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Abstract

Dengue, chikungunya and zika are all transmitted by the Aedes aegypti mosquito.
Despite the strong influence of host spatial distribution and movement patterns on the
ability of mosquito vectors to transmit pathogens, there is little understanding how
these complex interactions modify the spread of disease in spatially heterogeneous
populations. In light of present fears of a worldwide zika epidemic, and failures to
eradicate dengue and chikungunya; there is a pressing need to get a better picture of
how high-resolution details such as human movement in a small landscape, modify the
patterns of transmission of these diseases and how different mosquito-control
interventions could be affected by these movements.

In this work we use a computational agent-based model (ABM) to simulate
mosquito-human interactions in two different levels of spatial heterogeneity, with human
movement, and in the presence of three mosquito-control interventions (spatial spraying,
the release of Wolbachia-infected mosquitoes and release of insects with dominant lethal
gene). To analyse the results from each of these experiments we examined mosquito
population dynamics and host to host contact networks that emerged from the
distribution of consecutive bites across humans. We then compared results across
experiments to understand the differential effectiveness of different interventions in both
the presence and absence of spatial heterogeneities, and analysed network measures of
epidemiological relevance (degree probability distributions, mean path length, network
density and small-worldness).

From our experiments we conclude that spatial heterogeneity greatly influences how
a pathogen may spread in a host population when mediated by a mosquito vector, and
that these important heterogeneities also strongly affect effectiveness of interventions.
Finally, we demonstrate that these host to host vectorial-contact networks can provide
operationally important information to inform selection of optimal vector-control
strategies.

Author Summary

Mosquito-borne diseases’ transmission patterns arise from the complex interactions 1

between hosts and vector. Because these interactions are influenced by host and vector 2

behaviour, spatial constraints, and other factors they are amongst the most difficult to 3

understand. In this work, we use our computational agent-based model: SoNA3BS; to 4
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simulate two spatially different settings in the presence and absence of three different 5

mosquito-control interventions: fogging, the release of Wolbachia-infected mosquitoes 6

and the release of insects with dominant lethal gene. Throughout these simulations, we 7

record mosquito population dynamics and mosquito bites on persons. We then compare 8

mosquito population dynamics to the vectorial-contact networks (that emerge from 9

subsequent mosquito bites between humans) and, after performing these comparisons, 10

we proceeded to show that even when mosquito population sizes are almost equal in 11

both spatial settings, the resulting vectorial-contact networks are radically different. 12

This has profound implications in our understanding of how mosquito-borne diseases 13

spread in human populations and is relevant to the effective use of resources allocated 14

to stop these pathogens from causing more harm in human populations. 15

Introduction 16

Aedes aegypti mosquitoes are responsible for the transmission of some of the most 17

epidemiologically important vector-borne diseases in recent years: dengue, chikungunya 18

and zika. In the past 50 years, the incidence of dengue has increased drastically [1, 2]. 19

Recent estimates suggest around 390 million annual cases globally and rising; with 20

nearly 96 million of these exhibiting clinical symptoms [3]. Similarly, chikungunya and 21

zika are emerging diseases that are rapidly disseminating in Latin American countries, 22

raising health concerns and placing a heavy burden upon their national health 23

institutes [4–6]. 24

These diseases are transmitted as a side-effect of Aedes’ need to obtain blood to 25

complete its life cycle (gravid female mosquitoes require blood from a host for their eggs 26

to be viable). Arboviruses, in turn, use these mosquitoes as vehicles to develop and 27

travel between human hosts. Unfortunately, to date, there exists no effective vaccine to 28

block transmission of any of these pathogens (Dengvaxia, the only available vaccine 29

against dengue has been the subject of recent health concerns [7, 8]); so the control 30

effort has largely focused on the disruption of the mosquito life cycle. This has proven 31

to be a difficult endeavour. 32

Several mosquito-control interventions exist to date and more are being developed 33

every year. Amongst the traditional Aedes-control interventions, spatial insecticide 34

spraying (also known as fogging) is one of the oldest. Sadly, in spite of its long history 35

and widespread use, the efficacy of fogging campaigns has been generally been 36

limited [9, 10]. This, coupled with other traditional approaches’ limitations, has created 37

a pressing need for novel approaches to contain the pathogens’ spread. In recent years, 38

two of the most promising novel interventions have been: release of Wolbachia-infected 39

mosquitoes and release of insects carrying a dominant lethal gene (RIDL). 40

Wolbachia-based strategies work by infecting mosquitoes with a bacteria which has been 41

shown to limit the potential of some arboviruses (such as dengue and chikungunya) to 42

develop and subsequently be transmitted [11]. Female-Specific RIDL techniques, on the 43

other hand, work by genetically modifying mosquitoes so that females carrying the 44

dominant gene do not develop viable wings upon progression to adult stages [12]. 45

