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Flight initiation distance (FID), the distance at which an organism flees from an 

approaching threat, is an ecological metric of cost-benefit functions of escape 

decisions.  We adapted the FID paradigm to investigate how fast or slow attacking 

‘virtual predators’ constrain escape decisions. We show that rapid escape decisions 

rely on ‘reactive fear’ circuits in the periaqueductal gray and midcingulate cortex 

(MCC), while protracted escape decisions, defined by larger buffer zones, were 

associated with ‘cognitive fear’ circuits which include posterior cingulate cortex, 

hippocampus and the ventromedial prefrontal cortex, circuits implicated in 

strategic avoidance and behavioral flexibility. Using a Bayesian Decision Model, we 

further show that optimization of escape decisions under rapid flight were localized 

to the MCC, a region involved in adaptive motor control, while the hippocampus is 

implicated in optimizing decisions that update and control slower escape initiation. 

These results demonstrate an unexplored link between defensive survival circuits 

and their role in adaptive escape decisions. 
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Significance  
Humans, like other animals, have evolved a set of circuits whose primary function is survival.  In 

the case of predation, these circuits include ‘reactive fear’ circuits involved in fast and immediate 

escape decisions and ‘cognitive fear’ circuits that are involved in the conscious feeling of threat as 

well as slow strategic escape.  Using neuroimaging combined with computational modeling, we 

support this differentiation of fear circuits by showing that fast escape decisions are elicited by 

the periaqueductal gray and MCC, regions involved in reactive flight. Conversely, slower escape 

decisions rely on the hippocampus, posterior cingulate cortex and prefrontal cortex, a circuit 

implicated in behavioral flexibility.  These results support the role of the defensive survival 

circuitry in escape decisions and a separation of fear into reactive and cognitive circuits.  
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Introduction 

Survival depends on the adaptive capacity to balance fitness promoting behaviors such as 

copulation and foraging with the omnipresent risk of lethal predatory attack (Cooper and 

Blumstein, 2015; Mobbs and Kim, 2015). In the field of behavioral ecology, this balance between 

survival behaviors is depicted by economic models of flight initiation distance (FID) that capture 

risk functions by measuring the distance at which an organism flees from an approaching threat, 

while considering the cost of fleeing (Ydenberg and Dill, 1986; 2015). A wealth of ethological 

literature demonstrates that prey are remarkably adept at escape and make decisions based on 

the predator’s directionality, lethality, velocity, and prior encounters with the predator 

(Stankowich and Blumstein, 2005). In addition to its capacity to measure adaptive behavior, FID 

is a well-established index of threat sensitivity resulting in large variability within and between 

species. Despite being applied to a large variety of taxa, this reliable measure has not been used 

to identify heterogeneity in threat sensitivity or escape decisions in humans, and the neural 

circuits remain unexplored.  

         Theoretical and neuroanatomical models support the existence of an interconnected 

defensive survival circuitry that is remarkably preserved across species (Blanchard and 

Blanchard, 1990; Panksepp, 1998, 2011; Price, 2005). Under the conditions of immediate danger, 

the ‘reactive fear’  circuitry is evoked midbrain PAG, central amygdala (CeA), hypothalamus and 

the midcingulate cortex (MCC) relay, update and initiate essentially innate reactions including 

motor responses such as flight and freezing (Panksepp, 2011; Shackman et al., 2011; Gross and 

Canteras, 2012; Tovote et al., 2016). Conversely, the ventromedial prefrontal cortex (vmPFC), 

posterior cingulate cortex (PCC), hippocampus and basolateral amygdala, a collective set of 

regions that constitute the ‘cognitive fear” circuitry, promote behavioral flexibility, strategic 

decision-making and avoidance (McNaughton and Corr, 2004; Mobbs and Kim, 2015; Price, 

2005; LeDoux and Pine, 2016). Although few behavioral ecologists have considered the 

neurophysiology underlying escape decisions, some have proposed similar dichotomies 
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suggesting that fast, but inaccurate decisions are processed by subcortical regions, while slow, but 

accurate decisions are processed by cortical system (Trimmer et al., 2008). Cognitive and reactive 

fear circuits work in harmony by adaptively switching between survival circuits to engage the most 

optimal strategy to maximize survival (LeDoux, 2012; Davis et al., 2010; Mobbs et al., 2015). 

        Excitation and inhibition between these circuits is determined by the spatiotemporal distance 

to the threat (Blanchard and Blanchard, 1990; Halladay and Blair, 2015; McNaughton and Corr, 

2004; Mobbs et al., 2015).  For example, distant threat often results in freezing and threat 

assessment, yet when the threat is close active flight and fight are observed. Distance to the threat, 

therefore, is crucial in choosing the best escape strategy. Evidence suggests that this is conserved 

across species. In humans, active escape tasks have been used, where the goal of the subject is to 

escape from a virtual looming threat – a red dot with the capacity to chase, capture and shock the 

subject in a virtual maze.  Functional MRI results show that when a threat is distant, there is 

increased activity in the vmPFC, PCC and BLA.  However, as the threat moves closer, there is a 

switch to increased activity in the central amygdala (CeA), MCC and PAG (Mobbs et al., 2007, 

2010). These, and related studies, however, have failed to investigate the neural basis of escape 

decisions (i.e. flight initiation) or exam the computational mechanisms that underlie escape 

decisions to changing attack distances. 

         We developed a paradigm from which to investigate how the defensive survival circuitry 

facilitates escape decisions when subjects encounter fast or slow attacking threats (Fig 1A). In this 

task, participants encountered virtual predators of three colors, each representing different attack 

distances (AD). On each trial, the actual AD was drawn from a Gaussian distribution that was 

unique to the particular predator type. Fast AD predators (i.e. far or early attacking) were 

characterized by the virtual predator quickly switching from slow approach to fast attack velocity, 

therefore requiring the subject to make quick escape decisions. On the other hand, slow AD 

predators (i.e. close or late attacking) slowly approached for longer time periods resulting in larger 

buffer zones leading to more time to strategize escape. (Note that “fast” and “slow” here describe 
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the timing of the predator attack, not the speed of the predators) The goal of the task is to try and 

successfully escape, while at the same time, attempt to acquire as much money as possible by 

fleeing as late as possible (Fig. 1B). Using this task, we propose several hypotheses: (i) for fast 

escape decisions, we expect to see activity in the ‘Reactive Fear’ circuitry, while slow escape 

decisions will reveal more pronounced activity in the ‘Cognitive Fear’ circuitry; (ii) using a 

Bayesian decision model where subjects’ preference to reward and avoidance to punishment are 

considered, we predict that the fear and anxiety circuitry will play a role in facilitating fast and 

slow escape decisions, respectively.  

