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Abstract 
 

Real-world scenes are rich, heterogeneous stimuli that contain inherent correlations between 

many visual and semantic features, making it difficult to determine how different scene 

properties contribute to neural representations. Here, we assessed the unique contributions of 

three behaviorally relevant feature spaces by a) selecting stimuli for which inherent correlations 

were minimized a priori and b) partitioning the neural variance attributed to each individual 

feature space. We found that while scene categorization behavior is best explained by a 

functional feature space reflecting potential actions in scenes, cortical responses in scene-

selective areas are best explained by mid- and high-level layers of computational deep neural 

network models (DNNs). While other regions of extrastriate cortex represented some functional 

features, our findings reveal a striking dissociation of functional versus DNN features in their 

contribution to scene categorization and brain responses, indicating that scene-selective cortex 

and DNNs represent only a subset of behaviorally relevant scene information. 
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Introduction 

Although researchers of visual perception often use simplified, highly controlled images in order 

to isolate the underlying neural processes, real-life visual perception requires the continuous 

processing of complex visual environments to support a variety of behavioral goals, including 

recognition, navigation and action planning (Malcolm et al, 2016). In the human brain, the 

perception of complex scenes is characterized by the activation of three scene-selective 

regions, the Parahippocampal Place Area (PPA; Aguirre et al. 1998; Epstein and Kanwisher 

1998), Occipital Place Area (OPA; Hasson et al. 2002; Dilks et al. 2013), and Medial Place Area 

(MPA; Silson et al. 2016), also referred to as the Retrosplenial Complex (Bar and Aminoff 

2003). A growing body of fMRI literature focuses on how these regions might facilitate scene 

understanding by investigating what information drives neural responses in these regions when 

human observers view scene stimuli. Currently, a large set of candidate low- and high-level 

characteristics of scenes have been identified, including but not limited to: a scene’s constituent 

objects and their co-occurrences; spatial layout; surface textures; contrast and spatial 

frequency, as well as scene semantics, contextual associations, and navigational affordances 

(see Epstein 2014; Malcolm et al. 2016; Groen et al. 2017, for recent reviews).  

This list of candidate characteristics highlights two major challenges in uncovering neural 

representations of complex real-world scenes (Malcolm et al. 2016). First, there are many 

inherent correlations between different scene properties. For example, forests are characterized 

by the presence of spatial boundaries and numerous vertical edges, whereas beaches are 

typically open with a prominent horizon, resulting in correlations between semantic category, 

layout and spatial frequency (Oliva and Torralba 2001; Torralba and Oliva 2003). This makes it 

problematic to explain neural representations of scenes based on just one of these properties 

(Walther et al. 2009; Kravitz et al. 2011; Park et al. 2011; Rajimehr et al. 2011) without taking 

into account their covariation. Indeed, an explicit test of spatial frequency, subjective distance 
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and semantic properties found that due to inherent feature correlations, all three explained the 

same variance in fMRI responses, with no discernible unique contribution (Lescroart et al. 

2015). Second, given the large number of possible models and the limited number that can 

realistically be tested in a single study, how do we select which models to focus on?  

In this fMRI study, we addressed both these challenges by testing three models chosen 

for their behavioral relevance, and a priori selecting stimuli that reduced the covariance between 

these models. Specifically, our choice of models (feature spaces) was informed by a behavioral 

study that investigated the contribution of a large range of features to scene understanding 

(Greene et al. 2016). Using online crowd-sourcing on a large scene database (the SUN 

database, Xiao et al. 2014), Greene and colleagues found that the three models that best 

explained human scene categorization were 1) human-assigned object labels (‘object model’), 

2) a deep convolutional neural network (‘DNN model’), and 3) a model based on actions that 

can be carried out in the scene (‘function model’). To isolate the contribution of each of these 

models to neural scene representation, we compared them against multi-voxel patterns in fMRI 

data collected while participants viewed these scenes, and quantified their unique contributions 

using variance partitioning, accounting for any residual overlap in representational structure.  

To anticipate, our data reveal a striking dissociation between the feature space that 

maximally drives behavioral scene categorization and the space that best explain scene-

selective cortex. While the function model best predicted scene categorization, there was no 

unique representation of scene function in scene-selective brain regions, which instead are fully 

described by the deep network features. Cortical responses in scene-selective cortex were 

captured by both mid- and high-level DNN layers, while scene functions correlated with 

responses in regions outside of scene-selective cortex, some of which have been associated 

with action observation. This dissociation suggests a distributed functional organization of real-

world scene information across visual cortex that extends beyond scene-selective regions. 
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Figure 1 Models and predicted stimulus dissimilarity. A) Stimuli were characterized in three different 
ways: functions (derived using human-generated action labels), objects (derived using human-generated 
object labels) and DNN features (derived using layer 7 of a 1000-class trained convolutional neural 
network). B) RDMs showing predicted representational dissimilarity in terms of functions, objects and 
DNN features for the 30 scene categories sampled from Greene et al., (2016) for the purpose of the 
current study. Scenes were sampled to achieve minimal between-matrix correlations, with the constraint 
that the final stimulus set should be have equal portions of categories from indoor, outdoor man-made 
and outdoor natural scenes. The category order in the figure is determined based on a k-means 
clustering on the functional model RDM; clustering was performed by requesting 8 clusters, which 
explained 80% of the variance in the functional feature space. RDMs were rank-ordered for visualization 
purposes only. C) Multi-dimensional scaling plots of the model RDMs, color-coded based on the 8 
functional clusters depicted in B). Functional model clusters indicated functions such as ‘sports’, and 
‘transportation’ (note that these semantic labels were derived post-hoc after k-means clustering, and did 
not affect stimulus selection). Critically, representational dissimilarity based on the two other models 
(objects and DNN features) predicted different cluster patterns. 
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Results 

 

Disentangling visual feature, object and functional information in scenes 

The goal of the study was to determine the contributions of object, DNN and functional feature 

spaces to neural representations in scene-selective cortex. To do this, we created a stimulus set 

by iteratively sampling from the large set of scenes previously characterized in terms of these 

three types of information by Greene et al. (2016). The DNN feature space was derived using a 

high-level layer of an AlexNet (Alex et al. 2012; Sermanet et al. 2013) that was pre-trained using 

ImageNet class labels (Deng et al. 2009), while the object and function feature spaces were 

derived based on object and action labels assigned by human observers through Amazon 

Mechanical Turk (see Methods for details). On each iteration, pairwise distances between a 

subset of pseudo-randomly sampled categories were determined for each of these feature 

spaces, resulting in three representational dissimilarity matrices (RDMs) reflecting either the 

deep network, object or functional feature space (Figure 1A) for that sample. Constraining the 

set to include equal numbers of indoor, urban, and natural landscape environments, our 

strategy was inspired by the odds algorithm of Bruss (2000), in that we rejected the first 10,000 

solutions, selecting the next solution that had lower inter-feature correlations than had been 

observed thus far. Thus, a final selection of 30 scene categories was selected in which the three 

RDMs were minimally correlated (Pearson’s r: 0.23-0.26; Figure 1B-C; see Methods).  

Twenty participants viewed the selected scenes while being scanned on a high-field 7T 

Siemens MRI scanner using a protocol sensitive to blood oxygenation level dependent (BOLD) 

contrasts (see Methods). Stimuli were presented for 500 ms each while participants performed 

an orthogonal task on the fixation cross. To assess how each feature space contributed to 

scene categorization behavior for our much reduced stimulus set (30 instead of the 311 

categories of Greene et al. 2016), participants performed a behavioral multi-arrangement task 
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(Kriegeskorte and Mur 2012) on the same stimuli, administered on a separate day after 

scanning. In this task, participants were presented with all stimuli in the set arranged around a 

large white circle on a computer screen, and were instructed to drag-and-drop these scenes 

within the white circle according to their similarity (see Methods and Figure 2A).  

