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Supplementary Figure XX: True positives called by LiRA are enriched in H3K36me3 in 
mid-frontal cortical neurons. (A) An empirical model of log odds ratios (LORs) and chromatin 
peakset size was constructed to control for differences in expected LOR in varying chromatin 
peakset sizes. The LOR follows a normal asymptotic distribution with standard error of the mean 
equal to  , where  is the number of variants in the i th and j th 
cell of the 2x2 contingency table for comparing true and false positive presence or absence in 
histone marks (true positive is , while variant presence in histone is ). True or false 
positive variants found in any chromatin interval were used (199 true positive and 1593 false 
positive variants out of 3011 and 24833 variants, respectively), and LOR’s of 
chromatin-intersecting true versus false positives were calculated for randomly-sampled histone 
peaksets of different sizes. Peaksets were obtained from the Roadmap Epigenomics 
Consortium ChIP-seq tracks for adult mid-frontal cortical neurons (accession codes indicated in 
panel (B)). LOESS regression was used to fit a curve (solid red line) to the LOR-peakset size 
relationship, and 95% CI’s were computed (dashed red line). The procedure produces an 
empirical null model that calculates expected LOR’s and 95% CI’s for histone peaksets of 
different sizes. (B) Enrichment analysis of true positives in different histone marks shows that 
true positive somatic variants are enriched in H3K36me3 in mid-frontal cortical neurons. For 
each histone mark, the 95% CI of the expected LOR was determined from the histone peakset 
size-LOR relationship determined in (A), and the exponent-transforms of these quantities were 
used as significance thresholds (black lines) for the enrichment analysis in each histone mark. 
Observed odds ratio for H3K27me3 could not be determined, as instances of true or false 
positives were not found in H3K27me3 owing to the histone mark’s small peakset size (~10 3).  
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Supplemental Figure Legends 
 
Figure S1. Detailed LiRA Workflow  

(a) Detection of germline SNPs (gHet) and single-cell somatic SNVs 
LiRA uses germline heterozygous SNPs (gHets) found in bulk sequencing to evaluate nearby 
somatic SNV (sSNV) candidates. gHets are SNVs called with a ‘0/1’ genotype and annotated 
with a population frequency in the 1000 genomes database. 

(b) Phasing of variant pairs 
Candidate sSNVs are phased with nearby gHets.  Power to distinguish true sSNVs from false 
positives scales with the minimum of single-cell and bulk sequencing depth only considering 
reads supporting the linked gHet allele. 

(c) Filtering somaticSNVs and calculation of composite coverage (CC) 
CC is measured for each sSNV candidate linked with only concordant reads to a nearby gHet 
as the minimum number of reads spanning the two loci in bulk and single-cell sequencing.  
Reads must have MAPQ=60 and no indel CIGAR operations to be considered. sSNVs linked 
only with a mixture of discordant and concordant reads are dismissed as likely FPs. 

(d) Power calculation  
Based on the frequency of sites at which an sSNV could have been detected with each CC 
value (power) and the frequency of CC values among candidate sSNVs, LiRA measures the 
somatic mutation rate as a function of CC.  To the observed data (black; simulated), LiRA fits a 
two-component mixture model, wherein mutations either originate from errors (blue; E(c)) or real 
sSNVs (green; T(c)). E(c) decays exponentially as it becomes increasingly unlikely that an 
artifact will only be observed with concordant reads as CC rises. T(c) is derived from sampling 
the distribution of CC values for linked gHets and is approximately constant, as would be 
expected for true heterozygous variants.  The relative magnitudes of T(c) and E(c) give 
estimates of the false positive rate (FPR) among variants with each value of CC.  LiRA uses this 
information, along with the actual distribution of CC values over the candidate sSNV set, to 
choose a CC threshold that controls the overall false positive rate under a specified level (here 
10%). 

 

Figure S2. Two-component model fits for all neurons 
Faded dotted lines show 100 fits obtained from simulating random draws from the beta 
distribution provided by the observed data (see methods), and the blue error bar shows a 98% 
confidence interval for sSNV rate. 
 

Figure S3. Comparison of SNV frequencies for LiRA calls, FPs, and shared mutations. 
LiRA calls found with support in more than one cell (99% CI) 
 
(a) Log-scale fold change in mutational abundance between LiRA singleton calls and LiRA FPs.  
(b) Log-scale fold change in mutational abundance between LiRA shared calls and LiRA FPs. 
(c) Log-scale fold change in mutational abundance between LiRA shared calls and LiRA 
singleton calls (99% CI). 
 