 

Results 

Behavior 

We first examined the behavioral data by applying a repeated-measure three-way ANOVA 

(Predator Type X Reward Level X Shock Level) for escape responses (e.g. FIDs). Results showed 

a main effect of predator type (F(2,54) = 82.59, p < .001).  Posthoc comparisons for the predator 

type X shock level interaction revealed that the difference in FID choices between high and low 

shock levels only exist in the slow attacking predator condition (p = 0.013). This shows that 

subjects considered the level of potential danger while choosing FID (more risk-averse when 

shock is higher), but only when considering the slow attacking threat where there was time for 

strategic planning. The same repeated-measure three-way ANOVA was performed for escape 

difficulty ratings. A main effect of predator type was found (F(2,54) = 49.77, p < .001), showing 

that subjects estimate fast attacking predator as the most difficult predator type to escape (all 

posthoc comparisons: p < .001). Significant interactions were found for predator type X shock 

level (F(2,54) = 13.68, p < .001) and predator Type X reward level (F(2,54) = 4.39, p = .017). For 

the predator type X shock level interaction, we found that rating was higher in the high shock 

condition, but only in the slow attacking predator (posthoc comparison: p < .001). This is 
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intriguing because the predator’s attack distance is identical in both shock levels, yet subjects 

perceived the threat to be more difficult to escape in the high shock condition (see Fig. S1).   

 
Neural basis of fast and slow escape decisions 

We next investigated the neural basis of escape decisions for the fast and slow attacking threat. In 

order to control for timing differences between conditions, besides modelling the rest of the trial 

as a boxcar function, we specifically looked at the 2s before the FID bottom press as a period 

where subjects form their final decisions. We chose to time lock 2s before the flight decision for 

two main reasons: (i) because it allowed us to examine the neural ramping up of the flight decision, 

and controlled for the contamination of outcome; (ii) reduced the amount or trials that would be 

lost for the fast attack condition.  Also, to control for any confounds of pain, we excluded the 

caught trials (Number of caught trials: far attacking predator: mean = 8 ±  SD =3; mid attacking 

predator: mean =5 ± 2; near attacking predator: mean = 4 ±1), using these events as regressors of 

no interest. As the mid AD condition was a priori used an anchor for the fast and slow AD threats, 

we focus on activity for the fast and slow AD (see SOM for further results). A whole brain analysis 

was first performed to locate regions associated with decisions under reactive fear (fast attacking 

predators) and cognitive fear (slow attacking predators). Detailed regions of activation can be 

found in Table S1 – S2.  As shown in Fig. 2, with data extracted from independent anatomical 

ROIs differential activation patterns were clearly found for the different predator ADs (See SOM 

for a full list of activated regions). In order to confirm the dissociation between the reactive and 

cognitive fear systems (represented by PAG and vmPFC respectively), we computed a two-way 

ANOVA (region X predator type) using signal change drawn from independent ROIs from PAG 

and vmPFC. There was a main effect of region (F = 5.77, p = .017) and a significant interaction 

between region and predator type (F = 11.50, p < .001) . For the Fast AD > Control contrast, we 
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observed increased activity in PAG and MCC. A direct comparison between high vs low shock for 

the fast AD predator revealed increased activity in the PAG, suggesting that PAG is evoked when 

the threat is high (see table S7).  

       On the other hand, the slow AD > Control revealed increased activity in the cognitive fear 

circuitry including the vmPFC, PCC and the hippocampus. While no amygdala was observed for 

the main contrast, we did find that a direct comparison between high vs low shock for the slow 

AD predator, showed increased activity in the amygdala and hippocampus (see table S8).  To 

further disentangle the effect and increase the sensitivity of the analysis, we extracted the signal 

changes and BOLD signal time series from the predefined ROIS (i.e. PAG, MCC, vmPFC, PCC, 

hippocampus), regions that have previously been associated with fear, anxiety, and decision 

making under stress (Mobbs et al., 2007).  A conjunction between fast and slow attacking threats 

showed that the medial dorsal thalamus (MDT) was commonly activated.  Although this is an 

exploratory finding, it is intriguingly because MDT is directly or indirectly connected to both fear 

circuits, stimulation of the MDT results in depression or potentiation of both circuits and it is 

thought to play a role in behavioral flexibility (Krout and Loewy, 2000; Vertes et al., 2015).     

 
Computations that support escape decisions 

To explore how the observed FIDs might be understood in terms of rational decision making 

about the costs and benefits of flight, we developed a simple Bayesian decision theoretic model of 

the task. The process by which subjects make escape choices under different predator ADs can be 

decomposed to two steps: 1) Predicting the different predators’ distribution of attack distances, 

by learning from experience and 2) Choosing a FID by comparing the money obtained against the 

risk of shock for each possible FID, in expectation over the predicted attack distance distribution 

and informed by the individual’s subjective preference (utility) levels for shock vs. money. For 

simplicity, we assume a Bayesian ideal observer model of subjects’ learning to estimate the attack 

distances of different predators from trial-by-trial experience, and that FID choices are then 
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determined (with softmax noise) by computing the expected utility (money minus shock) for each 

possible escape distance. Details of the model can be found in the online supporting material. We 

then calculated the distance between utility resulted from subjects’ actual FID and the predicted 

Bayesian ideal FID, which is a measure of optimal performance (Fig. 3).       