Despite the fact that these novel interventions have shown promising results in field 46

trials [13,14]; evaluating their cost and effectiveness in a wide variety of different 47

settings is both crucial and difficult. Evaluating interventions in the field is expensive 48

both in time and economic resources. This, paired with the fact that mosquito-borne 49

diseases usually affect low-income countries, makes it paramount to predict their impact 50

before actually using them in practice. 51

Mathematical and computational models are effective tools to predict the impact of 52

interventions on pathogen transmission. Classical models of pathogen transmission 53

based on systems of ordinary differential equations (ODEs) have been standard tools for 54
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these types of analysis. Despite this, spatial heterogeneity in host-vector interaction, 55

noted to be fundamental to patterns of pathogen spread, is difficult to incorporate in 56

them [15–17]. Agent-based models (ABMs), on the other hand, can handle this 57

information in a natural way so they have proven to be useful for these analyses. Along 58

these lines, we have developed SoNA3BS: Social Network Aedes aegypti Agent-Based 59

Simulation (SoNA3BS was coded in NetLogo and its source code will be freely available 60

upon publication in our git repository: https://github.com/Chipdelmal/SoNA3BS). 61

Our model simulates interactions between humans and mosquito agents on a defined 62

landscape. With it, we are able to track the bites females take on humans; which allows 63

us to reconstruct the vectorial-contact networks and to borrow tools from graph theory 64

to perform structural analyses. This, to the best of our knowledge, is on the vanguard 65

of epidemiological analysis of vector-borne diseases (although it has successfully been 66

used before for direct-contact pathogen transmission [18–22]). 67

The importance of spatial heterogeneities on pathogen transmission [17,23,24], has 68

motivated our use of SoNA3BS to explore the effect of spatial arrangement on 69

vector-borne disease transmission. Specifically, we used SoNA3BS to test the hypothesis 70

that spatial distribution of human houses and mosquitoes breeding sites has a 71

significant effect on reshaping the way human contacts occurred in both, in absence and 72

in presence of three mosquito-control measures: spatial fogging, Wolbachia-releases and 73

RIDL. To test these effects, we first simulated two different spatial scenarios: a 74

homogeneous one (in which every household and human is placed in the exact same 75

place) and a heterogeneous one (with a more natural spatial distribution obtained from 76

a real human settlement). We then obtained both the population dynamics and the 77

vectorial-contact networks that result from applying each of the interventions in the 78

environment. This information allowed us to show what is, in our opinion, the main 79

contribution of this work: despite the fact that the mosquito population dynamics 80

remain almost identical in both situations on all cases, the networks that arise from 81

them have different structural properties. This, in turn, shows that mosquito biting 82

heterogeneities can arise solely from spatial distribution and highlights the importance 83

of taking into account spatial information in the planning of mosquito-control 84

interventions’ deployment on the field. 85

Materials and Methods 86

To investigate how spatial distribution of hosts and sites affects the ability of vector 87

control interventions to disrupt pathogen transmission, we simulated two different 88

scenarios under the presence of Aedes control campaigns. After doing so we analysed 89

both the population dynamics and vectorial-contact network structures. 90

In the following section we will discuss how these spatial settings were selected and 91

implemented on the simulation; along with the measurements that were performed as 92

part of the analysis. 93

Simulated Scenarios Settings 94

We first describe how sites were defined in each scenario. We also describe the 95

behaviour rules used to simulate mosquito and human activity. 96

Landscape and Humans 97

We generated a simulated version of a location near the Mexican town of Catemaco, 98

Veracruz by obtaining approximate positions of houses’ locations using Google Maps 99
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(geographical coordinates: 18°25′52.0”N 95°05′25.1”W ). We chose this area because it 100

is a small-sized region in México in which the Ae. aegypti presence is widespread [25]. 101

A population of 30 humans was distributed amongst 12 houses proportionally to the 102

household area that was detected (viewed from the satellite image). This gives us an 103

average value of 2.5 persons per house. For each household we assumed one viable 104

egg-laying site in its vicinity, as most of the populations with no piped water supply use 105

containers to provide for their needs [26]. Under these conditions, we simulated two 106

different scenarios: 107

• Homogeneous (HOM): Every house and person was placed at the center of the 108

environment as depicted in figure 1a. Humans remained static while mosquitoes 109

were allowed to move to fulfil their biting, sugar feeding and eggs-laying needs. 110

• Heterogeneous (HET): Houses in the environment were placed as shown in figure 111

1b. A maximum of two humans per household were allowed to visit other 112

households (with a probability of 10% per day), while the remaining humans stay 113

at home. This house was chosen randomly from the pool of houses in the 114

simulation each time a visiting event was triggered. 115

Fig 1. Simulated spatial scenarios. SoNA3BS screenshots representing the two
modelled layouts: homogeneous (a) and heterogeneous (b). Humans are shown in
purple, houses in white, sugar sources in black and mosquitoes in red (triangles).
Breeding and mating sites were scaled down but are always near the location of the
houses according to the methodology described while the other agents and landscape
elements were scaled up for readability purposes.

