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Abstract 
Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of the scien-
tific activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study 
of our attempt to reproduce a promising bioinformatics method [1] and illustrate the challenges to use a published method 
for which code and data were available. First, we tried to re-run the analysis with the code and data provided by the au-
thors. Second, we reimplemented the method in Python to avoid dependency on a MATLAB licence and ease the execu-
tion of the code on HPCC (High-Performance Computing Cluster). Third, we assessed reusability of our reimplementation 
and the quality of our documentation. Then, we experimented with our own software and tested how easy it would be to 
start from our implementation to reproduce the results, hence attempting to estimate the robustness of the reproducibility. 
Finally, in a second part, we propose solutions from this case study and other observations to improve reproducibility and 
research efficiency at the individual and collective level.  
Availability: last version of StratiPy (Python) with two examples of reproducibility are available at GitHub [2]. 
Contact: yang-min.kim@pasteur.fr 

 
 

1 Background  
The collective endeavour of science depends on researchers being able to 
replicate the work of others. In a recent survey of 1,576 researchers, 70% 
of them admitted having difficulty in reproducing experiments proposed 
by other scientists [3]. For 50%, this reproducibility issue even concerns 
with their own experiments. Despite the growing attention on the replica-
tion crisis in science [4,5], this controversial subject is far from being 
new: already in the 17th century, scientists criticized the air pump in-

vented by physicist Robert Boyle because it was too complicated and 
expensive to build [6]. 

Several concepts for reproducibility in computational science are 
closely associated [7,8]. Here we define them as mentioned by K. 
Whitaker [8]: obtaining the same results using same data and same code 
is Reproducibility; if code is different, it is Robustness. If we used 
different data but with the same code, it is Replicability. lastly, using 
different data and different code is referred as Generalisability. Here we 
will primarily elaborate on Reproducibility and Robustness. Indeed, it 

takes great efforts and competence to overcome all the obstacles on the 
path to reproduction. The process is costly in resources, both in time and 
funding. In computational science, there are also many technical barriers 
ranging from unavailable data to hardware infrastructure [9]. Even when 
authors provide data and code, the outcome can vary either marginally or 
fundamentally [10]. Tackling irreproducibility in bioinformatics thus 
requires considerable effort beyond code and data availability.  In most 
cases, there is a significant gap between apparent executable work (Fig 1 
- i.e. above water portion of iceberg) and necessary effort in practice (Fig 

1 - i.e. full iceberg). Such effort is nevertheless necessary to increase the 
consistency of the literature and efficiency of the scientific research 
process. Indeed, behind reproducibility hides reusability. 

 

Figure 1: Hidden reproducibility issues like underwater iceberg. Scientific journals 

readers have the impression that they can almost see the full work of method. But in 

reality, articles do not take into account adjustment and configuration for significant 

replication in most cases. Therefore, there is a significant gap between apparent executa-

ble work (i.e. above water portion of iceberg) and necessary effort in practice (i.e. full 

iceberg). 
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2 Reproducibility and Robustness in bioin-
formatics: a case study 

2.1 Reproducibility: from MATLAB to MATLAB, OS 
and environment 

Our team studies Autism Spectrum Disorders (ASD), a group of neuro-
developmental disorders well known for its heterogeneity. One of the 
current challenges of our research is to uncover homogeneous subgroups 
of patients (i.e. stratification) with more precise clinical outcomes, 

improving their prognosis and treatment [11,12]. An interesting stratifi-
cation method was recently proposed in the field of cancer research [1], 
where the authors proposed to combine genetic profiles of patients’ 
tumours with protein-protein interaction networks to uncover meaningful 
homogeneous subgroups, a method called Network Based Stratification 
(NBS). 
Before using this NBS method on our data, we studied the method by 
reproducing results from the original study. We are very grateful to the 
main authors who kindly provided online all the related data and code, 

and gave us invaluable input upon request. The authors of this study thus 
should not be blamed for the difficulty that we experienced in attempting 
to reproduce and to make more robust their study, as they did more to 
help reproduce their results than is generally done. Despite their help we 
experienced a number of difficulties that we document here, hoping that 
this report will help future researchers to improve the reproducibility of 
results and reusability of research products. 
The first step of our project was to execute the original method code with 
the given data: reproducibility. The programming code was written in 