         We next examined neural circuits correlated with subjects’ preference parameters in the 

Bayesian decision making model. For a rational player, the preference for reward should be 

positive, while the preference for shock should be negative. Thus, greater reward or shock 

sensitivity here corresponds to larger (positive) 𝛽" and smaller (more negative) 𝛽#. The parametric 

modulation analysis over the [predator > control] contrasts revealed that, for the fast predator 

condition, higher reward sensitivity was associated with activations in bilateral putamen, while 

higher shock sensitivity is associated with engagement in PAG and bilateral insula. On the other 

hand, for the slow predator condition, right caudate was found to be associated with higher reward 

sensitivity, while PCC was found to be associated with higher shock sensitivity. A display of the 

activated regions can be found in Fig. S3. A detailed layout of the activated regions can be found 

in table S9 and table S10.    

          Next, in order to investigate what neural circuits are responsible for the optimization of 

escape decision making, we considered a measure of performance optimality related to the per-

trial spread between subjects’ actual and Bayesian ideal FIDs. In particular, we computed the 

difference between the actual trial-specific utility 𝑈 𝐹𝐼𝐷  and the maximum (Bayesian optimal) 

utility the subject could possibly get on the trial (𝑈 𝐹𝐼𝐷 ()*), given their estimated subjective 

utilities. A smaller difference (e.g., less regret relative to ideal) implies more consistent Bayesian 

decision making; variation around the ideal FID will increase the difference. The difference on 

every trial were entered as a subject-level parametric modulator separately under each [Predator 

> Control] conditions. For the far predator condition, we found that better Bayesian decision 

making (smaller distance to ideal) was associated with activity in MCC, middle frontal gyrus, and 
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superior motor cortex. On the other hand, better Bayesian decision making in the slow AD 

condition was found to be associated with activity in bilateral hippocampus, as shown in Fig. 4.  

 

Functional connectivity between computationally defined regions         

To investigate the interplay among the brain regions involved in escape decision optimization, a 

functional connectivity analysis was performed for the response phase (escape decision) using a 

generalized psychophysiological interactions (PPI) approach (McLaren et al., 2012); In order to 

confirm the patterns observed in the whole brain flexible model, we first adopted independent 

seed regions of MCC and hippocampus from previous research (Mobbs et al., 2007). For the 

contrast of Fast Predator > Control, we showed a significant coupling between the MCC seed, the 

PAG, motor cortex and bilateral thalamus. For the contrast of slow Predator > Control, we showed 

a significant coupling between the hippocampus seed and PCC. This suggest that when the 

subjects are provided time for decision flexibility, they use a search and employ approach which 

prepares them for action, as shown in figure 4.  

 
Discussion 

We have demonstrated that subjects apply different nodes of the survival circuitry when escaping 

fast or slow attacking threats.  Our analysis revealed increased activity in ‘reactive fear’ circuits 

namely the PAG and the MCC for the fast AD predator, regions that are implicated in response to 

fast and imminent threats. Supporting comparative work (An et al., 1998), connectivity analysis 

revealed a significant couple between the MCC and PAG and recent animal work has shown that 

the optogenetic activation of glutamatergic neurons in the dorsal lateral PAG induce motor 

responses (e.g. flight; Tovote et al., 2016). The MCC is also a critical component of the defensive 

survival circuitry and has afferent projections to the ventral striatum, receives efferents from the 

medial dorsal thalamus and has bidirectional projections with the amygdala (Shackman et al., 

2011). It has also been suggested that control signals in the MCC may resolve conflict between 
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defensive strategies (e.g. freezing or fleeing).  This has led to the theory that the cells in the MCC 

are involved in linking motor centers with defensive circuits (Shackman et al., 2011).  

         Our analysis for the slow attacking threat contrast revealed activation in three key areas of 

the ‘cognitive fear’ circuitry: the vmPFC, hippocampus and PCC. Structural and function 

connectivity between these structures has been shown in humans and primates, supporting  

conserved pathways across species (Price, 2005). Primate research has found that the primate 

PCC responds to risky decision-making and scales with the degree of risk (McCoy and Platt, 

2005). The PCC is also correlated with a salience signal reflecting the deviation from the standard 

option, suggesting a role in the flexible allocation of neural resources (Heilbronner et al., 2011). 

The goal of the PCC may be to harvest information for escape decisions under conditions of 

protracted threat. This fits with the proposal that through its connections with the hippocampus, 

the PCC may integrate memory guided decisions with current decision processes which may 

involve a ‘preparation for action’ through rumination and worry.    

       The vmPFC is also a key player in the defensive survival circuitry. Single-cell recordings in 

rodents have shown that the mPFC contains ‘strategy selective’ cells, which are thought to be 

involved in the coordination of defensive responses (Halladay and Blair, 2015). This fits with the 

idea that the mPFC plays a role in selecting adaptive strategies that are mapped onto motor 

responses. Indeed, work in humans shows that larger buffer distances are associated with activity 

in the vmPFC and decreased activity in this regions is associated with panic related motor actions 

(Mobbs et al., 2010; Perkins et al., 2015). Our data builds on these findings by showing that 

vmPFC, hippocampus and PCC form a strategic and flexible decisions when the agent has time to 

contemplate the best escape action. Our findings support the role of the survival circuitry by 

proposing that ‘fast’ fear reactions engage a neural circuits involved in reactive fear, while ‘slower’ 

escape decisions are associated with strategic avoidance and conscious cognitive fear (LeDoux 

and Pine, 2016).  
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        Our Bayesian model also provides insights into how the distinct regions of the survival 

circuits associated with optimal escape. Two core regions where associated with optimal escape.  

The MCC for the fast attacking threat and the hippocampus for the slow attacking threat. While it 

is accepted that the PAG needs input to make optimal decisions, it is unclear where this input 

comes from.  A few candidates exist, among them is the MCC.  The MCC is highly connected to 

the lateral PAG and according to adaptive control theory is a “central hub” where information 

about reinforcements are passed to motor control areas to coordinate goal directed behaviors 

(Shackman et al., 2011).  Our connectivity results support this conclusion showing that the MCC 

was coupled with activity in the PAG and the motor cortex. This proposes that the MCC is one 

candidate region for the integration of current goals and implement aversively motivated 

instrumental motor behaviors (i.e. when to flee a threat (Shackman et al., 2011)).  