Time and Temperature 116

Computational agent-based models do not run in continuous time as ODEs do, so 117

special care has to be taken in selecting a time-step (or “tick”) resolution. This is 118

because if the amount of time per tick is set too high all the fine detail that could be 119

captured in the model is lost; whilst if a very high time resolution is selected the 120

computational burden of the model outweighs the benefits of high temporal resolution. 121

In our simulation we gravitated towards a high time resolution value of 5 minutes/tick 122

(other similar ABMs generally step sizes of hours or days [25, 27, 28]). This is important 123

for our analysis because we are interested in the analysis of fine-detail interactions 124

between individuals so we need to be able to simulate them as precisely as 125

computationally possible. 126

The simulated timespan is also important in agent-based models as it can affect the 127

analysis of the dynamics of the system (enough time must be given for transitory 128

dynamics to settle). In our study we needed variations in the populations’ sizes and, as 129
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a consequence, mosquito bites to achieve stability while still maintaining a low 130

computational cost. To achieve this, each run comprised a period of 360 days with a 131

burnin period of 100 days. Both of these periods were defined empirically after running 132

extensive preliminary tests on the simulation. 133

With the timing information of our experiments in place we moved on to defining its 134

weather characteristics. Temperature is an important part of mosquitoes metabolic 135

development (in warmer conditions, mosquitoes develop faster [29]) and our simulation 136

does incorporate these effects on mosquitoes biology. For the purposes of the 137

experiments presented in this work, we fixed the temperature’s value to 25°C (close to 138

the average temperature of the region which was calculated with data obtained from: 139

http://clicom-mex.cicese.mx). We made this decision because we wanted to limit 140

the effect of variables other than spatial distribution on the results (having a realistic 141

seasonal pattern would have not only affected the mosquito population dynamics but it 142

would have also added interactions with the timing of mosquito-control 143

interventions [13,14,30]). Along the same lines we assumed that humidity and rainfall 144

were constant and adequate to maintain Ae. aegypti populations throughout the year. 145

Mosquitoes 146

Simulating a realistic population of mosquitoes was a crucial part of our experiments 147

and as such, special care had to be taken in defining their quantities and their 148

behaviours. 149

Under the described conditions, our IBM produced a baseline population at 150

equilibrium of 30 adult mosquitoes per aquatic habitat. This number is close to densities 151

observed in Cayman Islands (where RIDL field tests took place and with similar weather 152

patterns to the ones found on Catemaco [14]). It is important to note, though, that this 153

carrying capacity value is not a hard threshold in our IBM, but an emergent property 154

that arises from interactions between mosquitoes and the environment as a whole. 155

In terms of the mosquitoes behaviour, our simulation treats mosquitoes going 156

through their life stages as finite state machines; each having some associated set of 157

behaviours. Both male and female mosquitoes go through three aquatic stages: egg, 158

larva and pupa; in which they spend their time maturating according to their metabolic 159

rules of development [29]. After emerging from their aquatic phases, males spend one 160

day waiting for sexual maturity and then they spend their lives in feeding and mating 161

bouts. Females, on the other hand, emerge sexually mature and mate just once 162

throughout their lifetimes. After doing so they spend the rest of their lives in sequential 163

cycles of blood-feeding, resting and egg-laying; just pausing to sugar feed when needed. 164

These behaviours are summarised in figure 2. All adults are more active during the 165

daytime than at night, which corresponds to Aedes aegypti behaviours in real life [31]. 166

Biological parameters such as metabolic rate, flight range, eggs laid per gonotrophic 167

cycle, flight speed, death probabilities and population densities; were calibrated 168

specifically for Ae. aegypti mosquitoes (these parameters are available as part of the 169

supplementary material). The specific values of these variables will be accessible in the 170

setup routines of the simulation upon publication. There, they can be viewed and 171

modified to accommodate reproducibility and model extension purposes. 172

Simulated Mosquito-Controlled Interventions 173

Once the landscape and behaviour of the agents was defined we focused on the way the 174

vector-control interventions affected mosquito individuals. Three different mosquito 175

interventions were simulated along with a baseline scenario. Their effects on mosquitoes 176

were defined as follows: 177
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Fig 2. Mosquitoes life-cycle transitions diagrams. Male cycle (a) is comprised
of repeated mating (M) and sugar feeding (S) cycles after their initial rest bout (R).
Female cycle (b) involves iterations of blood-feeding (F), resting and egg laying (L)
actions after they have mated. Both males and females can go into a sugar feeding bout
if needed or die (D) due to biological or control driven phenomena.

