRxiv preprint 

https://doi.org/10.1101/150607


	 27	

	

	
Fig.	SI-6.	Spectral	information	from	a	collection	of	signal	segments	extracted	from	a	
canonical	theta	oscillation	(8Hz),	where	the	segments	are	shorter	than	the	theta	period	
(0.125s).	The	length	of	the	segments	has	either	mean	0.025s	(left),	or	0.05s	(middle),	or	
0.10s	(right);	examples	of	the	segments	are	shown	in	the	bottom	for	each	case.	Despite	the	
brevity	of	the	segments,	the	spectral	information	of	the	underlying	theta	wave	is	correctly	
calculated.	
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Fig.	SI-7.	Phase-locking	connectivity	for	the	two	higher-order	cognitive	(anterior	and	
posterior)	states,	and	the	visual	and	motor	states,	when	the	method	for	leakage	correction	
by	Pascual-Marqui	et	al.	(2017)	is	applied	instead	of	the	Colcough	et	al.’s	method	used	in	this	
work.	The	differences	between	the	two	methods	are	not	large,	with	slightly	fewer	
connections	for	Pascual-Marqui	et	al.’s	method.		
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