         The hippocampus has been identified as a central processing regions involved in  approach-

avoidance conflict and corresponding choice monitoring (Loh et al., 2016). Theorists have 

proposed that the hippocampus computes comparators that assess multiple goals and in turn 

correct actions (McNaughton and Gray, 2000) possibly through a flexible constructive process 

involved in problem solving (Hassabis and Maguire, 2007). When there is time to gather 

information, the hippocampus may play a role in drawing on previous threat encounters to 

optimize current actions. Indeed, the hippocampus plays a role in spatial and temporal ‘where’ 

and ‘when’ memory and has theoretically been linked to escape decisions (Litvin et al., 2015) and 

may possibly by resolving conflict between fitness promoting behaviors (e.g. escape vs 

reward;(Bach et al., 2014). The ventral hippocampus is particularly interesting given its role in 

emotion.  The ventral hippocampus is connected to the vmPFC, basolateral amygdala and the bed 

nucleus of the stria terminalis and is believed to contribute to the control of behavior under 

anxiogenic conditions (Bannerman et al., 2004). Our connectivity results support this conclusion 

showing that the hippocampus was also coupled with activity in the PCC, a region thought to be 

involved in adaptive decisions (Pearson et al., 2011).   Together, these theories support a Bayesian 
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role for the hippocampus, where it gathers information to optimize directed escape during slow, 

but not fast, attacking threat. 

         In summary, we introduce a paradigm that allows researchers to map escape decisions onto 

the defensive survival circuitry. This circuit can be separated into a fast ‘reactive fear’ circuit 

involved in escape decision when time is limited and ‘slower ‘cognitive fear’ circuits are involved 

in the strategic avoidance and conscious feelings of fear when the agent has time to think.  More 

specifically, sections of these circuits differentially optimize escape decisions with the MCC 

centered on making fast decisions associated with imminent threat and the hippocampus in slow 

strategic decisions that are characterized by protracted threat assessment. These results provide 

a new window in the role of the defensive survival circuitry in adaptive escape decisions and 

transform the way we view the neural circuits involved in human fear.   

 

Methods 

Participants 

A total number of 30 subjects completed informed consent in accordance with the guide lines of 

the Columbia University Institutional Review Board and were remunerated for their 

participation. Data from 1 subject was lost due to computer error. One additional subject was 

excluded due to excessive movement during the scan. Our final sample consisted of 28 subjects 

(17 women, Age = 25.4 ± 7.3 years).    

 
Experiment Design 

Subjects were scanned while they viewed stimuli on the screen. The screen displayed a 2D run 

way, with a virtual predator “attacking” from the left entrance. In the current paradigm, the goal 

of the subject was to escape the attack from a certain virtual predator, by pressing a bottom at the 

desired timing. Once the bottom was pressed, a triangle representing the subject started moving 

towards a “safety exit”. Subjects gained reward if they escaped to the safety before the predator 
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caught them; On the other hand, they were given a mildly aversive electric shock if they were 

caught. The goal of the game was to choose the right time to flee meaning acquiring the maximum 

amount of reward while still escaping the virtual predator.  To accomplish this, reward in each 

trial scaled with time spent before pressing the bottom. The longer subjects stay (the smaller the 

FID), the more reward they get. But staying too long could mean receiving an electric shock from 

the predator.          

        The runway has a total length of 90 units, where the prey is placed 10 unites to the safety 

exit. While in the approaching mode, the predator proceeds with a speed of 4 units/second; while 

in the chasing mode, the predator proceeds with a speed of 10 unites/second. The reward 

participants get on every trial is positively correlated with the length they stay. A total number of 

96 trials exist in the current paradigm, factorial divided to cover different predator attack distances, 

shock level and reward levels (3 X 2 X 2). Subjects were first presented with a screen indicating 

which type of predator and shock/reward level will be presented in the next trial for 2s. This 

shock/reward indicator informs the next 4 trials. Next the trial begins, where subjects observes an 

artificial predator slowly looms towards their triangle. After a designated time period, which is 

learned by the participant, the artificial predator will attack by speeding up (i.e. the attack distance) 

when it reaches a designated position. There are 4 types of attacking predators, with their attack 

distances subject to 3 Gaussian distributions (i.e. fast attacking predator, mid attacking predator, 

slow attacking predator, and control predator; See Fig.1 for details). As the threat slowly looms 

towards them, the subjects determine their initiation of flight by pressing the FID button. To make 

sure reaction time plays no role in FIDs, we manipulated the speed of the predator and the subject 

so that once the threat speeds up to attack, it is impossible to escape. After the trial, subjects are 

required to rate the difficulty of escape using a visual analogue (1-5) scale. A detailed breakdown 

of the experimental procedure can be seen in Fig.1.  The experiment consists of a total number of 
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96 trials. After 48 trials, the assignment of predator-color relationship was altered to introduce 

novelty and avoid the fixation of subject strategies.  

Before the start of the actual experiment, subjects went through a brief practice session of 8 

trials to familiarize themselves with the paradigm. In the practice session, subjects played the 

same game, but the predators’ attack distances were drawn from different distributions than the 

ones in the actual experiment.   

 

Behavioral Analysis 

Due to the relative simplicity of our task and exposure to a practice session, subjects’ performance 

reached saturation very quickly after the beginning of the experiment. By “saturation”, subjects 

quickly formed their own patterns of choice making and carry through the rest of the experiment. 

Thus, instead of looking at trial-by-trial changes of the FID, we focus on the differences of FID 

between different predator conditions, and approaches subjects’ learning behavior by Bayesian 

modeling (described later).  

 Subjects’ choice of FID, reward from the trial, and escapability ratings were collected on 

each trial. We used repeated-measures three-way ANOVAs (of Predator Type X Reward Level X 

Shock Level) to assess differences in FID, reward and escapability ratings between the various 

conditions. 

 
Acquisition and Analysis of fMRI data 
 
All fMRI data were acquired using a GE Discovery MR750 3.0 T scanner with 32-channel headcoil. 