MATLAB, an interpreted language originally developed for linear 
algebra computations which is easier and faster to write as well as more 
readable than compiled language such as C, making our reproducibility 
attempt easier. To improve execution speed, the original authors used a 
library for MATLAB using executable compiled code MEX file [13] 
callable from MATLAB: MTIMESX [14], a library with compiled code 
allowing acceleration of large matrix multiplication. MEX files however 
are specific to the architecture and have to be recompiled for each Oper-
ating System (OS). The original MEX file was initially developed for 

Linux. Since our lab was using Mac OS X Sierra, the compilation of this 
MEX file into a mac64 binary required a new version of MTIMESX. It 
was also necessary to install and to configure properly OpenMP [15], a 
development library for parallel computing. After this, the original 
MATLAB code was successfully run in our environment. 
These issues are classic, but may not be overcome by researchers with 
little experience in compilation or installation issues. For these reasons 
alone, many individuals may turn down the opportunity of reusing code. 
The next part will focus on code re-implementation, a procedure, which 

can help understanding the method, but can be even more costly 

2.2 Robustness: from MATLAB to Python, language and 
organization 

To fully master the method, adapt it to our data, and ease its reuse, we 

developed a complete open source toolkit of genomic stratification in 
Python [2]. Python is also an interpreted programming language, but 
contrary to MATLAB is free of use and has a GPL-compatible license 
[16]. This is particularly interesting for both robustness and generaliza-
bility. Recoding in another language in a different environment will lead 
to be some unavoidable problems such as variation in low level libraries 
(e.g. glibc): it is likely that the outcomes will vary even if the same 
algorithm is implemented. In addition, we rely on Python packages to 

perform visualization or linear algebra computations (e.g. Matplotlib, 
SciPy, NumPy), and results may depend on these packages ver-
sions.  Python is currently in a transitional period between two major 
versions 2 and 3. We chose to write the code in Python 3, which is the 
current recommendation. 

2.2.1 Metadata and file formats 

Even if the original code could be run, we had to handle several file 
formats to check and understand the structure of the original data. For 
instance the data on patients with cancer data was provided by The 
Cancer Genome (TCGA) [17] and made available in a MATLAB .mat 
file format. Thanks to SciPy, Python can load all versions through v7.2 

MATLAB files. To read v7.3 .mat files, we however needed an HDF5 
Python library. Moreover, the original authors had denoted download 
dates of patients’ data of TCGA, thereby clarifying source of data. But in 
the absence of structural metadata, it was not always obvious how to 
interpret patients’ dataset variables (e.g. patient ID, gene ID, phenotype). 
Fig 2 shows an analogy between robustness issues and road transport: 
driving in a different environment (e.g. OS), we attempt to obtain identi-
cal results (i.e. to reach the same location) using the same input data of 
TCGA (i.e. gasoline). But there is a difficult to transfer proposed method 

(i.e. engine) from one programming language to another (i.e. MATLAB 
and Python roads). 
 

Figure 2: Analogy between robustness issues and road transport. The aim is to 

achieve same output (i.e. to reach the same location) using published methods (i.e. 

engine). Despite the same input data (i.e. gasoline), we obtained different results due to 

different programming languages —e.g. MATLAB and Python— (i.e. different road-

ways) and environments (i.e. different vehicles). 

2.2.2 Codes and parameters 

Once the environment and file format issues were resolved, the code was 
finally executable with genetic data. Unfortunately, several attempts 
produced error messages. Alternatively, “unexpected” results were 
obtained: e.g. during the application of hierarchical clustering, we used 
the clustering tools of SciPy. Both SciPy and MATLAB (MathWorks) 
functions offer seven linkage methods, however, SciPy’s default option 

(single method) [18] differs from MATLAB’s default option (UPGMA 
or average method) [19], which was used in the original study. Another 
key example is the value of one of the most important parameters of the 
method, the graph regulator factor, which was not clarified in the origi-
nal paper. We believed that this factor had a constant value of 1.0 until 
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we found in the code that during iterations, its value was changing and 
converged to a high optimal value (~1800). Therefore, we obtained 
different results from the original NBS at the beginning (Fig 3). We 
observed heterogeneous subgroups instead of obtaining homogeneous 
clusters. No or little explanation on the parameter choices can explain 

variability in the results as we explored the possible parameters. More-
over, during our attempts to run the original code to understand the 
causes of the errors, we realized that some parts of the code were not run 
anymore (e.g. discarded work, remaining traces of debugging) which 
made the attempt to understand the implementation harder. 
Readers are proposed to reproduce those two confusion matrices (Fig 3) 
using different practical tools: GitHub, Docker and Jupyter/IPython 
notebook, which are further described below.  