 

 

Figure 2 Behavioral multi-arrangement paradigm and results. A) Participants organized the scenes in 
inside a large white circle according to their similarity as determined by their own judgment, without 
receiving explicit instructions as to what information to use to determine scene similarity. B) RDM 
displaying the average dissimilarity between categories in behavioral arrangement (rank-ordered for 
visualization only). C) Average (bar) and individual participant (gray dots) correlations between the 
behavioral RDM and the model RDMs for objects (red), DNN features (yellow) and functions (blue) from 
Figure 1B. Stars (*) indicate p < 0.05 for model-specific one-sided signed-rank tests against zero, while 
horizontal bars indicate p < 0.05 for two-sided pairwise signed-rank tests between models; p-values were 
FDR-corrected across both types of comparisons. D) Count of participants with the highest correlation 
with either objects, DNN features or objects. E) Average (bar) and individual participant (gray dots) partial 
correlation valyes for each model RDM. Statistical significance was determined the same way as in C). F) 
Euler diagram depicting the results of a variance partitioning analysis on the behavior for objects (red 
circle), DNN features (yellow circle) and functions (blue circle). Unique (non-overlapping diagram 
portions) and shared (overlapping diagram portions) variances are expressed as percentages of the total 
variance explained by all models combined. 
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Functions uniquely predict scene categorization behavior 

To determine what information contributed to scene categorization in the multi-arrangement 

task, we created RDMs based on each participant’s final arrangement by measuring the 

pairwise distances between all 30 categories in the set (Figure 2B), and then computed 

correlations of these RDMs with the three model RDMs that quantified the similarity of the 

scenes in terms of either functions, objects, or DNN features, respectively (see Figure 1B).  

 Replicating Greene et al., (2016), this analysis indicated that all three feature spaces 

were significantly correlated with scene categorization behavior, with functions having the 

highest correlation on average (Figure 2C; objects: mean r = 0.16; DNN features: mean r = 

0.26; functions: mean r = 0.29, Wilcoxon one-sided signed-rank test, all W(20) > 210, all z > 3.9, 

all p < 0.0001). The correlation with functions was higher than with objects (Wilcoxon two-sided 

signed-rank test, W(20) = 199, z = 3.5, p = 0.0004), but not than with DNN features (W(20) = 

134, z = 1.1, p = 0.28), which also correlated higher than objects (W(20) = 194, z = 3.3, p = 

0.0009). However, comparison at the level of individual participants indicated that functions 

outperformed both the DNN and object models for the majority of participants (highest 

correlation with functions: n = 12; with DNN features: n = 7; with objects: n = 1; Figure 2D).  

 While these correlations indicate that scene dissimilarity based on the functional feature 

space best matched the stimulus arrangements that participants made, they do not reveal to 

what extent functional, DNN or object features independently contribute to the behavior. To 

assess this, we performed two additional analyses. First, we computed partial correlations 

between models and behavior whereby the correlation of each feature space with the behavior 

was determined while taking into account the contributions of the other two feature spaces. The 

results indicated that each model independently contributed to the behavioral data: significant 

partial correlations were obtained for the object (W(20) = 173, z = 2.5, p = 0.006), DNN (W(20) = 

209, z = 3.9, p < 0.0001) and functional feature spaces (W(20) = 209, z = 3.9, p < 0.0001), with 
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the functional model having the largest partial correlation (Figure 2E). Direct comparisons 

yielded a similar pattern as the independent correlations, with weaker contributions of objects 

relative to both functional (W(20) = 201, z = 3.6, p < 0.0003) and DNN features (W(20) = 195, z 

= 3.4, p = 0.0008), whose partial correlations did not differ (W(20) = 135, z = 1.12, p = 0.26). 

Second, we conducted a variance partitioning analysis, in which the function, DNN and 

object feature spaces were entered either separately or in combination as predictors in a set of 

multiple regression analyses aimed at explaining the categorization behavior. By comparing the 

explained variance based on regression on individual models versus models in combination, we 

computed portions of unique variance contributed by each model as well as portions of shared 

variance across models (see Methods for details). A full model in which all three models were 

included explained 50.3% of the variance in the average behavioral categorization pattern 

(Figure 2F). Highlighting the importance of functions for scene categorization, the largest 

portion of this variance could be uniquely attributed to the functional feature space (unique r2 = 

37.6%), more than the unique variance explained by the DNN features (unique r2 = 29.0%) or 

the object features (unique r2 = 1.4%). This result is consistent with the findings of Greene et al., 

(2016), who found unique contributions of 45.2% by the function model, 7.1% by the DNN 

model*, and 0.3% by objects, respectively. One interesting difference with this previous study is 

that the degree of shared variance across all three models in our study is notably smaller (8.4% 

versus 27.4%); this is presumably a result of our stimulus selection procedure that was explicitly 

																																																								
*	When	performing	the	variation	partition	on	the	behavioral	categorization	measured	in	Greene	
et	al.,	(2016)	but	limited	to	the	30	scene	categories	that	were	used	here,	we	obtained	a	highly	
similar	distribution	of	unique	variances	as	for	the	current	behavioral	data,	namely	42.8%	for	the	
function	model,	28.0%	for	the	DNN	model,	and	0.003%	for	the	objects,	respectively.	This	
suggests	that	the	higher	contribution	of	the	DNN	to	the	behavior	relative	to	what	is	reported	in	
Greene	et	al.,	(2016)	is	a	result	of	the	reduced	stimulus	set	used	here,	rather	than	a	qualitative	
difference	in	experimental	results	between	the	previous	study	and	the	current	study.		
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aimed at minimizing correlations between the models. Importantly, a reproducibility test (see 

Methods)that was built-in to our design indicated that the representational space reflected in the 

behavior was highly generalizable, resulting in a between-set RDM correlation of r = 0.73 (95% 

confidence interval =  [0.73-0.88], p = 0.0001), as assessed by comparison of the two different 

sets of scene exemplars that were evenly distributed across participants.  

 In sum, these results confirm an important, independent contribution of the functional 

feature space to scene understanding, but this time as evidenced by multi-arrangement sorting 

behavior (as opposed to a same/different categorization task). We also found a smaller, 

separate contribution of deep network features, while the unique contribution of the object 

feature space was negligible. Next, we examined to what extent this information is represented 

in brain responses to the same set of real-world scenes as measured with fMRI. 