• Baseline (Base): Mosquito dynamics and death probabilities remained unchanged. 178

• Wolbachia (Wolb): The bacteria was inherited between generations according to 179

cytoplasmic incompatibility’s rules of inheritance [10]. Adult lifespan was halved 180

on average and the ability of Wolbachia to block the disease’s transmission was 181

assumed to be 90% (although studies suggest that this percentage could be higher 182

depending on the strain used [13,32]). 183

• fsRIDL (RIDL): Mosquitoes carrying a lethal gene allele were allowed to mate and 184

reproduce but their female offspring did not develop viable wings [14]. Only males 185

could mate further and propagate their genes. These RIDL genes were 186

transmitted to the offspring in accordance to Mendelian inheritance laws. 187

• Spatial Spraying (Fog): An instant-action layer of insecticide is applied to the 188

whole environment (the WHO recommends the application of insecticide in an 189

radius of 400m around the houses where Dengue is detected [33]; and the 190

dimensions of the simulated environment are 1000m x 1500m so this 191

approximation is within this recommended range). This insecticide has a fast 192

exponential decay (starting with a death probability of 6.25% immediately after 193

application and a half-life of 120 minutes); and it is assumed to affect only adult 194

mosquitoes. These parameters were defined empirically but could be fitted to any 195

specific type of insecticide if data became available. 196

Control measures were applied uniformly in the environment. Wolbachia and RIDL 197

had a fixed number of mosquitoes released uniformly over the landscape; while fogging 198

was assumed to work with equal efficacy across the whole landscape. This decision was 199

taken to focus on how the spatial distribution of individuals affects the effectiveness of 200

the control campaigns, not the specific way in which interventions are applied in the 201

landscape (which is known to be important [34,35]). 202
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In terms of time and density of the releases, intervention events took place on a 203

weekly basis to match field campaigns; and the number of RIDL and Wolbachia-infected 204

released individuals were also scaled to match field tests (225 individuals per 205

release [13, 14]). The main difference between the way the interventions campaigns were 206

simulated was that Wolbachia-infected mosquitoes were released for five weeks (in this 207

period the pathogen achieved fixation in all situations), while RIDL and spatial 208

spraying were applied during the rest of the simulated time to make a fair comparison 209

between the interventions (Wolbachia gets fixated in the population and continues to be 210

propagated while RIDL is self-regulating, and fogging stops working almost as soon as 211

campaigns finish). 212

Each combination of spatial scenario and control measure was repeated 30 times to 213

reduce the variance on the analysis. 214

Comparison Metrics 215

With the simulation’s settings defined we now describe the analysis we performed on the 216

obtained data. As discussed earlier, we performed a contrast analysis to compare 217

population dynamics and vectorial contact networks across different scenarios. We think 218

that making these comparisons is a meaningful way to separate the effects of spatial 219

location from simple population counts. This is because in a scenario in which the 220

spatial distribution of individuals had little to no effect, we would expect the quantity of 221

mosquitoes and the biting networks structures to change proportionally to each other. 222

However, if the spatial effects are meaningful, some independence in the way the metrics 223

behave is expected. 224

Population Dynamics 225

To analyse the impact of the control measures on mosquito population sizes, we stored 226

their demographics twice a day. We focused on the analysis of adult mosquitoes which 227

were broken down into the following categories: total adults, adult females, adult males, 228

RIDL-infected and Wolbachia-infected. It should be noted, though, that we did store 229

information on other life stages (eggs, larvae and pupae) in case further analysis is 230

deemed useful. All of these data will be available upon publication. 231

Networks 232

The vectorial-contact networks are, in our opinion, the most novel part of our analysis. 233

Despite the fact that network epidemiology has become more widespread in 234

direct-contact diseases [36–38]; in vector-borne scenarios performing this kind of 235

transmission analysis is difficult. The use of an IBM allows us to track the biting 236

history of each mosquito, so we can recreate not only the epidemiological transmission 237

network but also the network that arises purely from mosquito bites (of which the 238

epidemiological one is a sub-network). Networks were obtained according to the 239

following procedure: 240

1. Mosquito bites were recorded along with the time in which they occurred. 241

2. If a person was bitten after another person was also bitten by the same mosquito 242

(in a previous gonotrophic cycle) a vectorial transition was created between them 243

(in the case of Wolbachia-infected mosquitoes we are assuming pathogens 244

transmission reduction, so 90% of the bites from them were discarded [13,32], as 245

we are interested in the potentially-infective ones). If the same person gets bitten 246

in subsequent gonotrophic cycles these links are discarded as these bites are not 247

epidemiologically relevant (self-loops would not disperse the disease in the 248

population). 249
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3. The resulting network is created by translating vectorial transitions into edges 250

between persons (which are the vertices). 251

Once these graphs were generated for each scenario we calculated a collection of 252

network measures that are related to disease transmission within a 253

population [19,39–41]. We did this for both the weighted networks (with the weight 254

being the number of transitional bites between two given individuals) and the binary 255

networks (one or more transitional bites are treated simply as one transition). 256