The imaging session consisted of two function scans, each twenty minutes, as well as a high-

resolution anatomical T1-weighted image (1mm isotropic resolution) collected at the beginning of 

each scan session. For functional imaging, interleaved T2*-weighted gradient-echo echo planar 

imaging (EPI) sequences were used to produce 45 3-mm-thick oblique axial slices (TR = 2 sec., 

TE = 25 ms, flip angle = 77°, FOV = 192 x 192 mm, matrix = 64 x 64). Each functional run began 
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with five volumes (1000 msec) before the first stimulus onset. These volumes were discarded 

before entering analysis to allow for magnetic field equilibration. Stimulus were presented using 

Cogent (matlab-based package). Participants viewed the screen via a mirror mounted on the head 

coil, and a pillow and foam cushions were placed inside the coil to minimize head movement.   

Analysis of fMRI data was carried out using scripted batches in SPM8 software (Welcome 

Trust Centre for Neuroimaging, Lon-don, UK; http://www/fil.ion.ucl.ac.uk/spm) implemented in 

Matlab 7 (The MathWorks Inc., Natick MA). Structural images were subjected to the unified 

segmentation algorithm implemented in SPM8, yielding discrete cosine transform spatial warping 

coefficients used to normalize each individual’s data into MNI space.  Functional data were first 

corrected for slice timing difference, and subsequently realigned to account for head movements. 

Normalized data were finally smoothed with a 6-mm FWHM Gaussian kernel.  

Preprocessed imaged were subjected to a two-level general linear model using SPM8. The 

first level contained the following regressors of interest, each convolved with the canonical two-

gamma hemodynamic response function: a 2-second box-car function for the onset of the trial 

(where the color of the incoming predator is shown); a 4-8 second (duration jittered) box-car 

function from the onset to 2s before when subjects make the flight decision; a 2-second box-car 

function for the phase before subjects make the flight decision; a 4-8 second (duration jittered) 

box-car function for the remainder of the trial. Mean-centered trait anxiety ratings, escapability 

ratings and parameters in the Bayesian decision model were included as orthogonal regressors. In 

addition, regressors of no interest consisted of motion parameters determined during 

preprocessing, their first temporal derivative and discrete cosine transform-based temporal low 

frequency drift regressors with a cutoff of 192-seconds.  

Beta maps were used to create linear contrast maps, which were then subjected to second-

level, random-effects one-sample t tests. In Addition, A flexible factorial model was used to 
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examine the main effects of predator type, reward level and shock level. Interaction effects 

between predator type, reward level and shock level were also examined using the factorial model. 

The resulting statistical maps were thresholded at P < 0.05 corrected for multiple comparisons 

(false discovery rate [FDR] corrected (Genovese et al., 2002)). A flexible factorial model was used 

to examine the interaction effects between predator type, reward level and shock level. The 

threshold for those specific contrasts was set at p < 0.05 (FDR corrected).  

A hypothesis driven region of interest (ROI) analysis were performed after the whole brain 

analysis for regions with strong a priori spatial hypotheses. The ROI analysis was performed using 

regions associated with the processing of fear, threat and decision making. Independent ROIs 

were chosen from previous research showing similar effects(Mobbs et al., 2007; Tedeschi et al., 

2015). The threshold for these analyses was set at p < 0.05, small volume correction (SVC).  

  The functional connectivity analysis was performed for the response phase (escape 

decision) using a generalized psychophysiological interactions (PPI) approach. The connectivity 

analysis was carried out based on the [predator condition > control condition] contrast.    

 

Bayesian Decision Making Model 

In order to better understand and characterize the process by which subjects learn the nature of 

the predators and the subsequent adjustment of their strategies, we applied a Bayesian learning 

model to simulate how subjects adapt to attacks from different predators. In the FID task, each 

predator type (far, mid and close) had a predefined location of attack. These attack distances were 

subject to three Gaussian distributions, corresponding to the three predator types, as mentioned 

before. As we shall see in the following section, the modeled ideal Bayesian learner will update 

its belief (posterior) about the next attacking distance by combining observations (likelihood) of 

attacks and an earlier belief (prior) using the Bayes rule, which is the statistical principle of 
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reasoning with evidence and belief. The updated belief will then inform the optimal choice of the 

flight initiation distance (FID), in order to win money and avoid shock. 

Naturally, subjects base their flight choices on the predicted attacking distance of the current 

trial. At first, subjects have zero to minimum knowledge about the color-predator associations, 

and each predator’s defined range of attacks. However, as the experiment progresses, subjects 

accumulate knowledge about the predators, and form better predictions of the attack distance for 

the current trial after seeing the corresponding predator color. Thus, the task is modeled as a 

process where subjects learn towards the true distribution of the attack distance.  

A priori to observing attacking, the attack distance of a certain predator is believed to be 

drawn from a Gaussian distribution 𝐴𝐷|𝑐	  ~	  𝑁 𝜇 2 , 𝜎" , where 𝑐 represents the predator type. At 

the start of the experiment, the mean parameters are unknown and hence assumed to follow the 

same prior distribution. Here we adopt the conjugate prior distribution  𝜇(2)	  ~	  𝑁 𝜇7, 𝜎7"  with a 

large variance to reflect minimum prior knowledge. Meanwhile, we assume the variance of 

likelihood (𝜎") to be known, because in the practice phase subjects have already been exposed to 

predators with identical AD variance as in the formal experiment. 

Upon observing attacks, the posterior distribution for the mean parameter is updated by the 

Bayes rule, yielding: 

 
𝑝 𝜇 2 | 𝐴𝐷9

2 ∝ 𝑁 𝜇 2 𝜇7, 𝜎7" 𝑁 𝐴𝐷9
2 𝜇 2 , 𝜎7"

9

= 𝑁 𝜇 2 𝜇<
2 , 𝜎<

2 " , 

 
where 𝐴𝐷9

2  are the observed distances of a total number of 𝑛 attacks from type-𝑐 

predators. The posterior is also a Gaussian, with parameters updated through 1 𝜎<
2 " = 1 𝜎7" +

𝑛(2) 𝜎" and �<
2 = 𝜎<

2 " @A
BAC
+ DEF

(G)
F

BC
. This posterior of the mean parameter directly induces the 

(posterior) predictive distribution of the upcoming attack distance, given by 
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𝑝 𝐴𝐷<H#
(2) 𝐴𝐷9

2 = 𝑁 𝐴𝐷<H#
(2) 𝜇 2 , 𝜎7" 𝑝 𝜇 2 | 𝐴𝐷9

2 𝑑𝜇 2 = 𝑁 𝜇<
2 , 𝜎<

2 " + 𝜎" . 