  

DNN features uniquely predict responses in scene-selective cortex 

To determine the information that is represented in scene-selective regions PPA, OPA and 

MPA, we created RDMs based on the pairwise comparisons of multi-voxel activity patterns for 

each category in these cortical regions (Figure 3A), which we subsequently correlated with the 

RDMs based on the object, function and DNN feature spaces. Similar to the behavioral findings, 

all three spaces correlated with the fMRI response patterns to scenes in PPA (objects: W(20) = 

181, z = 2.8, p = 0.002; DNN: W(20) = 206, z = 3.8, p < 0.0001; functions: W(20) = 154, z = 1.8, 

p = 0.035, see Figure 3B). Unlike our behavioral findings, however, fMRI dissimilarity in PPA 

correlated more strongly with the DNN model than the object (W(20) = 195, z = 2.5, p = 0.012) 

and function (W(20) = 198, z = 3.5, p < 0.0005) models, which did not differ (W(20) = 145 , z = 

1.5, p = 0.14). In OPA, only the DNN model correlated with the fMRI response patterns (W(20) = 

165, z = 2,2, p = 0.013), and this correlation was again stronger than the object model (W(20) = 

172, z = 2.5, p = 0.012), but not the function model (W(20) = 134, z = 1.1, p = 0.28).  
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Figure 3 RDMs and model comparisons for fMRI Experiment 1 (n = 20). A) RDMs displaying average 
dissimilarity between categories in multi-voxel patterns in PPA, OPA and MPA (rank-ordered for 
visualization only). B) Average (bar) and individual (gray dots) correlations between the ROIs in A) and 
the model RDMs for objects (red), DNN features (yellow) and functions (blue). Stars (*) indicate p < 0.05 
for model-specific one-sided signed-rank tests against zero, while horizontal bars indicate p < 0.05 for 
two-sided pairwise signed-rank tests between models; p-values were FDR-corrected across both types of 
comparisons within each ROI. C) Average (bar) and individual (gray dots) partial correlation coefficients 
for each model RDM. Statistics are the same as in B). D) Euler diagram depicting the variance partitioning 
results the average dissimilarity in each ROI for each of the three models, expressed as percentages of 
unique and shared variance of the variance explained by all three models together.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207530doi: bioRxiv preprint 

https://doi.org/10.1101/207530
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 12	

In MPA, none of the model correlations were significant (all W(14) < 76, all z < 1.4, all p > 0.07).  

When the three models were considered in combination only the DNN model yielded a 

significant partial correlation (PPA: W(20) = 203, z = 3.6, p < 0.0001, OPA: W(20) = 171, z = 

2.5, p = 0.007, Figure 3C), further showing that DNN features best capture responses in scene-

selective cortex. No significant partial correlation was found for the object model (PPA: W(20) = 

148, z = 1.6, p = 0.056; OPA: W(20) = 74, z = 1.2, p = 0.88) or the function model (PPA: W(20) 

= 98, z = 0.3, p = 0.61, OPA: W(20) = 127, z = 0.8, p = 0.21), or for any model in MPA (all W(14) 

< 63, all z < 0.66, all p > 0.50). Variance partitioning of the fMRI response patterns (Figure 3D) 

indicated that the DNN model also contributed the largest portion of unique variance: in PPA 

and OPA, DNN features contributed 71.1% and 68.9%, respectively, of the variance explained 

by all models combined, more than the unique variance explained by the object (PPA: 5.3%; 

OPA, 2.3%) and function (PPA: 0.3%; OPA: 2.6%) feature spaces. In MPA, a larger share of 

unique variance was found for the function model (41.5%) than for the DNN (38.7%) and object 

model (3.2%); however, overall explained variance in MPA was much lower than in the other 

ROIs. The direct test of reproducibility indicated that RDMs generalized across participants and 

stimulus sets for PPA (r = 0.26 [0.03-0.54], p = 0.009) and OPA (r = 0.23 [0.04-0.51], p = 

0.0148), but not in MPA (r = 0.06 [-0.16-0.26], p = 0.29), suggesting that the multi-voxel patterns 

measured in MPA were less stable (see also the low noise ceiling in MPA in Figure 3B/C).  

Taken together, the fMRI results indicate that of the three models considered, deep 

network features (derived using a pre-trained DNN model) best explained the coding of real-

world scene information in scene-selective regions PPA and OPA, more so than object or 

functional information derived from semantic labels that were explicitly generated by human 

observers. For MPA, results were inconclusive, as none of the models adequately captured the 

response patterns measured for in this region, which also did not contain multi-voxel patterns 

that generalized across stimulus sets and participants. This result highlights a discrepancy of 
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the brain responses with the behavioral results, which indicated a strong contribution of 

functions to scene representation, which was largely independent of the DNN features. To 

better understand if and how scene-selective cortex represented behaviorally relevant 

information, we next investigated how the observed behavior related to the fMRI responses. 

 

Scene selective cortex correlation with behavior reflects DNN feature space  

To assess the extent to which the patterns of response observed in scene-selective cortex 

predicted behavior, we correlated the RDMs in each of the ROIs with three measures of 

behavioral categorization: 1) the large-scale online categorization behavior measured in Greene 

et al., (2016), 2) the average behavior in the multi-arrangement task, and 3) each participant’s 

own behavioral multi-arrangement data. This analysis revealed a significant correlation with 

behavior in all three scene-selective ROIs (Figure 4A). In PPA, all three behavioral measures 

correlated with neural patterns of response (signed-rank test, online categorization behavior: 

W(20) = 168, z = 2.3,  p = 0.010; average multi-arrangement behavior: W(20) = 195, z = 3.3, p = 

0.0004; own arrangement behavior: W(20) = 159, z = 2.0, p = 0.023).  In OPA, significant 

correlations were found for both of the average behavioral measures (online categorization 

behavior: W(20) = 181, z = 2.8, p = 0.002; average multi-arrangement behavior: W(20) = 158, z 

= 1.96, p = 0.025), but not for the participant’s own behavior (W(20) = 106, z = 0.02, p = 0.49), 

possible due to higher noise in individual data. Interestingly, however, MPA showed the 

opposite pattern: participant’s own behavior was significantly related to the observed patterns of 

response (W(14) = 89, z = 2.26, p = 0.011), but the average behavioral measures were not 

(online behavior: W(14) = 47, z = 0.4, p = 0.65; average behavior: W(14) = 74, z = 1.3, p = 

0.09). Combined with the reproducibility test (see above), this suggests that the representations 

in MPA are possibly more idiosyncratic to individual participants or stimulus sets. 
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Figure 4 Correlations and variance partitioning of behavior and fMRI together. A) Correlations of 
behavioral categorization with fMRI response patterns in PPA, OPA and MPA. B) Euler diagram depicting 
the results of variance partitioning the fMRI responses in PPA, OPA and MPA for objects (red circle), 
DNN features (yellow circle) and average sorting behavior (green circle), indicating that the majority of 
behavioral variance is shared with the DNN features.  
 

While these results support an important role for scene-selective regions in representing 

scene information that informs behavior, they also raise an intriguing question: what aspect of 

the behavior is reflected in these neural response patterns? To address this, we performed 

another variance partitioning analysis, now including the average multi-arrangement behavior as 

a predictor of the fMRI response patterns, in combination with the two models that correlated 

most strongly with this behavior, i.e. the DNN and function feature spaces. The purpose of this 

analysis was to determine how much variance in the neural responses each of the models 

shared with the behavior, and whether there was any behavioral variance in scene cortex that 

was not explained by our models. If the behaviorally relevant information in the fMRI responses 

is primarily of a functional nature, we would expect portions of the variance explained by 

behavior to be shared with the function feature space. Alternatively, if this variance reflects 
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mainly DNN features (which did contribute to behavior; Figure 2F), we would expect it to be 

shared primarily with the DNN model. 

Consistent with this second hypothesis, the variance partitioning results indicated that in 

OPA and PPA, most of the behaviorally relevant information in the fMRI response patterns was 

shared with the DNN model (Figure 4B). In PPA, the behavioral RDMs on average shared 

25.7% variance with the DNN model, while a negligible portion was shared with the function 

model (less than 1%); indeed, nearly all variance shared between the function model and the 

behavior was also shared with the DNN model (10.1%). In OPA, a similar trend was observed, 

with behavior sharing 38.9% of the fMRI variance with the DNN model. In OPA, the DNN model 

also eclipsed nearly all variance that behavior shared with the function model (9.7% shared by 

behavior, functions and DNN features), leaving only 1.6% of variance shared exclusively by 

functions and behavior. In contrast, in MPA, behavioral variance was shared with either the 

DNN model or the function model to a similar degree (14.7% and 17.7%, respectively), with an 

additional 27.1% shared with both (note, however, again MPA’s low explained variance overall).  