The first metric we evaluated was the in-degree distribution of the persons (number 257

of incoming bites after the first mosquito’s gonotrophic cycle). This is related to the 258

general risk of a person to contract a vector-borne disease and is of upmost importance 259

to understand diseases transmission. We defined the in-degree as the total number of 260

incoming bites for each person as we are working with weighted networks (also known 261

as multigraphs). 262

In addition, we also analysed the following network measures: 263

• Graph Density: Represents the ratio between the number of edges of our graph 264

and the number of edges of a fully connected graph with the same number of 265

vertices. This measure indicates how our network compares to the absolute worst 266

case scenario where the possibility for transmission between every human in the 267

population exists. 268

• Mean Path Length: Average length of the shortest paths in the network. It is 269

related to the speed and reach a disease could have in the population because it 270

represents to how many “jumps” a pathogen would have to make to cross from 271

one human host to another. 272

• Small World Coefficient (SW): Measures to what extent nodes are neighbours of 273

one another in relation to how long are their paths to other nodes in the network. 274

When this quantity is high, networks have the characteristic of having nodes that 275

are separated by a low number of steps but that are not necessarily neighbours 276

with each other. The small-world effect is of epidemiological concern because it 277

allows a pathogen to spread on a network even when connections between 278

individuals are sparse (the mean path length grows logarithmically with the 279

number of nodes) [39]. 280

As a final step of analysis of the relation between spatial distribution and the 281

frequency of transitional bites we used spectral clustering on the networks [42]. This 282

allowed us to identify patterns that were arising on the biting behaviour of the 283

mosquitoes and it is important because, if no clustering patterns could be found on the 284

heterogeneous layouts, then we could conclude that there was no direct relation between 285

person’s location and the transitions amongst them. 286

All of these networks analyses were performed on Mathematica 11 using the 287

functions provided with the software and extending its capabilities by using PajaroLoco 288

(Héctor M. Sánchez C. [43]), a package developed for networks’ structural analyses. 289

Results 290

In the following section we will show the results obtained from the interactions of 291

mosquito and human agents in our simulation. First we will show how population 292

dynamics behaved in the presence and absence of spatial heterogeneity. Then we will 293

make the same comparison on the vectorial contact networks. After making these 294

contrasts we will describe briefly the differential effect of each intervention in terms of 295

population sizes and efficacy on the disruption of vectorial contact networks. 296
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Population Dynamics 297

Most of the interventions behaved similarly in terms of the way they affected mosquito 298

population sizes across their homogeneous and heterogeneous cases, falling in line with 299

our initial hypothesis that they should be similar given the conditions of the 300

experiments. The one notable exception was RIDL. We can observe in figures 3a and 3c 301

a slight difference on the long term effect of the releases. In the long run, the 302

heterogeneous scenario suggests that RIDL alleles had a harder time getting 303

transmitted in the mosquitoes population; but presenting firm conclusions on RIDL 304

dynamics requires longer simulation times (an objective for future research). For the 305

purposes of this particular experiment we can say that, at least in the simulated 306

timespan, the population sizes in both RIDL settings were very much alike (something 307

that will be discussed looking at the mean population sizes of the experiments). 308

Fig 3. Population dynamics of adult mosquitoes. Figures (a) and (b) show the
obtained populations in the homogeneous cases while figures (c) and (d) the
heterogeneous ones. Given the experimental settings, the differences between the two
spatial settings are barely noticeable through visual inspection.

Besides RIDL’s specific case, visual inspection of the plotted data was not enough to 309

establish any significant differences on population sizes between spatial layouts, so we 310

calculated the average population size from each experiment (area under the curve 311

divided by the number of time points). The results of these calculations are shown in 312

figure 4, confirming that no meaningful deviations on population sizes were observed 313

between spatial settings. This lack of differences is most likely due to the fact that the 314

tested environment was relatively small, interventions were applied uniformly on sites, 315

and there was little environmental pressure on the mosquitoes (abundance of sugar food 316

sources and human hosts). We would expect the dynamics to change if either 317

environmental or behavioural variables become a significant external stressor on 318

mosquito survivability. 319

Overall, the absence of significant differences in population dynamics due to spatial 320

heterogeneity indicates that difference in mosquito-human vectorial contact networks 321

can be attributed to changes to the spatial arrangement of the environment rather than 322

change in population sizes alone. 323
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Fig 4. Adult mosquitoes mean population sizes. The area under the curve of
the number of adult mosquitoes was calculated for each repetition of each scenario and
was divided by the simulated time to obtain these quantities. Figure (a) Shows the
number female adults while (b) shows the total adults count. Given this scenarios there
was almost no change in the mosquito population sizes of the interventions in their
homogeneous setting compared to the heterogeneous one.