 
 
An ideal Bayesian learner will base its FID choice on this distribution. Now, under the context 

of the current paradigm, a subject chooses FID from a finite set of options by trading off two 

critical factors: the risk of getting shocked and the monetary reward. With a large FID, risk is 

reduced while less reward will be given; with a small FID, the opposite. We then define an overall 

utility as a weighted combination of the two factors:  

 
𝑢 𝐹𝐼𝐷, 𝐴𝐷 = 𝛽#𝑰 𝑐𝑎𝑢𝑔ℎ𝑡 + 𝛽"𝑀 𝐹𝐼𝐷 1 − 𝑰 𝑐𝑎𝑢𝑔ℎ𝑡 . 
 
 
The coefficients 𝛽#, 𝛽" are individuals-specific weights to adjust the preference between the 

two factors. 𝑰(𝑐𝑎𝑢𝑔ℎ𝑡) is the indicator function for the event of getting caught and killed (evaluates 

to 1 if caught, 0 otherwise); and 𝑀(𝐹𝐼𝐷) is the amount of money rewarded if escape is successful. 

This utility is a random function since getting caught is a random event --- the optimal decision 

should then be based on the expected value of utility, namely the Bayesian risk, which is 

estimated from the latest posterior predictive distribution and takes the form of 

 
𝑈 𝐹𝐼𝐷 = 𝔼	  𝑢 𝐹𝐼𝐷, 𝐴𝐷 = 𝛽# Pr 𝑐𝑎𝑢𝑔ℎ𝑡 𝐹𝐼𝐷 + 𝛽"𝑀 𝐹𝐼𝐷 1 − Pr 𝑐𝑎𝑢𝑔ℎ𝑡|𝐹𝐼𝐷 . 

 
Here the probability of being caught Pr 𝑐𝑎𝑢𝑔ℎ𝑡 𝐹𝐼𝐷  can be computed by solving a simple 

chasing problem, where the actual speed of the particular predator and subject were taken into 

computation to determine if the subject would be caught or not.  

 

The Bayesian learner’s optimal choice is set as a reference to measure the performance of 

subjects. Clearly, the optimal FID is one that maximizes 𝑈 𝐹𝐼𝐷 . Yet, the behavior of a human 

player is also influenced by unobserved factors such as personality traits and is not necessarily 

Bayesian optimal. To quantify individual differences of decision making through coefficients 
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(𝛽#, 𝛽"), we fit a discrete choice model (multinomial logit) for each subject, which assumes that 

the probability of picking an option is proportional to the corresponding exponential utility:  

 

Pr 𝐹𝐼𝐷 = 𝑥 =
exp 𝑈 𝐹𝐼𝐷 = 𝑥

exp 𝑈 𝐹𝐼𝐷 = 𝑦[∈	  2]^92_`
. 

 
The coefficients can be estimated by maximizing the overall likelihood, namely  
 

𝛽#, 𝛽" = 𝑎𝑟𝑔𝑚𝑎𝑥	   Pr 𝐹𝐼𝐷9 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	  𝐴𝐷h𝑠
9

, 

 
where the product is taken over trials. By fitting to our data, a subject can be quantified by 

the corresponding coefficients: 

𝛽# (pain): expected to be non-positive, and a bigger absolute value means stronger aversion 

towards risk and its associated penalty (electric shock). 

𝛽" (money): expected to be non-negative, and a bigger value measures stronger favor of 

monetary reward.  

−𝛽#/𝛽": the relative weight between the two factors, which conceptually means the 

maximum amount of money one is willing to pay to avoid being caught (and shocked) once 

Those parameters are then entered into fMRI parametric modulation analysis to determine 

the brain regions where signals covariate with the parameters. Results of the modulation analysis 

are discussed in the next section.   

On every particular trial, the difference between the actual utility 𝑈 𝐹𝐼𝐷  and the Bayesian 

optimal utility 𝑈(𝐹𝐼𝐷)()* is calculated as a measure of choice optimality (Alternatively, the 

“utility” used to calculated differences here can be “normalized” by dividing out 𝛽", the reward 

preference parameter.  
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Fig. 1. Experimental procedures, Ydenberg and Dill model and distribution of 

escape decisions. A): Subjects are told whether their decisions will result in high or low 
reward or shock.  They are then, presented with the image of the virtual predator where 
the color signals the attack distance (2s). (e.g. blue = fast, red = slow).  After a short 
interval, the virtual predator appears at the end of the runway and slowly move towards 
the subject’s triangle. After an unspecified amount of time (e.g. 4-10s) the artificial 
predator will attack the subject’s virtual triangle exit (i.e. attack distance). To escape, the 
subject must flee before the predator attacks. If the subject is caught, they will receive a 
tolerable, yet aversive, shock to the back of the hand. Trials end when the predator reaches 
the subject or the exit. To motivate longer fleeing time, the task will include an economic 
manipulation, where subjects will obtain more money the longer they stay in the starting 
position and lose money the earlier they enter the safety exit. After each trial, the subject 
is asked to report how difficult they found it to escape the virtual predator (4s). B) 
Modified schematic representation from the model proposed by Ydenberg and Dill [1]. As 
the distance between the prey and the predator decreases, the cost of fleeing decays, while 
the cost of not fleeing rises. D* represents an optimal point where the prey should flee. C) 
Histograms showing the distribution of subjects’ FID choices for early, mid and late 
attacking predators respectively. The X axis represents FID, while the Y axis represents 
frequency of choice.    
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Fig. 2. Main regions of interest and signal changes associated with fast and slower 
attacking threats. Parameter estimates and time series extracted from A) midbrain, B) MCC, 
C) vmPFC D) PCC and E) the hippocampus. Activations shown in the graph show clusters from 
the whole brain activation, while the signal change data were extracted from independent 
anatomical ROIs. The upper graph displays parameter estimates. Y axis represents percent signal 
changes, and X axis is the predator type. The lower graph display time series extracted in a course 
of 16 seconds. Blue line: Fast predator; Red line: Slow predator. Beginning of the time series 
represents the time point when the FID event comes online.  
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207936doi: bioRxiv preprint 

https://doi.org/10.1101/207936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 