In sum, these analyses suggest that while response patterns in PPA and OPA reflect 

behaviorally relevant information, this information aligns best with the DNN feature space, and 

does not reflect any unique contribution of functional information to behavior. While in MPA, the 

behaviorally relevant representations seem to partly reflect other information, the overall 

explained variance in MPA was again quite low, limiting interpretation of this result. 

 

Relative model contributions to fMRI responses do not change with task manipulation 

An important difference between the behavioral and the fMRI experiment was that participants 

had access to the entire stimulus set when performing the behavioral arrangements, which they 

could perform at their own pace, while they performed an orthogonal task in the fMRI scanner. 

Therefore, we reasoned that a possible explanation of the discrepancy between the brain and 
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behavioral data could be a limited engagement of participants with the briefly presented scenes 

while in the scanner, resulting in only superficial encoding of the images in terms of basic visual 

features that are well captured by the DNN feature space, rather than functional or object 

features that might be more high-level.  

To test this possible explanation, we ran Experiment 2 and collected another set of fMRI 

data (n = 8; four of these participants also participated in Experiment 1, allowing for comparison 

of tasks within individuals) using the exact same stimulation paradigm, but with a different task 

instruction. Specifically, instead of performing an unrelated fixation task, we instructed 

participants to covertly name the presented scene. Covert naming has been shown to facilitate 

stimulus processing within category-selective regions and to enhance semantic processing 

(Turennout et al. 2000; van Turennout et al. 2003). Moreover, before entering the scanner, 

participants were familiarized with all the individual scenes in the set, whereby they were 

explicitly asked to generate a name for each individual scene (see Methods). Together, these 

manipulations were intended to ensure that participants attended to the scenes and processed 

their content to a fuller extent than in Experiment 1.  

 Despite this task manipulation, Experiment 2 yielded similar results as Experiment 1 

(Figure 5A). Reflecting participant’s enhanced engagement with the scenes when performing 

the covert naming task, overall model correlations were considerably higher than in Experiment 

1, and now yielded significant correlations with the function model in both OPA and MPA 

(Figure 5B). The direct test of reproducibility also yielded significant, and somewhat increased, 

correlations for PPA (r = 0.35 [0.26-0.55], p = 0.0001) and OPA (r = 0.27 [0.18-0.60], p = 0.039), 

but not in MPA (r = 0.10 [-0.07-0.28], p = 0.17).  
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Figure 5 RDMs and model comparisons for Experiment 2 (n = 8, covert naming task). A) Average 
dissimilarity between categories in multi-voxel patterns measured in PPA, OPA and MPA (rank-ordered). 
B) Correlations between the ROIs in A) and the model RDMs. Statistics as in Figure 3. Note how in PPA, 
the visual feature model correlation comes close to the noise ceiling, suggesting that this is the main 
source of information driving neural representation in this ROI. C) Euler diagram depicting the variance 
partitioning results on the average dissimilarity in each ROI. D) Average (bars) and individual (dots/lines) 
within-participant (n = 4) comparison of fMRI-model correlations across the fixation and naming task (note 
that participants were presented with a different set of scenes in each task). Note how increased attention 
to the scenes due to the naming mainly enhances the correlation with visual features.  
 

Importantly, in all three ROIs, the DNN model correlations were again significantly stronger than 

the function and object model correlations, which again contributed very little unique variance 

(Figure 5C). Direct comparison of RDM correlations across the two tasks indicated that in PPA 

and OPA, the naming task resulted in increased correlations for the DNN model only (two-sided 

Wilcoxon ranksum test, PPA: p = 0.0048; OPA p = 0.0056), without any difference in 

correlations for the other models (all p > 0.52). In MPA, none of the model correlations differed 

across tasks (all p > 0.21). Increased correlation with the DNN model was present within the 
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participants that participated in both experiments (n = 4; see Methods): in PPA and OPA, 4/4 

and 3/4 participants showed an increased correlation, respectively, whereas no consistent 

patterns was observed for the other models and MPA (Figure 5D). 

In sum, the results of Experiment 2 indicate that the strong contribution of DNN features 

to scene representation in scene-selective cortex is not likely the result of limited engagement of 

participants with the scenes when viewed in the scanner. If anything, enhanced attention to the 

scenes under an explicit naming instruction resulted in even stronger representation of these 

features, without a clear increase in representation of functional or object feature spaces. 

 

Visual feature coding in scene-selective cortex is not exclusive to high-level DNN layers 

The DNN feature space was derived using a high-level layer (fc7) representation of an Image-

Net pre-trained AlexNet computed from the large set of exemplars per scene category used in 

Greene et al., (2016). DNNs consist of multiple layers that capture possible transformations 

from pixels in the input image to a class label assigned in training. Given the strong 

performance of this high-level DNN feature space in explaining the fMRI responses in scene-

selective cortex,it is important to determine whether this result was exclusive to higher DNN 

layers, and whether the task used for DNN training influences how well the features represented 

in individual layers explain responses in scene-selective cortex. To do so, we extracted the 

features for the specific scene exemplars presented in the fMRI scanners from all layers of two 

additional pre-trained DNNs, one trained on object labels, and another trained using scene 

labels (see Methods). Direct comparisons of the layer representations between these two DNNs 

(Figure 6A) indicated that while both models have similar representations (as indicated by 

strong between-model RDM correlation overall; all layers r > 0.6), the similarity between models 

decreased with higher layers. This indicates that representations in higher DNN layers are more 

specific to the task they are trained on than the lower layers. Moreover, this suggests that higher 
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layers of the scene-trained DNN could capture additional information that might be important for 

scene representation that is not captured by the object-trained DNN. To investigate this, we next 

evaluated the degree of correspondence between these new DNN layer representations that 

were specific to our scene exemplars and our original feature spaces derived from the Greene 

et al., (2016) database (Figure 6B). 

 

 

Figure 6 DNN layer and DNN training comparisons, showing layer-by-layer RDM correlations between A) 
an object- and a place-trained DNN; B) both DNNs and the a priori selected scene information models; C) 
the object-trained DNN and scene-selective ROIs; D) the scene-trained DNN and scene-selective ROIs. 
While the decreasing correlation between DNNs indicates stronger task-specificity of higher DNN layers, 
the original fc7 model correlates most strongly with high-level layers of both DNNs. Both DNNs correlate 
similarly with PPA and OPA, showing remarkable good performance of mid-level layers. 
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As expected, the original fc7 feature space model correlated most strongly with the new 

DNN layer representations, showing steadily increasing correlations with higher layers of both 

DNNs. By design, the object and functional feature spaces correlate minimally with higher layers 

of the object-trained DNN; however, for the scene-trained DNN, the function model correlated 

somewhat better with higher layers than lower layers, highlighting a potential overlap of 

functions with the scene labels that the scene-trained DNN was trained with, and again 

suggesting that the higher layers of the scene-trained DNN may capture additional scene 

information not represented in the object-trained DNN. We next tested whether this observation 

resulted in increased correlation of higher layers of the scene-trained DNN with fMRI responses 

in scene-selective cortex.  

 Layer-by-layer correlations of the object-trained (Figure 6C) and the scene-trained DNN 

(Figure 6D) with fMRI responses in PPA, OPA and MPA however did not indicate a strong 

evidence of a difference in DNN performance as a result of training. In PPA, both the object-

trained and place-trained DNN showed increased correlation with higher DNN layers, consistent 

with previous work showing a hierarchical mapping of DNN layers to low vs. high-level visual 

cortex (Khaligh-Razavi and Kriegeskorte 2014; Güçlü and van Gerven 2015; Cichy et al. 2016). 