Vectorial-Contact Networks 324

Given that we have established that there were no significant differences on mosquito 325

population sizes due to spatial distribution changes, we move on to analyse the effect of 326

the spatial layout upon the resulting contact networks. We did find significant 327

differences in the networks between experimental scenarios, so we will divide this section 328

into the analysis of the homogeneous and heterogeneous settings to better highlight the 329

obtained behaviours. 330

Homogeneous Layout 331

Under this spatial distribution we expected the contact networks to be uniformly 332

distributed as a consequence of each human having the same probability to be bitten. 333

To visually investigate this hypothesis we present the networks’ transition matrices on 334

figures 5a through 5d. To confirm the lack of distinct hosts communities we performed 335

spectral clustering analysis on the networks. No structures on the connections between 336

individuals were found, implying that no bias existed in the way mosquitoes selected 337

their victims. The small-worldness values of these networks also confirm this result as 338

they approach a value of 1 (figure 6c), corresponding to the case where mean path 339

length is equal to the clustering coefficient (which is expected in a uniform network). 340

As a consequence of these results, the degree probability distributions showed a 341

concentrated peak in their of the probability distribution frequencies (PDF) and a sharp 342

transition in the cumulative distribution frequencies (CDF). These outcomes are 343

represented by the solid lines in figure 7. Epidemiologically speaking, this is relevant 344

because these peaks raise the herd immunity threshold to untenably high levels. Under 345

the homogeneous setting of a fully connected network, quarantine ceases to be an 346

effective method to halt transmission as all individuals are highly connected and a large 347

number of edges would need to be removed to disconnect the network (figures 6a and 348

6b). 349
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Fig 5. Vectorial contact transition matrices between individuals across
different experimental settings. Each row-column intersection is a count of total
consecutive bites where the first bite is on the individual indexed by row and the second
bite is on the individual indexed by column. In every case the homogeneous setting
(top) showed a random pattern while the heterogeneous one (bottom) displayed clear
clusters of frequent transitions.

Fig 6. Network measures of spatial scenarios with mosquito-control
interventions taking place. Each measure is presented in both their homogeneous
(red) and heterogeneous (blue) spatial setting.

Heterogeneous Layout 350

In contrast with the homogeneous settings, these scenarios produced clear patterns in 351

their transition frequencies matrices. The transition matrices shown on figures 5e 352

through 5h clearly show the existence of clusters of individuals (this is a natural effect 353

of Aedes aegypti mosquitoes being relatively weak flyers as compared to other mosquito 354

species). We can also see this on figure 8, where some transitions connect individuals 355

more frequently than others (represented by darker lines on the network visualisations). 356

Performing spectral clustering on these networks did find communities that correlate 357

strongly with the spatial distribution of individuals (shown in figure 9). These results 358
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Fig 7. Degree probability distributions of spatial scenarios. Dashed lines
represent the heterogeneous scenario while solid lines represent the homogeneous one.
PDF’s (a) of homogeneous settings show a more concentrated spike in their transition
frequencies which translates into sharper transitions in their CDF’s (b).

allow us to infer that a pathogen would be able to spread with relative ease within these 359

communities, and that targeting the inter-community connections is a better approach 360

to reducing transmission in a population (further demonstrating the idea that human 361

movement plays a major role in dispersing Aedes-borne diseases [15,44]). The close 362

relationship between spatial arrangement of individuals on a landscape and communities 363

embedded in the vectorial network structure hints at the small-world feature to the 364

vectorial contact network. Investigating these network structures should be a priority in 365

larger settings as they are highly relevant to infectious disease epidemiology [39]. 366

Fig 8. Heterogeneous scenario transition networks. Each node represents a
human host and they are spatially distributed according to their location in the
simulation. It can be observed that people who spend more time together tend to form
stronger links between one another creating tighter clusters of people that live in
proximity.

Moving on to the degree distributions, the PDF showed a flatter, more platykurtic 367

shape (and the CDF a leaner slope); in the heterogeneous settings than the 368

homogeneous ones (dashed lines in figure 7). Lower network densities and lower 369

connectivities are also related to this effect (figures 6a and 6b), which are relevant 370
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Fig 9. Network communities example. The colour of the nodes represents the
community identity as identified by spectral clustering. The homogeneous case contains
only one community (omitted) while the heterogeneous one shows that the spatial
distribution affects the frequency of transitions and ultimately how the communities are
structured. Applying spectral clustering returned the same result on all the
interventions’ networks.

because the networks’ capabilities to transmit diseases less robust. Furthermore, all of 371

the interventions’ distribution curves shifted towards the left mainly as a result of the 372

general decrease of the number of transitional bites between individuals. This result is 373

confirmed by the networks densities calculations shown in figure 6a in which in every 374

setting has a lower number of transitions on the heterogeneous spatial setting (due to 375

mosquitoes taking more time finding hosts and producing a higher number of self-loops 376

which were discarded according to our proposed methodology). 377

Interventions Effects 378

As the last part of our results description, we will briefly describe the differences on the 379

effects of the control interventions on both the population sizes and networks structures. 380

It should be noted, though, that this is not intended to be a thorough description of the 381

differences between the effects of mosquito control interventions. More variables would 382

be needed to do an analysis of such nature (such as: release distributions, efficacy 383

uncertainties, weather effects, etcetera), but we can make some general assertions of 384

what to expect in a broad sense with the experiments we performed as part of this work. 385