Figure S3.  True positives called by LiRA are enriched in H3K36me3 in mid-frontal 
cortical neurons.  
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(a) Null model showing the change in expected natural log odds ratio (LOR) of TP vs FP 
enrichment as the abundance of genomic intervals associated with random chromatin marks 
increases. 95% CIs are shown for the LOR.  
(b) Observed LOR’s of TP’s vs FP’s in specific chromatin marks representing accessible 
chromatin or specific histone modifications in adult mid-frontal cortical neurons. LOR’s for each 
mark are shown along with 95% CIs for a control peakset of comparable size as calculted in (a). 
TP’s are enriched in genomic intervals with H3K36me3 modifications. Observed odds ratio for 
H3K27me3 could not be determined, as instances of true or false positives were not found in 
H3K27me3 owing to the histone mark’s small peakset size (~103). 
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Supplemental Methods 

 

Variant calling of candidate single-cell somatic single nucleotide variants (scsSNVs) and 

population-polymorphic germline heterozygous sites (gHets) 

The GATK Haplotype Caller best practices pipeline1 with default parameters was used to call 
variants jointly on single cell and bulk sequencing data. This yielded a large set of candidate 
sSNVs and gHets. Candidate sSNVs were identified as calls with no supporting reads in bulk 
and at least one supporting read in a single cell. High-confidence germline heterozygous sites 
were identified as variants found with population frequencies in the 1000 genomes database2 as 
annotated in the dbsnp147 database and called with a ‘0/1’ heterozygous genotype in bulk. 
 
Identification of candidate variants for LiRA analysis 

scsSNV-gHet pairs and gHet-gHet pairs that had at least two reads or mate pairs supporting 
each variant locus were subject to analysis by LiRA.  Included reads were required to have max 
mapping quality (60), to align concordantly (SAM flag 2), and to have no indel cigar operations.  
 
Phasing of variant pairs 
Phasing was done by simple majority counting of reads from single cell (sSNV-gHet) or single 
cell and bulk (gHet-gHet) sequencing data. Paired variants v and q were cis linked with respect 
to v if spanning reads supporting v alt calls more frequently supported alt than ref at q.  
Otherwise, they were trans linked with respect to v.  Importantly, this procedure defined the form 
of discordant and concordant reads for individual variants within variant pairs: discordant reads 
for v (v-discordant reads) were reads supporting the v-phased allele at q (alt for cis, ref for trans) 
but not the alt call at v. 
 
Computation of composite coverage and identification of discordant variants 
For each variant pair p with variants v and q, the bulk phased coverage and single cell phased 
coverage for v (Cbulk:p,v, Csingle-cell:p,v) were measured as the number of spanning read pairs 
supporting the v-phased allele of q in bulk and single cell data, respectively. The composite 
coverage was computed as the minimum of these two values: 
 
Cp,v = min(Cbulk:p,v, Csingle-cell:p,v). 
 
To obtain an overall composite coverage value for v, we took the maximum composite coverage 
value measured over all pairs of which v was a member: 
 
Cv = max({Cp’,v: v in p’}) 
 
v was defined as a discordant variant if all pairs of which v was a member had at least one v-
discordant read. v was defined as a concordant variant if it was not discordant. Discordant 
sSNVs were filtered as FPs, for figure 1d, discordant gHets comprise the 2% minority not found 
in a gHet-gHet linked pair with only concordant reads. 
 
Over scsSNV-gHet pairs, the bulk phased coverage provided a measure of confidence that an 
scsSNV was not missed in bulk due to low power. The single cell phased coverage provided a 
measure of confidence over concordant variants that an scsSNV did not spuriously appear 
concordant due to under-sampling. 
 
Calculation of power by genomic position 

First, all gHets were phased using SHAPEIT2.3 This yielded the chromosomal copy (1/2) of 
origin for the alternate allele of each gHet. Next, for each chromosome (a) of each gHet (g), the 
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set of read pairs from bulk (Rbulk:a,g) and single cell (Rsingle-cell:a,g) covering g and supporting a 

were extracted. At each position x covered by reads in Rbulk:a,g, the bulk phased power was 
measured as the depth of coverage in Rbulk:a,g at x. This was the bulk phased power for position 
x, using allele a of gHet g (Pbulk:x,a,g).  The single cell phased power (Psingle-cell:x,a,g) was computed 
similarly using Rsingle-cell:a,g.  The composite power for position x on chromosomal copy a with 
respect to gHet g was computed as the minimum of these two values: 
 
Px,a,g = min(Pbulk:x,a,g, Psingle-cell:x,a,g) 
 
This procedure mirrored the composite coverage computation for non-variant sites. If there had 
been an sSNV s at x on chromosomal copy a, we would have computed the composite 
coverage for s in pair s-g as Px,a,g. 
 