Note however that in our data, the slope of this increase is quite modest; while higher layers 

overall correlate better than layers 1 and 2, in both DNNs the correlation with layer 3 is not 

significantly different from the correlation of layers 7 and 8. In OPA, we in fact observed no 

evidence for increased performance with higher layers for the object-trained DNN; none of the 

pairwise tests survived multiple comparisons correction. For the scene-trained DNN, the OPA 

correlation significantly decreased rather than increased with higher layers, showing a peak 

correlation with layer 3. No significant correlations were found for any model layer with MPA.  

 These results suggest that despite a divergence in representation in high-level layers 

across differently-trained DNNs, their performance in predicting brain responses in scene-
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selective cortex is quite similar. While for PPA, higher layers perform significantly better than 

(very) low-level layers, mid-level layers already provide a relatively good correspondence with 

PPA activity. This result was even more pronounced for OPA where mid-level layers yielded the 

maximal correlations for both DNNs. Therefore, these results suggest that features represented 

in these scene-selective ROIs may actually be less ‘high-level’ than suggested by our a priori 

chosen, layer fc7 based DNN feature space. 

 

Contributions of the functional feature space outside of scene-selective cortex 

All our results so far indicate a dissociation between brain and behavioral assessments of the 

similarity structure of scenes. In the behavioral domain, functions have a large, independent 

contribution to scene categorization, but representational dissimilarity in scene-selective cortex 

is primarily driven by mid- and high-level visual features represented in a convolutional neural 

network, without an independent contribution of functions. Given this lack of correlation with the 

function model in the scene-selective cortex, we explored whether this information could be 

reflected in fMRI activity elsewhere in the brain by performing whole-brain searchlight analyses. 

Specifically, we extracted the multi-voxel patterns from spherical ROIs throughout each 

participant’s entire volume and performed regression analyses including all three models (visual 

features, objects, functions) to extract the corresponding regression weights for each model. 

The resulting whole-brain searchlight maps were then fed into a to surface-based group 

analysis (see Methods) to identify clusters of positive regression weights indicating significant 

model contributions to brain representation of during viewing of real-world scenes. 

 The results of these analyses were entirely consistent with the ROI analyses: for the 

DNN feature space, significant searchlight clusters were found in PPA and OPA (Figure 7A), 

but not MPA, whereas no significant clusters were found for the function model (Figure 7B) in 

any of the scene-selective ROIs. (The object model yielded no positive clusters).  
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Figure 7 Searchlight results. Medial (left) and lateral (right) views of group-level searchlights for A) the 
DNN and B) function feature spaces, overlaid on surface reconstructions of both hemispheres of one 
participant. Each map was created by submitting the partial correlation maps for each model and 
hemisphere to one-sample tests against a mean of zero, cluster-corrected for multiple comparisons using 
Threshold-Free Cluster Enhancement (thresholded on z = 1.64, corresponding to one-sided p < 0.05). 
Unthresholded versions of the average partial correlation maps are inset above. Group-level ROIs PPA, 
OPA and MPA are highlighted in solid white lines. Consistent with the ROI analyses, the DNN feature 
model contributed uniquely to representation in PPA and OPA. The function model uniquely correlated 
with a bilateral ventral region, as well as a left-lateralized region overlapping with the middle temporal and 
occipital gyri. C) RDM and MDS plots based on the MVPA patterns in the searchlight clusters showing a 
significant contribution of the functional feature space in B. RDM rows are ordered as in Figure 1B and 
category color coding in the MDS plots is as in Figure 1C. D) Illustrative exemplars of the four categories 
that were most dissimilar from other categories within the searchlight-derived clusters depicted in B.  
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However, two clusters were identified for the function model outside of scene-selective cortex: a 

bilateral cluster on the ventral surface, lateral to PPA, overlapping with the fusiform and 

temporal lateral gyri, as well as a unilateral cluster on the left lateral surface, located adjacent 

to, but more ventral than, OPA, overlapping the posterior middle and inferior temporal gyrus.  

To better understand how representational dissimilarity in these clusters related to the 

functional feature space, we extracted the average RDM from each searchlight cluster and 

inspected which scene categories were grouped together in these ROIs. Visual inspection of the 

RDM and MDS plots of the RDMs (Figure 7C) indicates that in both the bilateral ventral and 

left-lateralized searchlight clusters, there is some grouping by category according to the function 

feature space (indicated by grouping by color in the MDS plot). However, it is also clear that the 

representational space in these ROIs does not exactly map onto the functional feature space in 

Figure 1C. Specifically, a few categories clearly ‘stand out’ with respect to the other categories, 

as indicated by a large average distance relative to the remainder of the stimulus set. Most of 

the scene categories that were strongly separated from the remaining categories all contained 

scene exemplars depicting humans that performed actions (see Figure 7D), although it is worth 

noting that the fourth most distinct category, ‘volcano’, did not contain humans in its scene 

exemplars but may be characterized by implied motion. These post-hoc observations suggest 

that (parts of) the searchlight correlation with the functional feature space may be due to the 

presence of human-, body- and/or motion selective voxels in these searchlight clusters. 

In sum, the searchlight analyses indicate that the maximum contributions of the DNN 

model were located in scene-selective cortex, while some aspects of the functional feature 

space may be reflected in regions outside of scene-selective cortex.  
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Discussion 

 

We assessed the contribution of three feature spaces previously implicated to be important for 

scene understanding to neural representations of scenes in the human brain. First, we 

confirmed earlier reports that functions strongly contribute to scene categorization by replicating 

the results of Greene et al., (2016), now using a multi-arrangement task. Second, however, we 

found that brain responses to visual scenes in scene-selective regions were best explained by 

the DNN feature space, with no discernible unique contribution of the functional features. 

Although parts of variance in the behavioral categorization were captured by the DNN feature 

space - and this part of the behavior was reflected in the scene-selective cortex - there are 

clearly aspects of scene categorization behavior that were not reflected in the activity of these 

regions. Collectively, these results thus reveal a striking dissociation between the information 

that is most important for behavioral scene categorization and the information that best 

describes representational dissimilarity of fMRI responses in regions of cortex that are thought 

to support scene recognition. Below, we discuss two potential explanations for this dissociation. 

 First, one possibility is that functions are represented outside of scene-selective cortex. 

Our searchlight analysis indeed revealed clusters of correlations with the function model in 

bilateral ventral and left lateral occipito-temporal cortex. Visual inspection of these maps 

suggests that these clusters potentially overlap with known face- and body-selective regions 

such as the Fusiform Face (FFA; Kanwisher et al. 1997) and Fusiform Body (FBA; Peelen and 

Downing 2007) areas on ventral surface, as well as the Extrastriate Body Area (EBA; Downing 

2001) on the lateral surface. This lateral cluster could possibly include motion-selective (Zeki et 

al. 1991; Tootell et al. 1995) and tool-selective (Martin et al. 1996) regions as well. Our results 

further indicated that these searchlight clusters contained distinct representations of scenes that 

contained acting bodies, and may therefore partially overlap with regions important for action 
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observation (e.g., Hafri et al. 2017). Lateral occipital-temporal cortex in particular is thought to 

support action observation by containing ‘representations which capture perceptual, semantic 

and motor knowledge of how actions change the state of the world’ (Lingnau & Downing, 2015). 