Fig. 3. Visualization of Bayesian Modelling Results. (A) Bayesian ideal observer estimates 
of predator AD, based on the unknown-mean-known-variance ideal learner model, as a function 
of experience in the task. Color 1 (blue), 2 (yellow), 3 (red), 4 (green) corresponds to fast, mid, 
slow and control predators, respectively. The graph shows the observer’s 95% credible interval 
almost always contains the true mean, indicating an appropriate modeling of uncertainty. (B) 
Relationship between FID and the chance of escape for each predator type. Chance of escape 
increases with FID, but with different growth patterns in every predator type. (C) Estimated 
coefficients for each subject, along with 95% confidence intervals. X axis represents the pain 
coefficient β_1 in the utility function, and Y axis represents the monetary reward coefficient β_2. 
For a rational player, β_2 should be positive (seeking money) and β_1 should be negative 
(avoiding shock). (D) Model fits to observed FIDs. X axis represents trial numbers, and Y axis 
represents FID. Ideal FID choices predicted by the ideal Bayesian observer (lines), subjects’ actual 
FID choice (dots), and the difference between them in terms of utility under estimated individual 
preference. Regrets here represents the utility difference between actual chosen FID and the ideal 
Bayesian choice.   
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Fig. 4. Regions, and their connectivity, associated with parametric modulation of 
“distance to ideal”. (A) Brain regions associated with increased Bayesian decision optimality 
in the fast AD condition. Better decision making was associated with increased activity in MCC 
and superior motor cortex. (B) Brain regions associated with decreased distance (increased 
Bayesian decision optimality) in the slow AD condition activated regions include bilateral 
hippocampus and bilateral caudate. A display of the correlation results can be found in Fig. S4. 
(C) Connectivity analysis using MCC as seed over the contrast [fast predator > control]. Positive 
connectivity was found between MCC, motor cortex (MC), thalamus and the PAG. (D) Using the 
hippocampus as seed over the contrast (slow predator > control), positive connectivity was found 
between the hippocampus and PCC. 
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Fig. S1. 
 ANOVA for A) FID, B) Reward and C) Escapability rating.  
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Fig. S2 
Activated regions for 1st level parametric modulation with reward and punishment sensitivity parameters in the 
Bayesian decision making model. 
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Table S1. 

 

Table  S1.  Activation  Table  for  Contrast  [Far  Predator  >                
Control]  (Whole  Brain)    
  
*  P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  
Size  

t-score   Coordinates  

            x   y   z  
Far  Predator  >  Control  
Middle  temporal  
Gyrus  

R   461   7.82   48   -66   6  

Middle  temporal  
Gyrus  

L   155   6.19   -42   -69   6  

Precuneus   R   302   5.99   6   -48   48  
Precentral  Gyrus   L   81   4.52   -42   -9   48  
Superior  
Temporal  Gyrus  

L   94   5.11   -57   -42   21  

Insula   L   199   4.96   -33   21   3  
Insula   R   285   6.72   37   20   -1  
Mid  Cingulate  
Gyrus  

L   71   4.36   -12   -21   39  

Midbrain      244   6.51   3   -28   -12  
Supplementary  
Motor  Area  

R   357   6.28   17   5   60  

Caudate   R   29   4.67   8   10   -5  
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Table S2. 
Table  S2.  Activation  Table  for  Contrast  [Close  Predator  >  Control]  (Whole  Brain)  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
Close  Predator  >  Control  
Middle  temporal  Gyrus   L   724   7.89   -54   -18   -9  
Parahippocampal  Gyrus   R   47   5.51   24   -12   -24  
Supplementary  Motor  Area   R   213   5.31   3   -24   60  
Middle  Frontal  Gyrus   R   26   3.91   33   36   -18  
Medial  Prefrontal  Cortex   L   77   5.46   -3   56   -9  
Insula   L   132   4.24   -33   -18   16  
Insula   R   187   4.30   39   -11   15  
Posterior  Cingulate  Cortex   R   423   5.65   6   -48   27  
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Table S3. 
Table  S3.  Activation  Table  for  Trial-by-trial  parametric  analysis  with  FID    
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
FID  parametric  modulation  +  :  Far  Predator  
Midbrain   L   280   7.80   -12   27   -3  
Hippocampus   R   31   7.03   18   -13   -13  
Thalamus   L   90   6.87   -11   -26   -1  
Insula   L   63   5.23   -38   5   -12  
MCC   L   105   6.94   -3   2   42  
FID  parametric  modulation  -  :  Far  Predator  
Middle  Temporal  Gyrus   L   51   3.63   -51   -15   -15  
Middle  Temporal  Gyrus   R   40   3.45   51   -27   -15  
Middle  Occipital  Gyrus   R   47   4.07   30   -90   15  
FID  parametric  modulation  +  :  Close  Predator  
Inferior  Frontal  Gyrus   R   64   4.79   36   21   -6  
Middle  Frontal  Gyrus   R   93   5.76   39   60   3  
MCC   L   79   4.73   -1   33   36  
Cerebrum   R   66   7.88   24   -9   36  
                    
FID  parametric  modulation  -  :  Close  Predator  
Superior  Temporal  Gyrus   L   29   5.56   -57   -51   12  
Inferior  Frontal  Gyrus   L   43   6.46   -54   27   18  
PCC   L   33   5.19   -9   -51   27  
                    

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207936doi: bioRxiv preprint 

https://doi.org/10.1101/207936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