Figure 3: Normalized confusion matrices between original and replicated results. 

Before (a) and after (b) applying appropriate value of graph regularization factor on NBS 

method. Each row or column corresponds to a subgroup of patients (here three sub-

groups). The diagonal elements show the frequency of correct classifications for each 

subgroup: a high value indicates a correct prediction. 

2.2.3 Jupyter/IPython 

During the re-cording process, we used an enhanced Python interpreter 
to debug: IPython, an interactive shell supporting both Python 2 and 3. 
Since the dataset is large and the execution takes a significant amount of 
time, we used IPython to re-run interactively some sub-sections of the 
script, which is one of the most helpful features. IPython can be inte-
grated in the web interface Jupyter Notebook, offering an advanced 
structure for mixing code and documentation. For instance, verifying 
intermediate results by plotting helped us to better understand the origi-
nal code. While the Jupyter/IPython notebook was therefore initially 

convenient, it does not scale well and is not well adapted to versioning. 
However, ability of mixing code with document text is very useful for 
tutorials: a user of the code can read documentation (docstring), text 
explanations, and see how to run the code, explore parameters and 
visualize results in the browser. Our work on NBS, as related here, can 
be reproduced with a Jupyter/IPython notebook available on our GitHub 
[2]. You can find more examples and several helpful links on this “gal-
lery of interesting Jupyter Notebooks” [20], which even contains a 
section about “Reproducible academic publications”. 

2.3 Reproducibility of Robustness: from Python to Py-
thon 

Besides Jupyter/IPython notebook, we used versioning tools like the git 
code version control system (VCS) to document the development of our 

Python code. Git is arguably one of the most powerful VCS, allowing 

easy development of branches and helping us to work together as a 
distributed team (Paris, Berkeley) on the same project. This project, 
StratiPy, is hosted on GitHub, a web-based Git repository hosting service 
[2]. While the original code was not available on GitHub, the main 
authors shared their code on a website. This should be sufficient for our 

purpose, but makes it less easy to collaborate on code. While working on 
our GitHub repository, several researchers from all over the world 
contacted us about our robustness experiment. Not only GitHub supports 
a better organization of projects, it also facilitates the collaboration of 
open-source software projects, thanks to several social network functions 
[21]. We tried to comply with open source coding standards and to learn 
how to efficiently use Git and GitHub. Both required considerable efforts 
on the short-term but brought clear benefits on the long-term, especially 
regarding collaboration and debugging.  

We then attempted to re-run and reproduce the results we obtained on 
another platform. While the Python code was developed under Mac OS 
X Sierra (10.12) we used an Ubuntu 16.04.1 (Xenial) computer to test 
the Python implementation. Some additional issues emerged. First, our 
initial documentation was not complete enough to know which packages 
were required and how to launch the code. Second, the code was very 
slow to the extent that it was impractical to run it on a laptop because the 
Numpy package had not been compiled with BLAS (Basic Linear Alge-
bra Subprograms), low-level routines performing basic vector and matrix 

operations. Last, there was (initially) no easy way to check whether the 
results obtained on a different architecture were the expected ones. We 
added documentation and tests on the results files md5sum to solve this. 
To summarize, although the reuse and reproducibility of the results of 
the developed package were improved, these were far from being opti-
mal. 

3 Potential solutions: from local to global 

3.1 Act locally: simple practices and available tools 

Given the observed difficulties, we draw some conclusions on this 
reproducibility case study experiment and suggest some practices and 
tools. In addition to this guidance, computer scientists are strongly 
encouraged to follow detailed advice of Wilson et al. such as modulariz-
ing and re-using code, unite testing, document design, data management, 

and project organization [4,22].  Sandve and colleagues [23] also suggest 
to keep the data provenance with recording all intermediate results. 