As in previous sections, we will first describe effects on population dynamics and then 386

move on to the networks analyses. 387

Population Dynamics We can observe on figure 3, that fogging rapidly decreased 388

population sizes from the moment of first application, but that this decrease quickly 389

stabilised to a new equilibrium point after a few treatment repetitions. RIDL releases, 390

on the other hand, showed slower initial decrease of female population size but achieved 391

near total population suppression. In the case of Wolbachia, both male and female 392

populations grew, as mixed releases are required due to cytoplasmic incompatibility’s 393

transmission mechanism (it is important to note though, that with Wolbachia the goal 394

is not so much to eliminate the mosquitoes population as it is to achieve fixation of the 395

pathogen; so its effects are better described by examining its effect on the vectorial 396

contact networks). 397
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As a consequence of this analysis we can say that, in the face of sudden epidemic 398

episodes, fogging might be a viable alternative towards quickly reducing the 399

opportunities for the pathogen to spread. To combat endemic pathogen transmission, 400

however, we would want to shift towards either the eradication of mosquitoes through 401

RIDL or the fixation of Wolbachia to disrupt pathogen transmission. This can be done 402

after reducing population sizes through more traditional approaches such as source 403

reduction or fogging (which falls in line with how these two interventions are usually 404

applied on the field or designed to work [13,14]). 405

Vectorial-Contact Networks Networks were sparser in all the heterogeneous 406

scenarios with respect to the homogeneous ones, but Wolbachia produced the largest 407

effect overall on lowering their densities and degrees (figures 6a and 7). Despite this, it 408

is interesting to point out the behaviour of its small-worldness value. Although 409

Wolbachia showed good qualities in disrupting the transmission network (along with 410

higher mean path length values, as shown in figure 8b), it also showed the highest 411

small-world coefficient; which would imply that the mean path length of the network 412

would scale as the logarithm of its number of vertices, keeping the persons 413

epidemiologically “close” to each other even while human population grew in number 414

(given that they scale in similar spatial and behavioural patterns). 415

In terms of degree probability distributions, we can see the emergence of several 416

interesting behaviours. The baseline scenario presented more heterogeneity in the 417

transitional biting behaviour between landscapes (a more flatter shape on the 418

distribution on figure 7a). This is probably due to the fact that more mosquitoes were 419

able to survive and create some sporadic long distance transitions between humans 420

(effects which are dampened in the cases where the interventions are applied). RIDL 421

managed to reduce its PDF peak to a lower value than fogging and Wolbachia; while 422

the latter was the one with the largest change between spatial settings. In general 423

terms, a more heterogeneous the number of bites would mean that the bites are 424

concentrated amongst certain individuals in the network, individuals which could be 425

targeted to reduce diseases’ spread (by using it’s centrality as a proxy measure of this 426

“importance” in the epidemiological structure). Taking this into account RIDL could be 427

the intervention with greater effect, although more repetitions would probably be 428

required to make the distribution frequencies converge into more stable shapes for 429

definite conclusions to be made. 430

Discussion 431

After comparing mosquito population dynamics and vectorial-contact networks it is 432

evident that while overall population counts are useful to produce rough estimates of 433

expected level of potential disease transmission they are less useful to examine how a 434

pathogen can spread through a host population in a spatially heterogeneous scenario. 435

This insufficiency of mean population counts to provide useful information in the face of 436

spatial and other heterogeneities becomes even more evident when considering the effect 437

of vector control interventions. Vectorial contact networks, on the other hand, are able 438

to give a precise mathematical description of how an Aedes-borne pathogen might 439

spread in a spatially distributed host population. However, calculation of these 440

vectorial-contact networks in the field is operationally unfeasible, motivating our 441

proposal to use detailed agent-based simulations to further our understanding of how 442

epidemic processes may occur on real landscapes. 443

The vectorial-contact transition matrices derived from our simulations provide a 444

precise mathematical description of how hosts are epidemiologically connected through 445

vector contact. These matrices therefore give detailed individual level form of classic 446
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transmission metrics such as R0 and vectorial capacity [45]. While under certain 447

limiting circumstances transmission dynamics could be well described by mean-field 448

approximations based on systems of ordinary differential equations, finite population 449

sizes, heterogeneous biting, and spatial aggregation patterns found in real transmission 450

settings might invalidate these mean-field assumptions. While sophisticated 451

mathematical techniques such as spatial moment-equations could be used to incorporate 452

spatial effects into a deterministic model of transmission, assumptions must still be 453

made in order to keep the models analytically tractable. Especially in settings 454

characterised by heterogeneities of host behaviour and spatial distribution, as well as 455

small population sizes, commonly encountered in residual transmission scenarios, it is 456

paramount to capture emergent properties of the transmission dynamics which highly 457

depend on these peculiarities of the setting. In these cases agent-based simulation 458

provides an effective means by which transmission dynamics on real landscapes can be 459

easily simulated and analysed. 460

Results from our spatially-explicit agent-based simulations strongly indicate that 461

heterogeneous spatial distribution of hosts and mosquito breeding sites greatly impacts 462

how a pathogen may invade a human population when mediated by Aedes mosquitoes. 463

