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Fig 9. Network communities example. The colour of the nodes represents the
community identity as identified by spectral clustering. The homogeneous case contains
only one community (omitted) while the heterogeneous one shows that the spatial
distribution affects the frequency of transitions and ultimately how the communities are
structured. Applying spectral clustering returned the same result on all the
interventions’ networks.

because the networks’ capabilities to transmit diseases less robust. Furthermore, all of 371

the interventions’ distribution curves shifted towards the left mainly as a result of the 372

general decrease of the number of transitional bites between individuals. This result is 373

confirmed by the networks densities calculations shown in figure 6a in which in every 374

setting has a lower number of transitions on the heterogeneous spatial setting (due to 375

mosquitoes taking more time finding hosts and producing a higher number of self-loops 376

which were discarded according to our proposed methodology). 377

Interventions Effects 378

As the last part of our results description, we will briefly describe the differences on the 379

effects of the control interventions on both the population sizes and networks structures. 380

It should be noted, though, that this is not intended to be a thorough description of the 381

differences between the effects of mosquito control interventions. More variables would 382

be needed to do an analysis of such nature (such as: release distributions, efficacy 383

uncertainties, weather effects, etcetera), but we can make some general assertions of 384

what to expect in a broad sense with the experiments we performed as part of this work. 385

As in previous sections, we will first describe effects on population dynamics and then 386

move on to the networks analyses. 387

Population Dynamics We can observe on figure 3, that fogging rapidly decreased 388

population sizes from the moment of first application, but that this decrease quickly 389

stabilised to a new equilibrium point after a few treatment repetitions. RIDL releases, 390

on the other hand, showed slower initial decrease of female population size but achieved 391

near total population suppression. In the case of Wolbachia, both male and female 392

populations grew, as mixed releases are required due to cytoplasmic incompatibility’s 393

transmission mechanism (it is important to note though, that with Wolbachia the goal 394

is not so much to eliminate the mosquitoes population as it is to achieve fixation of the 395

pathogen; so its effects are better described by examining its effect on the vectorial 396

contact networks). 397
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As a consequence of this analysis we can say that, in the face of sudden epidemic 398

episodes, fogging might be a viable alternative towards quickly reducing the 399

opportunities for the pathogen to spread. To combat endemic pathogen transmission, 400

however, we would want to shift towards either the eradication of mosquitoes through 401

RIDL or the fixation of Wolbachia to disrupt pathogen transmission. This can be done 402

after reducing population sizes through more traditional approaches such as source 403

reduction or fogging (which falls in line with how these two interventions are usually 404

applied on the field or designed to work [13,14]). 405

Vectorial-Contact Networks Networks were sparser in all the heterogeneous 406

scenarios with respect to the homogeneous ones, but Wolbachia produced the largest 407

effect overall on lowering their densities and degrees (figures 6a and 7). Despite this, it 408

is interesting to point out the behaviour of its small-worldness value. Although 409

Wolbachia showed good qualities in disrupting the transmission network (along with 410

higher mean path length values, as shown in figure 8b), it also showed the highest 411

small-world coefficient; which would imply that the mean path length of the network 412

would scale as the logarithm of its number of vertices, keeping the persons 413

epidemiologically “close” to each other even while human population grew in number 414

(given that they scale in similar spatial and behavioural patterns). 415

In terms of degree probability distributions, we can see the emergence of several 416

interesting behaviours. The baseline scenario presented more heterogeneity in the 417

transitional biting behaviour between landscapes (a more flatter shape on the 418

distribution on figure 7a). This is probably due to the fact that more mosquitoes were 419

able to survive and create some sporadic long distance transitions between humans 420

(effects which are dampened in the cases where the interventions are applied). RIDL 421

managed to reduce its PDF peak to a lower value than fogging and Wolbachia; while 422

the latter was the one with the largest change between spatial settings. In general 423

terms, a more heterogeneous the number of bites would mean that the bites are 424

concentrated amongst certain individuals in the network, individuals which could be 425

targeted to reduce diseases’ spread (by using it’s centrality as a proxy measure of this 426

“importance” in the epidemiological structure). Taking this into account RIDL could be 427

the intervention with greater effect, although more repetitions would probably be 428

required to make the distribution frequencies converge into more stable shapes for 429

definite conclusions to be made. 430

Discussion 431

After comparing mosquito population dynamics and vectorial-contact networks it is 432

evident that while overall population counts are useful to produce rough estimates of 433

expected level of potential disease transmission they are less useful to examine how a 434

pathogen can spread through a host population in a spatially heterogeneous scenario. 435

This insufficiency of mean population counts to provide useful information in the face of 436

spatial and other heterogeneities becomes even more evident when considering the effect 437

of vector control interventions. Vectorial contact networks, on the other hand, are able 438

to give a precise mathematical description of how an Aedes-borne pathogen might 439

spread in a spatially distributed host population. However, calculation of these 440

vectorial-contact networks in the field is operationally unfeasible, motivating our 441

proposal to use detailed agent-based simulations to further our understanding of how 442

epidemic processes may occur on real landscapes. 443

The vectorial-contact transition matrices derived from our simulations provide a 444

precise mathematical description of how hosts are epidemiologically connected through 445

vector contact. These matrices therefore give detailed individual level form of classic 446
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transmission metrics such as R0 and vectorial capacity [45]. While under certain 447

limiting circumstances transmission dynamics could be well described by mean-field 448

approximations based on systems of ordinary differential equations, finite population 449