3.1.1 Environment 

Container technologies such as Docker [24], Vagrant [25], or Singularity 
[26,27] (easily works in cluster environments) are becoming a standard 
solution to installation issues. These rely however on competencies that 

we think few biologists possess today. Also, while the container will 
encapsulate everything needed for the software execution, it could be 
hard to develop in a container. For instance, running Jupyter/IPython 
notebooks in Docker’s container requires certain knowledge of computer 
science (e.g. advanced port forwarding), which can become a discourag-
ing task. Therefore, we decided to propose two options in our example 
implementation of reproducibility: 1) a step-by-step process to follow in 
a Jupyter/IPython notebook; or 2) a Docker container ready to be built 
and run. Nevertheless, mastering Docker –or other container tools– will 

become an important skill for computational reproducible researchers. 
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3.1.2 Metadata 

Standard metadata are vital for an efficient documentation of both data 
and software. In our example, we still lack the standard lexicon to docu-
ment the data as well as documenting the software: e.g. using HDF5 file 
instead of .mat file is more suitable to store patient's’ data. We however 
aim to follow the recommendations by Stodden et al. [28]: “Software 

metadata should include, at a minimum, the title, authors, version, 

language, license, Uniform Resource Identifier/DOI, software descrip-

tion (including purpose, inputs, outputs, dependencies), and execution 

requirements”. The more comprehensive is the metadata description, the 
more likely the reuse will be both efficient and appropriate [29]. 

3.1.3 Write readable code 

Anyone who has spent time to understand someone else’s code would 
advise some simple basic rules to help make the code readable and 

understandable.  
First, the structure of the program should be clear and easily accessi-

ble. Second, good concise code documentation and naming convention 
will help readability. Third, the code should not contain left-overs of 
previously tested solutions. When a solution takes a long time to com-
pute, an option to store it locally can be proposed. Using standard coding 
and documentation conventions (e.g. PEP 8 and PEP 257 in Python 
[30,31]) with detailed comments and references of papers makes the 
code more accessible. When an algorithm from another paper is used, 

any modification should be explained and discussed in the paper as well 
as in the code. All these remarks are not necessarily obvious especially if 
the developer is working on her/his own, and to some extent “writes for 
her/himself”. We advocate for researchers to write code “for their col-
leagues”, hence, the opinion and notice of co-working or partner labora-
tories should be very helpful. Furthermore, the collaboration between 
researchers working on different environments can more easily isolate 
reproducibility problems. In the future, journals may consider review of 
code as part of the standard review process. 

3.1.4 Test the code 

To check if the code is yielding a correct answer, software developers 
associate test suites (unit tests or integration tests) with their software. 
While we developed only a few tests in this project, we realize that this 
has a number of advantages, such as checking if the software installation 
seems correct, check if updates in the operating system impact the re-

sults, etc. This does not in general validate the method, but at least 
provides a basic check. In our case, we propose to check for the integrity 
of the data and for the results of some key processing. 

3.2 Think globally: from education to community stand-
ards 

3.2.1 Training the new generation of scientists to digital tools 
and practices 

Unlike theoretical and academic courses and projects, software testing 
systems are well developed in industry since software quality is not the 
priority in Academia [32]. For a student, discovering and learning this 
core system of reproducibility, possibly during an internship in coopera-
tion with industry, is a great opportunity for her/his future. Furthermore, 
as Internet applications in science are growing, networks of scientists 
and developers are forming and provide learning opportunities on the 

development practices. For instance, software developers have recently 
adopted “agile” practices and fast prototyping, test based development, 

etc. Some of these ideas and practices can —and should— be adapted to 
scientific software development.    

The training in coding is still too limited for biologists. Often, it is 
self-training, from searching answers on Stack Overflow or equivalent. 
Despite efforts by organizations such as software [33] or data carpentry 

[34] and the growing demand for ‘data scientists’ in life science, univer-
sity training on coding practices is still not enough generalized. The 
difficulty to access and understand code may lead to applying code 
blindly without checking the validity of the results: often, scientists may 
prefer to believe that the results are correct because of the time that 
would be needed to check the validity of the results. Mastering a package 
such that results are truly understood can take a long time, as it was the 
case in our experiment. 

Academia could instruct young scientists best practices for reproduci-

bility. For instance, Hothorn and Leisch organized a reproducibility 
workshop gathering mostly PhD students and young postdocs specialized 
in bioinformatics and biostatistics. Then they evaluated 100 random 
sample papers from Bioinformatics [5]. Their study revealed how such a 
workshop can raise young scientists awareness about “what makes 

reproduction easy or hard at first hand”. Indeed, they found out that 
only a third of the original papers and two-thirds for applications notes 
had given access to the source code of software used. 