These differences in the epidemiological relations between individuals is clear from 464

figures 5 and 7 where the inclusion of spatial heterogeneity produced drastically 465

different epidemiological settings. While in all cases the spatially homogeneous scenario 466

produced the worst-case scenario across all interventions (figures 6 and 7) this simulated 467

scenario is of marginal use in planning vector or host based interventions in the field. In 468

many cases interventions aimed to mitigate the worst-case scenario may be much more 469

costly and have much less impact per dollar spent than a targeted intervention informed 470

through analysis of realistic spatially heterogeneous simulations. Furthermore, analyses 471

of simulations under the assumption of spatial homogeneity lose relevance when 472

considering scenarios of low-prevalence and residual transmission. The importance of 473

spatial distribution to vectorial-contact may be observed in figure 9. The network 474

structure can be observed to be characterised by several dense clusters of individuals 475

that correlated strongly with the spatial distribution of hosts and breeding sites. This 476

partitioning of the network into tightly connected clusters suggests that vector-borne 477

pathogens can spread efficiently within clusters. These clusters may support residual 478

pathogen transmission and provide a reservoir for disease even when other clusters or 479

areas of the terrain are successfully targeted by transmission control campaigns. This is 480

most relevant when considering elimination scenarios because these pockets of disease 481

provide the pathogen a means of persistence and possible re-emergence even if 482

inter-cluster transition probability is low (due to the small-world nature of the contact 483

networks in the heterogeneous setting as shown in figure 6c). 484

With respect to comparison of different vector control interventions applied to the 485

spatially heterogeneous scenario there was no evidence of substantial differences that 486

were only attributable to spatial effects, although one notable difference was the 487

small-worldness of the vectorial-contact networks, which seemed to present different 488

behaviour on each intervention, shown in figure 6c. Most of the variance in calculated 489

measures when compared between interventions can be solely attributed to reduction in 490

population size (this can be seen in figure 6; measures closely follow the distributions in 491

figure 7 which themselves strongly depend on overall vector population density). This is 492

to be expected according to our experimental design where vector control interventions 493

were applied uniformly to the simulated landscape. We simulated the somewhat 494

unrealistic assumption of uniform application of interventions in order to compare their 495

effects on population density and network measures without potential confounding from 496

spatial distribution of the interventions themselves. In future research we plan to 497

preform a more thorough analysis of each intervention including realistic spatial 498
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applications (targeting mosquito mating swarms, hotspot releases, rearing releases, et 499

cetera). Analysing the interventions under realistic operational constraints should 500

provide a better picture of how vector control interventions can be targeted to take 501

advantage of spatial heterogeneity in host distribution with respect to specific properties 502

of each intervention to maximise their impact on fragmenting vectorial-contact networks. 503

We performed the aforementioned analysis to demonstrate the importance of 504

acknowledging spatial distribution of hosts and breeding sites when planning 505

vector-control interventions for Aedes-borne pathogens. We note however, that much 506

work is still required to produce definite conclusions of how disease spread is affected by 507

spatial heterogeneities. In particular, we plan on extending our model to accommodate 508

larger human population sizes, more realistic mosquito-control releases, data-informed 509

human movement and pathogen models; to be able to make location-specific analyses on 510

how to control epidemic processes efficiently. 511

Conclusions 512

Understanding the effects of spatial heterogeneity in mosquito-borne diseases is a 513

difficult task, but with the use of agent-based models and network theory we have 514

shown that it has a significant effect on how humans connect to each other through 515

Aedes aegypti mosquito bites both in absence and in presence of three different 516

mosquito-control interventions. This highlights not only the fact that spatial 517

heterogeneity is an extremely important element of the transmission of mosquito-borne 518

diseases, but also the need of new tools to further our understanding of the implications 519

and effects it has on epidemic processes and vector-control interventions. 520

These initial conclusions are meant to serve as a guide for future research, as much 521

work is still needed to get a bigger picture of how these heterogeneous contacts 522

dynamics emerge from human-mosquito interactions; and how to take advantage of 523

them to limit diseases spread. In particular, we want to simulate larger geographical 524

regions with more realistic behaviours both in human behaviour and in weather 525

patterns, to have a more robust model of the networks that result as a consequence of 526

their interactions with mosquitoes. We are also planning on making a more thorough 527

analysis of how spatial heterogeneity in the application/release of vector-control 528

interventions affects the contact-networks. All of these analyses would help us move 529

towards the efficient use of the limited resources dedicated to the eradication of often 530

neglected tropical diseases transmitted by Aedes aegypti mosquitoes. 531
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