While our searchlight results suggest a possible contribution of these non-scene-selective 

regions to scene understanding, more research is needed to address how the functional feature 

space as defined here relates to the action observation network, and to what extent the 

correlations with functional features can be explained by bottom-up coding of bodies and motion 

versus more abstract action-associated features.  

The second possible explanation for the dissociation between brain and behavioral data 

is that the task that participants performed during fMRI did not engage the same mental 

processes that participants employed during the two behavioral tasks we investigated. 

Specifically, the behavioral tasks required participants to directly compare simultaneously 

presented scenes, while we employed a ‘standard’ fixation task in the scanner to prevent 

biasing our participants towards one of our feature spaces. Therefore, one possibility is that 

functional features only become relevant for scene categorization when participants are 

engaged in a contrastive task, i.e. explicitly comparing two scene exemplars side-by-side (as in 

Greene et al., 2016) or within the context of the entire stimulus set being present on the screen 

(as in our multi-arrangement paradigm). Thus, the fMRI results might change with an explicit 

contrastive task in which multiple stimuli are presented at the same time, or perhaps with a task 

that explicitly requires participants to consider functional aspects of the scenes. Although we 

investigated one possible influence of task in the scanner by using a covert naming task in 

Experiment 2, resulting in deeper and more conceptual processing, it did not result in a clear 

increase in the correlation with the behaviorally relevant function model in scene-selective 

cortex. However, the evidence for task effects on fMRI responses in category-selective cortex is 

somewhat mixed: Task differences have been reported to affect multi-voxel pattern activity in 
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both object-selective (Harel et al. 2014) and scene-selective cortex (Lowe et al. 2016), but other 

studies suggest that task has a minimal influence on representation in ventral stream regions, 

instead being reflected in fronto-parietal networks (Erez and Duncan 2015; Bracci et al. 2017; 

Bugatus et al. 2017). Overall, our findings suggest that not all the information that contributes to 

scene categorization is reflected in scene-selective cortex activity ‘by default’, and that explicit 

task requirements may be necessary in order for this information to emerge in the neural 

activation patterns in these regions of cortex. 

Importantly, the two explanations outlined above are not mutually exclusive. For 

example, it is possible that a task instruction to explicitly label the scenes with potential actions 

will activate components of both the action observation network (outside scene-selective cortex) 

as well as task-dependent processes within scene-selective cortex. Furthermore, given reports 

of potentially separate scene-selective networks for memory versus perception (Baldassano et 

al. 2016; Silson et al. 2016), it is likely that differences in mnemonic demands between tasks 

may have an important influence on scene-selective cortex activity. Indeed, memory-based 

navigation or place recognition tasks (Epstein et al. 2007; Marchette et al. 2014) have been 

shown to more strongly engage the medial parietal cortex and MPA. In contrast, our observed 

correlation with DNN features seems to support a primary role for PPA and OPA in bottom-up  

visual scene analysis, and fits well with the growing literature showing correspondences 

between extrastriate cortex activity and DNN features (Cadieu et al. 2014; Khaligh-Razavi and 

Kriegeskorte 2014; Güçlü and van Gerven 2015; Cichy et al. 2016; Horikawa and Kamitani 

2017). Our analyses further showed that DNN correlations with scene-selective cortex were not 

exclusive to higher DNN layers, but emerged at earlier layers, independent of DNN training (i.e. 

object versus scene classification), suggesting that the neural representation in PPA/OPA may 

be driven more by basic visual features than by semantic information (Watson et al. 2017).  
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At a behavioral level, however, our current results suggest that when participants 

perform scene categorization, either explicitly (Greene et al. 2016) or within a multi-arrangement 

paradigm (Kriegeskorte and Mur 2012), they incorporate information that is not reflected in 

either the DNNs or in PPA and OPA. Our results thus highlight a significant gap between the 

real-world information that is captured both in scene–selective cortex and current generations of 

deep neural networks, and the information that drives human understanding of visual 

environments. Visual environments are highly multidimensional, and scene understanding 

encompasses many behavioral goals, including not just visual object or scene recognition, but 

also navigation and action planning (Malcolm et al. 2016). While visual/DNN features likely feed 

into multiple of these goals - for example, by signaling navigable paths in the environment 

(Bonner and Epstein 2017), or landmark suitability (Troiani et al. 2014) - it is probably not 

appropriate to think about the neural representations relevant to all these different behavioral 

goals as being contained within one single brain region of even a single network of brain 

regions. Ultimately, unraveling the neural coding of scene information will require careful 

manipulations of both multiple tasks and multiple scene feature spaces, as well as a potential 

expansion of our focus on a broader set of regions than those characterized by the presence of 

scene-selectivity.  

 

Summary and conclusion 

We successfully disentangled the type of information represented in scene-selective cortex: out 

of three behaviorally relevant feature models, only one provided a robust correlation with activity 

in scene-selective cortex. This model was derived from deep neural network features in state-of-

the-art computer vision algorithms of object and scene recognition. Intriguingly, however, the 

DNN model was not the best model to explain scene categorization behavior, which was 

strongly driven by functional representations. This highlights both a limitation of DNNs in 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207530doi: bioRxiv preprint 

https://doi.org/10.1101/207530
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 28	

explaining scene understanding, as well as a potentially more distributed representation of 

scene information in the human brain beyond scene-selective cortex. 

 

Methods 

 
Participants. Twenty healthy participants (13 female, mean age 25.4 yrs, SD = 4.6) completed 

the first fMRI experiment and subsequent behavioral experiment. Four of these participants (3 

female, mean age 24.3 yrs, SD = 4.6) additionally participated in the second fMRI experiment, 

as well as four new participants (2 female, mean age 25 yrs, SD = 1.6), yielding a total of eight 

participants. All participants had normal or corrected-to-normal vision and gave written consent. 

The National Institutes of Health Institutional Review Board approved the consent and protocol.  

 

MRI acquisition. Participants were scanned on a research-dedicated Siemens 7T Magnetom 

scanner in the Clinical Research Center on the National Institutes of Health Campus (Bethesda, 

MD). Partial T2*-weighted functional image volumes were acquired using a gradient echo planar 

imaging (EPI) sequence with a 32-channel head coil (47 slices; 1.6 x 1.6 x 1.6 mm; 10% 

interslice gap; TR, 2s; TE, 27 ms; matrix size, 126 x 126; FOV, 192 mm). Oblique slices were 

oriented approximately parallel to the base of the temporal lobe and were positioned such that 

they covered the occipital, temporal, parietal cortices, and as much as possible of frontal cortex. 

After the functional imaging runs, standard MPRAGE (magnetization-prepared rapid-acquisition 

gradient echo) and corresponding GE-PD (gradient echo–proton density) images were 

acquired, and the MPRAGE images were then normalized by the GE-PD images for use as a 

high-resolution anatomical image for the following fMRI data analysis (Van de Moortele, 2009). 
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Stimuli & models. Experimental stimuli consisted of color photographs of real-world scenes (256 

x 256 pixels) from 30 difference scene categories that were selected from a larger database 

described in (Greene et al. 2016). These scene categories were picked using an iterative 

sampling procedure that minimized the correlation between the categories across three models 

of scene information: functions, object labels and DNN features, with the additional constraint 

that the final stimulus set should be have equal portions of categories from indoor, outdoor man-

made and outdoor natural scenes, which is the largest superordinate distinction present in the 

largest scene-database that is publicly available, the SUN database (Xiao et al. 2014). As 

obtaining a guaranteed minimum was impractical, we adopted a variant of the odds algorithm 

(Bruss 2000) as our stopping rule. Specifically, we created 10,000 sets of 30 categories and 

measured the correlations between functional, object, and DNN RDMs (distance metric: 

Spearman’s rho), noting the minimal value from the set. We persisted in this procedure until we 

observed a set with lower inter-feature correlations than was observed in the initial 10,000. 