The overall composite power for position x on chromosomal copy a was computed as the 
maximum observed with respect to any gHet: 
 
Px,a = max({Px,a,g’}) 
 
Aggregate power calculation 

Tabulating the output from the calculation of power by genomic position yielded counts (A) of 
the number of positions genome-wide with each possible value of composite power.  These 
counts were adjusted from their raw values to account for two factors: loss of power due to non-
artifact driven discordant read observations and loss of power due to the random occurrence of 
bulk-alternate reads supporting sSNV calls.  As composite coverage increases, so does the 
likelihood that a discordant read will be observed due to technical noise.  Similarly, the likelihood 
that a read from bulk sequencing data will support an sSNV increases.  Both these events will 
reduce power to detect sSNVs by some fraction yet unaccounted for, since a single discordant 
read would, in principle, result in total loss of power at a given position.  Our approach to this 
issue was to adjust each entry of A by a composite power dependent fraction (fsd) to account for 
stochastic discordance, and a fixed fraction for stochastic bulk support (fbs).   
 
To compute fsd, we calculated the fraction of gHets found to be concordant as a function of 
composite coverage.  As expected, this was generally high (fig 1e) but decreased as composite 
coverage increased. 
 
To compute fbs, we calculated the fraction of gHets found to have no reads supporting a third 
allele, and set fbs as this rate divided by two.  While we expected there to be a dependence 
between the composite coverage and the rate of third allele observations, we did not see one, 
and thus used a fixed fraction instead of a composite-coverage dependent quantity. 
 
We then adjusted A: 
 
Anew = fbs (fsd · Aold)  
 
Rate calculation and two-component model 

To obtain estimates of and bounds on the mutation rate (R) at different composite coverage 
values we used a beta distribution with a uniform prior: 
 
Rc ~ B(Mc + 1,Ac – Mc + 1) 
 
Where Mc is the number of mutations with composite coverage c. 
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Consistent with the idea that concordant candidate sSNVs with low composite coverage values 
are under sampled discordant variants, the mutation rate consistently (across cells) and rapidly 
decreased from its initial value at c=2 and approached a constant.  
 
Rather than an arbitrary threshold for composite coverage by eye, we developed a method of 
estimating the false positive rate at different composite coverage values.  Further, we used this 
to estimate the false positive rate across individual cells’ entire dataset when thresholding at a 
particular composite coverage value c*.  This allowed us to set a false positive rate constraint 
(<10%) and enforce it across multiple cells. 
 
For each cell, we modelled M as the mixture of an error component (E) and a true component 
(T).  The error component we fit had the form: 
 
E(c) = Kp(c-2) 
 
Visually, a decaying exponential appeared to fit the data well at low values, but this is also how 
we expected undersampled discordant variants to behave theoretically.  If we assume an initial 
burden of K errors per gigabase at c=2, and that the probability of sampling a concordant read 
given a variant is truly discordant is p, then the error abundance as a function of composite 
coverage takes exactly this form. 
 
We found that p = ½ resulted in good fits, and this suggested that the artefacts causing an 
excess of mutations at low composite coverage values originated from lesions present on the 
original DNA prior to any amplification.  These were likely induced during cell lysis. 
 
The “true” component T(c) is practically constant, but to improve the quality of fitting was 
actually computed using a bootstrapped set of germline variants. The procedure is as follows: 
 
1. Randomly select a set of germline variants of size equal to the size of the scsSNV set (c > 

2) from those found in gHet-gHet pairs, constraining the distance and cis/trans distribution to 
be as close as possible to that observed in the somatic. 

2. Compute the rate using A and the composite coverage distribution over these gHet-gHet 
pairs. 

3. Compute the bootstrap rate B(c) (the “true” component) by averaging over 100 instances. 
 
Overall, the model R(c) = E(c) + T(c) = K1(1/2)-(c-2) + K2 B(c) was fit using the R function nlm.fit, 
constraining K1 and K2 to be positive by imposing a large penalty on the objective function for K1 
or K2 less than 0.   
 
Computation of false positive rate (FPR) and choosing a threshold for c 

Given the model fit, the overall false positive rate for the mutations detected was calculated as 
follows: 
1. Compute FPR(c) = E(c)/[E(c) + T(c)].  This gives the false positive rate at each composite 

coverage value. 
2. Compute the number of false positive mutations in the scsSNV set as a function of c as Fc = 

[FPR(c)] Mc 

3. Compute the expected aggregate false positive rate when thresholding at c* as: 
 

!"#$%% & = ())*)∗
,)
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4. Choose c such that the aggregate false positive rate is controlled under some consensus 
value (e.g. 10%) 
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