Table S4. 
Table  S4.  Activation  Table  for  Trial-by-trial  parametric  analysis  with  Escapability    
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
Escapability  parametric  modulation  +  :  Fast  Predator  
Middle  Temporal  Gyrus   L   104   7.52   42   -51   -21  
Midbrain   R   221   9.20   9   -30   -15  
Thalamus   R   75   10.42   12   -7   3  
Thalamus   L   42   9.54   -5   -12   4  
Insula   L   61   9.88   -41   14   6  
Insula   R   43   9.13   46   9   2  
Escapability  parametric  modulation  -  :  Fast  Predator  
Parahippocampal  Gyrus   L   24   4.98   -21   -12   -24  
Parahippocampal  Gyrus   R   19   4.21   39   -39   -24  
Middle  Frontal  Gyrus   L   48   7.06   -9   60   6  
Escapability  parametric  modulation  +  :  Slow  Predator  
Middle  Temporal  Gyrus   L   86   5.62   -57   -35   -6  
Insula   R   44   6.23   39   -14   8  
                    
Superior  Occipital  Gyrus   L   30   4.57   -14   -89   19  
Superior  Occipital  Gyrus   R   54   4.24   17   -88   19  
                    
Escapability  parametric  modulation  -  :  Slow  Predator  
Middle  Frontal  Gyrus   L   84   7.28   -30   60   15  
ACC   R   35   8.29   18   42   0  
Caudate   L   14   4.34   -9   -51   27  
Caudate   R   20   4.92   14   15   -3  
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Table S5. 
Table  S5.  Activation  Table  for  Contrast  [High  Reward  >  Low  Reward]  
  
P<0.05,  FDR  corrected  
  
Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y  
High  Reward  >  Low  Reward  
Putamen   L   57   8.42   -28   -3  
Putamen   R   50   9.92   36   -12  
Middle  temporal  gyrus   L   62   11.07   -60   -6  
Middle  temporal  gyrus   R   56   9.28   54   -9  
Inferior  frontal  gyrus   L   49   7.38   -51   30  
Superior  frontal  gyrus   R   66   7.35   3   54  
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Table S6. 
Table  S6.  Activation  Table  for  Contrast  [High  Shock  >  Low  Shock]  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
High  Shock  >  Low  Shock  
Superior  temporal  gyrus   L   147   11.16   -58   3   6  
Insula   L   54   7.36   -41   -14   3  
Insula   R   35   6.04   39   3   -12  
MCC   R   32   5.96   6   -9   39  
Parahippocampal  gyrus   L   10   9.78   -24   -18   -9  
Hippocampus   R   20   7.55   36   -15   -18  
                    

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207936doi: bioRxiv preprint 

https://doi.org/10.1101/207936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Table S7. 
Table  S7.  Activation  Table  for  Contrast  [High  Shock  >  Low  Shock]  (Fast  Predator)  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
High  Shock  >  Low  Shock  (fast  predator)  
Midbrain   L   190   4.95   -1   -32   -13  

ACC   R   179   4.36   3   25   7  
Precuneus   L   335   4.03   -27   -54   8  
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Table S8. 
Table  S8.  Activation  Table  for  Contrast  [High  Shock  >  Low  Shock]  (Slow  Predator)  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
High  Shock  >  Low  Shock  (slow  predator)  
Medial  temporal  gyrus   L   161   4.64   -42   -33   0  
Insula   R   25   4.04   40   -16   10  
Hippocampus   R   36   4.50   21   -30   -12  
Superior  temporal  gyrus   R   26   4.30   45   -12   -3  
Amygdala   R   17   4.11   24   4   -20  
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Table S9. 
Table  S9.  Activation  Table  for  Parametric  Modulation  with  Reward  Preference  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
Parametric  modulation  with  reward  preference  (fast  predator)  
Fusiform  gyrus   L   35   5.75   -42   -6   -27  
Inferior  temporal  gyrus   R   23   4.93   60   -9   -18  
Insula   L   80   5.04   -39   -12   6  
Putamen   L   42   4.86   -28   -18   3  
Middle  temporal  gyrus   L   81   4.11   -60   -57   -3  
Putamen   R   78   4.88   33   -6   6  
Parametric  modulation  with  reward  preference  (slow  predator)  
Middle  occipital  gyrus   L   85   5.86   -36   -66   0  
Caudate   R   50   6.70   15   -3   15  
Calcarine   R   38   4.79   18   -48   3  

Insula   R   35   4.48   33   24   3  

Caudate   L   46   4.88   -9   3   9  
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Table S10. 
Table  S10.  Activation  Table  for  Parametric  Modulation  with  Shock  Avoidance  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
Parametric  modulation  with  shock  avoidance  (fast  predator)  
Inferior  temporal  gyrus   R   21   4.40   51   -60   -18  
Midbrain   R   10   4.93   21   -18   -15  
Superior  temporal  gyrus   R   21   4.83   60   -33   12  
Inferior  frontal  gyrus   L   14   4.16   -45   42   15  
Parametric  modulation  with  shock  avoidance  (slow  predator)  
PCC   L   23   4.92   -12   -39   6  
Thalamus   R   35   6.27   0   -18   15  
Middle  temporal  gyrus   L   45   4.69   -42   -66   15  

Superior  temporal  gyrus   L   48   5.89   -60   -45   18  
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Table S11. 
Table  S11.  Activation  Table  for  Parametric  Modulation  with  Bayesian  optimality  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
Parametric  modulation  with  Bayesian  optimality  (fast  predator)  

ACC   R   24   4.31   6   33   21  
Superior  frontal  gyrus   L   63   4.89   -24   9   54  
Superior  motor  area   R   18   4.33   12   9   54  
Parametric  modulation  with  Bayesian  optimality  (slow  predator)  
Hippocampus   R   20   4.18   33   -33   -3  
Middle  occipital  gyrus   R   12   4.40   36   -87   -3  
Precentral  gyrus   R   41   4.32   63   -3   24  

Precentral  gyrus   L   18   4.05   -51   -3   24  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2017. ; https://doi.org/10.1101/207936doi: bioRxiv preprint 

https://doi.org/10.1101/207936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

Table S12. 
Table  S12.  Activation  Table  for  Connectivity  Analysis  
  
P<0.05,  FDR  corrected  
  

  

Brain  Region   Left/Right   Cluster  Size   t-score   Coordinates  
            x   y   z  
MCC  Seed  
Midbrain   L   19   4.20   -5   -30   -13  
Thalamus   L   25   3.97   -15   -13   6  
Thalamus   R   30   4.15   18   -19   1  
Hippocampus  Seed  
PCC   R   20   4.19   4   -47   26  
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