sizes, heterogeneous biting, and spatial aggregation patterns found in real transmission 450

settings might invalidate these mean-field assumptions. While sophisticated 451

mathematical techniques such as spatial moment-equations could be used to incorporate 452

spatial effects into a deterministic model of transmission, assumptions must still be 453

made in order to keep the models analytically tractable. Especially in settings 454

characterised by heterogeneities of host behaviour and spatial distribution, as well as 455

small population sizes, commonly encountered in residual transmission scenarios, it is 456

paramount to capture emergent properties of the transmission dynamics which highly 457

depend on these peculiarities of the setting. In these cases agent-based simulation 458

provides an effective means by which transmission dynamics on real landscapes can be 459

easily simulated and analysed. 460

Results from our spatially-explicit agent-based simulations strongly indicate that 461

heterogeneous spatial distribution of hosts and mosquito breeding sites greatly impacts 462

how a pathogen may invade a human population when mediated by Aedes mosquitoes. 463

These differences in the epidemiological relations between individuals is clear from 464

figures 5 and 7 where the inclusion of spatial heterogeneity produced drastically 465

different epidemiological settings. While in all cases the spatially homogeneous scenario 466

produced the worst-case scenario across all interventions (figures 6 and 7) this simulated 467

scenario is of marginal use in planning vector or host based interventions in the field. In 468

many cases interventions aimed to mitigate the worst-case scenario may be much more 469

costly and have much less impact per dollar spent than a targeted intervention informed 470

through analysis of realistic spatially heterogeneous simulations. Furthermore, analyses 471

of simulations under the assumption of spatial homogeneity lose relevance when 472

considering scenarios of low-prevalence and residual transmission. The importance of 473

spatial distribution to vectorial-contact may be observed in figure 9. The network 474

structure can be observed to be characterised by several dense clusters of individuals 475

that correlated strongly with the spatial distribution of hosts and breeding sites. This 476

partitioning of the network into tightly connected clusters suggests that vector-borne 477

pathogens can spread efficiently within clusters. These clusters may support residual 478

pathogen transmission and provide a reservoir for disease even when other clusters or 479

areas of the terrain are successfully targeted by transmission control campaigns. This is 480

most relevant when considering elimination scenarios because these pockets of disease 481

provide the pathogen a means of persistence and possible re-emergence even if 482

inter-cluster transition probability is low (due to the small-world nature of the contact 483

networks in the heterogeneous setting as shown in figure 6c). 484

With respect to comparison of different vector control interventions applied to the 485

spatially heterogeneous scenario there was no evidence of substantial differences that 486

were only attributable to spatial effects, although one notable difference was the 487

small-worldness of the vectorial-contact networks, which seemed to present different 488

behaviour on each intervention, shown in figure 6c. Most of the variance in calculated 489

measures when compared between interventions can be solely attributed to reduction in 490

population size (this can be seen in figure 6; measures closely follow the distributions in 491

figure 7 which themselves strongly depend on overall vector population density). This is 492

to be expected according to our experimental design where vector control interventions 493

were applied uniformly to the simulated landscape. We simulated the somewhat 494

unrealistic assumption of uniform application of interventions in order to compare their 495

effects on population density and network measures without potential confounding from 496

spatial distribution of the interventions themselves. In future research we plan to 497

preform a more thorough analysis of each intervention including realistic spatial 498
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applications (targeting mosquito mating swarms, hotspot releases, rearing releases, et 499

cetera). Analysing the interventions under realistic operational constraints should 500

provide a better picture of how vector control interventions can be targeted to take 501

advantage of spatial heterogeneity in host distribution with respect to specific properties 502

of each intervention to maximise their impact on fragmenting vectorial-contact networks. 503

We performed the aforementioned analysis to demonstrate the importance of 504

acknowledging spatial distribution of hosts and breeding sites when planning 505

vector-control interventions for Aedes-borne pathogens. We note however, that much 506

work is still required to produce definite conclusions of how disease spread is affected by 507

spatial heterogeneities. In particular, we plan on extending our model to accommodate 508

larger human population sizes, more realistic mosquito-control releases, data-informed 509

human movement and pathogen models; to be able to make location-specific analyses on 510

how to control epidemic processes efficiently. 511

Conclusions 512

Understanding the effects of spatial heterogeneity in mosquito-borne diseases is a 513

difficult task, but with the use of agent-based models and network theory we have 514

shown that it has a significant effect on how humans connect to each other through 515

Aedes aegypti mosquito bites both in absence and in presence of three different 516

mosquito-control interventions. This highlights not only the fact that spatial 517

heterogeneity is an extremely important element of the transmission of mosquito-borne 518

diseases, but also the need of new tools to further our understanding of the implications 519

and effects it has on epidemic processes and vector-control interventions. 520

These initial conclusions are meant to serve as a guide for future research, as much 521

work is still needed to get a bigger picture of how these heterogeneous contacts 522

dynamics emerge from human-mosquito interactions; and how to take advantage of 523

them to limit diseases spread. In particular, we want to simulate larger geographical 524

regions with more realistic behaviours both in human behaviour and in weather 525

patterns, to have a more robust model of the networks that result as a consequence of 526

their interactions with mosquitoes. We are also planning on making a more thorough 527

analysis of how spatial heterogeneity in the application/release of vector-control 528

interventions affects the contact-networks. All of these analyses would help us move 529

towards the efficient use of the limited resources dedicated to the eradication of often 530

neglected tropical diseases transmitted by Aedes aegypti mosquitoes. 531
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