From each scene category, 8 exemplars were randomly selected and divided across two 

separate stimulus sets of 4 exemplars for each scene category. Stimulus sets were assigned 

randomly to individual participants (Experiment 1: stimulus set 1, n = 10; stimulus set 2, n = 10; 

Experiment 2, stimulus set 1, n = 5; stimulus set 2, n = 3). Participants from Experiment 2 that 

had also participated in Experiment 1 were presented with the other stimulus set than the one 

they saw in Experiment 1. 

 

fMRI procedure. Participants were scanned while viewing the stimuli on a back-projected screen 

through a rear-view mirror that was mounted on the head coil. Stimuli were presented at a 

resolution of 800 x 600 pixels such that stimuli subtended ~10 x 10 degrees of visual angle. 

Individual scenes were presented in an event-related design for a duration of 500 ms, separated 

by a 6s interval. Throughout the experimental run, a small fixation cross (< 0.5 degrees) was 
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presented in the center of the screen. In Experiment 1, participants performed a task on the 

central fixation cross that was unrelated to the scenes. Specifically, simultaneous with the 

presentation of each scene, either the vertical or horizontal arm of the fixation cross became 

slightly elongated and participants indicated which arm was longer by pressing one of two 

buttons indicated on a hand-held button box. Both arms changed equally often within a given 

run and arm changes were randomly assigned to individual scenes. In Experiment 2, the fixation 

cross had a constant size, and participants were instructed to covertly name the scene whilst 

simultaneously pressing one button on the button box. To assure that participants were able to 

generate a name for each scene, they were first familiarized with the stimuli. Specifically, prior 

to scanning, participants were presented with all scenes in the set in randomized order on a 

laptop in the console room. Using a self-paced procedure, each scene was presented in 

isolation on the screen accompanied by the question ‘How would you name this scene?’. The 

participants were asked to type one or two words to describe the scene; as they typed, their 

answer appeared under the question, and they were able to correct mistakes using backspace. 

After typing the self-generated name, participants hit enter and the next scene would appear 

until all 120 scenes had been seen by the participant. This procedure took about ~10 minutes.  

In both Experiment 1 and 2, participants completed 8 experimental runs of 6.4 minutes 

each (192 TRs per run); one participant from Experiment 1 only completed 7 runs due to time 

constraints. Each run started and ended with a 12s fixation period. Each run contained 2 

exemplar presentations per scene category. Individual exemplars were balanced across runs 

such that all stimuli were presented after two consecutive runs, yielding 4 presentations per 

exemplar in total. Exemplars were randomized across participants such that each participant 

always saw the same two exemplars within an individual run; however the particular 

combination was determined anew for each individual participant and scene category. Stimulus 
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order was randomized independently for each run. Stimuli were presented using PsychoPy 

v1.83.01 (Peirce 2007).  

 

Functional localizers. Participants additionally completed four independent functional block-

design runs (6.9 minutes, 208 TRs) that were used to localize scene-selective regions of 

interest (ROIs). Per block, twenty gray-scale images (300 x 300 pixels) were presented from 

one of eight different categories: faces, man-made and natural objects, buildings, and four 

different scene types (man-made open, man-made closed, natural open, natural closed; Kravitz 

et al., 2011) while participants performed a one-back repetition-detection task. Stimuli were 

presented on a gray background for 500 ms duration, separated by 300 ms gaps, for blocks of 

16s duration, separated by 8s fixation periods. Categories were counterbalanced both within 

runs (such that each category occurred twice within a run in a mirror-balanced sequence) and 

across runs (such that each category was equidistantly spaced in time relative to each other 

category across all four runs). Two localizer runs were presented after the first four experimental 

runs and two after the eight experimental runs were completed but prior to the T1 acquisition. 

For four participants, only two localizer runs were collected due to time constraints.  

 

Behavioral experiment. On a separate day following the MRI data acquisition, participants 

performed a behavioral multi-arrangement experiment. In a behavioral testing room, participants 

were seated in front of a desktop computer with a flat screen monitor (size?) on which all 120 

stimuli that the participant had previously seen in the scanner were displayed as small 

thumbnails around a white circular arena. A mouse-click on an individual thumbnail displayed a 

larger version of that stimulus in the upper right corner. Participants were instructed to arrange 

the thumbnails within the white circle in such a way that the arrangement would reflect ‘how 

similar the scenes are, whatever that means to you’, by means of dragging and dropping the 
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individual exemplar thumbnails. We purposely avoided provided specific instructions in order to 

not bias participants towards using either functions, objects or visual features to determine 

scene similarity. Participants were instructed to perform the task at their own pace; if the task 

took longer than 1hr, participants were encouraged to finish the experiment (almost all 

participants took less time, averaging a total experiment duration of ~45 mins). Stimuli were 

presented using the single-arrangement MATLAB code provided in (Kriegeskorte & Mur, 2012). 

To obtain some insight in the sorting strategies used by participants, they were asked (after 

completing the experiment) to take a few minutes to describe how they organized the scenes, 

using a blank sheet of paper and a pen, using words, bullet-points or drawings.   

 

Behavioral data analysis. Behavioral representational dissimilarity matrices (RDMs) were 

constructed for each individual participant by computing the pairwise squared on-screen 

distances between the arranged thumbnails and averaging the obtained distances across the 

exemplars within each category. The relatedness of the models and the behavioral data was 

determined in the same manner as for the fMRI analysis, i.e. by computing both individual 

model correlations and unique and shared variance across models via hierarchical regression.  

 

fMRI preprocessing. Data were analyzed using AFNI software (https://afni.nimh.nih.gov). Before 

statistical analysis, the functional scans were slice-time corrected and all the images for each 

participant were motion corrected to the first image of their first task run after removal of the first 

and last six TRs from each run. After motion correction, the localizer runs were smoothed with a 

5mm full-width at half-maximum Gaussian kernel; the even-related data was not smoothed. 

 

fMRI statistical analysis: localizers. Bilateral ROIs were created for each participant individually 

based on the localizer runs by conducting a standard general linear model implemented in 
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AFNI. A response model was built by convolving a standard gamma function with a 16s square 

wave for each condition and compared against the activation time courses using Generalized 

Least Squares (GLSQ) regression. Motion parameters and four polynomials accounting for slow 

drifts were included as regressors of no interest. To derive the response magnitude per 

category, t-tests were performed between the category-specific beta estimates and baseline. 

Scene-selective ROIs were generated by thresholding the statistical parametric maps resulting 

from contrasting scenes > faces at p < 0.0001 (uncorrected). Only contiguous clusters of voxels 

(>25) exceeding this threshold were then inspected to define scene-selective ROIs consistent 

with previously published work (Epstein 2005). For participants in which clusters could not be 

disambiguated, the threshold was raised until individual clusters were clearly identifiable. While 

PPA and OPA were identified in all participants for both Experiment 1 and 2, MPA/RSC was 

detected in only 14 out 20 participants in Experiment 1, and all analyses for this ROI in 

Experiment 1 are thus based on this subset of participants.  

 

fMRI statistical analysis: event-related data. Each event-related run was deconvolved 

independently using the standard GLSQ regression model in AFNI. The regression model 

included a separate regressor for each of the 30 scene categories as well as motion parameters 

and four polynomials to account for slow drifts in the signal. The resulting beta-estimates were 

then used to compute representational dissimilarity matrices (RDMs; (Kriegeskorte et al. 2008) 

based on the multi-voxel patterns extracted from individual ROIs. Specifically, we computed 

pairwise cross-validated Mahalanobis distances between each of the scene 30 categories 

following the approach in (Walther et al. 2016). First, multi-variate noise normalization was 

applied by normalizing the beta-estimates by the covariance matrix of the residual time-courses 

between voxels within the ROI. Covariance matrices were regularized using shrinkage toward 

the diagonal matrix (Ledoit and Wolf 2004). Unlike univariate noise normalization, which 
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normalizes each voxel’s response by its own error term, multivariate noise normalization also 

takes into account the noise covariance between voxels, resulting in more reliable RDMs 

(Walther et al. 2016). After noise normalization, squared Euclidean distances were computed 

between individual runs using a leave-one-run-out procedure, resulting in cross-validated 

Mahalanobis distance estimates. Note that unlike correlation distance measures, cross-

validated distances provide unbiased estimates of pattern dissimilarity on a ratio scale (Walther 

et al. 2016), thus providing a distance measure suitable for direct model comparisons. 

 

Model comparisons: individual models. To test the relatedness of the three models of scene 

dissimilarity with the measured fMRI dissimilarity, the off-diagonal elements of each model RDM 

were correlated (Pearson’s r) with the off-diagonal elements of the RDM of each fMRI ROI for 

each individual participant separately. Following (Nili et al. 2014), the significance of these 

correlations was determined using one-sided signed-rank tests against zero, while pairwise 

differences between models in terms of their correlation with fMRI dissimilarity were determined 

using two-sided signed-ranked tests. For each test, we report the sum of signed ranks for the 

number of observations W(n) and the corresponding p-value; for tests with n > 10 we also report 

the z-ratio approximation. The results were corrected for multiple comparisons (across both 

individual model correlations and pairwise comparisons) using FDR correction (Benjamini and 

Hochberg 1995) for each individual ROI separately. Noise ceilings were computed following 

(Walther et al. 2016): an upper bound was estimated by computing the correlation between 

each participant’s individual RDM and the group-average RDM, while a lower bound was 

estimated by correlating each participant’s RDM with the average RDM of the other participants 

(leave-one-out approach). The participant-averaged RDM was converted to rank order for 

visualization purposes only. 
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Model comparisons: partial correlations and variance partitioning. To determine the contribution 

of each individual model when considered in conjunction with the other models, we performed to 

additional types of analyses: partial correlations, in which each model was correlated (Pearsons 

r) while partialling out the other two models, as well as variation partitioning based on multiple 

linear regression. For the latter, the off-diagonal elements of each ROI RDM were assigned as 

the dependent variable, while the off-diagonal elements of the three model RDMs were entered 

as independent variables (predictors). To obtain unique and shared variance across the three 

models, 7 multiple regression analyses were run in total: one ‘full’ regression that included all 

three feature spaces as predictors; and six reduced models that included as predictors either 

combinations of two models in pairs (e.g., functions and objects), or including each model by 

itself. By comparing the explained variance (r2) of a model used alone to the r2 of that model in 

conjunction with another model, we can infer the amount of variance that is independently 

explained by that model, i.e. partition the variance (see also (Groen et al. 2012; Lescroart et al. 

2015; Çukur et al. 2016; Greene et al. 2016) Hebart et al. (in press) for similar approaches). 

Analogous to the individual model correlation analyses, partial correlations were 

calculated for each individual participant separately, and significance was determined using 

one-sided signed-rank tests across participants (FDR-corrected across all comparisons within a 

given ROI). To allow comparison with the results reported in (Greene et al. 2016), variance 

partitioning was performed on the participant-average RDMs. Similar results were found, 

however, when variance was partitioned for individual participant’s RDMs and then averaged 

across participants. To visualize this information in an Euler diagram, we used the EulerAPE 

software (Micallef and Rodgers 2014).  

 

Direct reproducibiilty test of representational structure in behavior and fMRI. To assess how well 

the obtained RDMs were reproducible in each measurement domain (behavior and fMRI), we 
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compared the average RDMs obtained for the two separate stimulus sets. Since these two sets 

of stimuli were viewed by different participants (see above under ‘Stimuli & models’), this 

comparison provides a strong test of generalizability, across both scene exemplars and across 

participant pools. Set-average RDMs were compared by computing inter-RDM correlations 

(Pearson’s r) and 96% confidence intervals (CI) and statistically tested for reproducibility using a 

random permutation test based on 10.000 randomizations of the category labels.  

 

Variance partitioning of fMRI based on models and behavior. Using the same approach as in 

the previous section, a second set of regression analyses was performed to determine the 

degree of shared variance between the behavior on the one hand, and the functions and visual 

features on the other hand, in terms of the fMRI response pattern dissimilarity. The Euler 

diagrams were derived using the group-average RDMs, taking the average result of the multi-

arrangement task of these participants as the behavioral input into the analysis.  

 

DNN comparisons To investigate the influence of DNN layer and training images on the 

corresponding visual features and subsequent relations with activity in scene-selective cortex, 

we derived two new sets of RDMs by passing our scene stimuli through two pre-trained, 8-layer 

AlexNet (Alex et al. 2012) architecture networks: 1) a 1000-object label ImageNet-trained (Deng 

et al. 2009) network implemented in Caffe (Jia et al. 2014) (‘ReferenceNet’) and 2) a 250-scene 

label Places-trained network (“Places”) (Zhou et al. 2014). By extracting the node activations 

from each layer, we computed pairwise dissimilarity  (1 - Pearson correlation) resulting in one 

RDM per layer and per model. These RDMs were then each correlated with the fMRI RDMs 

from each participant in PPA, OPA and MPA. These analyses were performed on the combined 

data of Experiment 1 and 2; RDMs for participants that participated in both Experiments (n = 4) 

were averaged prior to group-level analyses.  
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Searchlight analyses. To test the relatedness of functions, objects and visual features with fMRI 

activity recorded outside scene-selective ROIs, we conducted whole-brain searchlight analyses. 

RDMs were computed in the same manner as for the ROI analysis, i.e. computing cross-

validated Mahalanobis distances based on multivariate noise-normalized multi-voxel patterns, 

but now within spherical ROIs of 3 voxel diameter (i.e. 123 voxels/searchlight). Analogous to the 

ROI analyses, we computed partial correlations of each feature space, correcting for the 

contributions of the remaining two models. These partial correlation coefficients were assigned 

to the center voxel of each searchlight, resulting in one whole-volume map per model. Partial 

correlation maps were computed for in each participant separately in their native volume space. 

To allow comparison at the group level, individual participant maps were first aligned to their 

own high-resolution anatomical scan and then to surface reconstructions of the grey and white 

matter boundaries created from these high-resolution scans using the Freesurfer 

(http://surfer.nmr.mgh.harvard.edu/) 5.3 autorecon script using SUMA (Surface Mapping with 

AFNI) software (https://afni.nimh.nih.gov/Suma). The surface images for each participant were 

then smoothed with a Gaussian 10mm FWHM filter in surface coordinate units using the 

SurfSmooth function with the HEAT_07 smoothing method.  

Group-level significance was determined by submitting these surface maps to node-wise 

one-sample t-tests in conjunction with Threshold Free Cluster Enhancement (Smith and Nichols 

2009) through Monte Carlo simulations using the algorithm implemented in the CoSMoMVPA 

toolbox (Oosterhof et al. 2016), which performs group-level comparisons using sign-based 

permutation testing (n = 10,000) to correct for multiple comparisons. To increase power, the 

data of Experiment 1 and 2 were combined; coefficient maps for participants that participated in 

both Experiments (n = 4) were averaged prior to proceeding to group-level analyses.  
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