3.2.2 Standard consensus dataset and workflow system 

We propose here that bioinformatics methods publications are systemati-
cally accompanied with a test dataset, code source and some basic tests. 
As the method is tested on new datasets, the number of tests of the 
method would increase in number and cover a wider range of applica-
tions. We give a first example with our NBS re-implementation. We 
develop below how this could generalize and what would be the benefit 

for the scientific community. In a sense, we propose to use the software 
development test framework idea but apply it to the scientific context.  

A schematic overview of workflow system is shown in Fig 4. The 
core of this system would be a standard consensus dataset used to vali-
date methods. For instance in the field of machine learning, standard 
image databases are widely used for training and testing (e.g. MNIST for 
handwritten digits [35]). In the case of our proposal, data could be classi-
fied in general categories such as binary, text, image (A, B, C in Fig 4 b), 
and with sub-categories to introduce criteria such as size, quantita-

tive/qualitative, discrete/continuous using a tagging system (e.g. A-2, B-
1, C-5 in Fig 4 b). Dataset could be issued from simulations or from 
acquisition, and would validate a method on a particular component. 
This workflow system will help scientists that cannot release their data 
because of privacy issues (Fig 4 a.1) (although these can often be over-
come) but also give access to data and tests to a wide community. Scien-
tists can use only standard data at the beginning of the project. And if 
there is no appropriate data, they have to suggest a new standard data. 

Roughly, we divide those who interact with scientific software or 

analysis code in two categories. First, the authors (“A”) who propose a 
method and need to verify its validity and usefulness with public and/or 
their own – often private – data. Second, the users (“U”, e.g. developers, 
engineers, bioinformaticians) who need to test and evaluate the proposed 
methods with other data.  

When authors launch a research about a method, this method must 
belong to a general category of methods (e.g. classification, regression) 
and could have a reproducibility profile, which will progressively be 
built by authors and users (Fig 4 b.3, b.4). Even the information of which 

method does or does not work with a standard data is a crucial informa-
tion for future work. During optimization of project, the programming 
code with guide should be accessible although authors do not publish. To 
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achieve current work, they can also post on preprint servers such as 
bioRxiv [36,37] associated with a GitHub repository by digital object 
identifiers (DOI). 

Furthermore, users who test and approve reproducibility on original or 

new data could be credited and recognized by the scientific and devel-
oper communities (i.e. Stack Overflow, GitHub). This workflow system 
thus could facilitate the gathering of diverse users of the science com-
munity. 
 

 

 
Figure 4: Working principles of Workflow system with private data. Figure 4a shows 

a classical workflow: (a.1) Authors (“A”) take private data; (a.2) Authors publish their 

method and corresponding outputs/results; (a.3) Users (“U”) having their own data find a 

relevant paper but will be lost in the labyrinth of reproducibility. Figure 4b shows 

workflow with standard consensus dataset: (b.1) If authors work with their own data, they 

must identify corresponding standard data tag(s) (e.g. A-2); (b.2) Users choose a method 

category (e.g. "Classification"); (b.3) Reproducibility profile with standard data is

progressively built with method upgrade throughout publication of the first version. Color 

corresponds to method category depending score and bar length corresponds to progres-

sion of replication test; (b.4) Users can test proposed method with other data standards 

and thus participate to enhancement of the reproducibility profile; (b.5) Thanks to the 

collective work on testing, the method could be optimized and authors can upgrade their 

initial paper (versioning). 

 

4 Conclusion and perspective 
Across the scientific fields, the reproducibility issue is seen as a growing 
concern. Before reusing a published method, we attempted to reproduce 
the initial results and recoded the method to have a deep understanding 
of it. The investment in time to verify a previously published method can 
be more important than the work needed to publish a new paper. Despite 
the willingness of the authors to share their tool and help us in our work, 
we have faced computational reproducibility and robustness problems 
due to compatibility between environments, programming languages and 
software versions, choice of parameters, etc. In addition to individual 

effort to write well documented and readable code, we recommend to use 
online repositories and tools to help other scientists in their exploration 
of the method: Docker for environment standardization, GitHub for code 
version management, and Jupyter notebooks for demonstration and 
tutorial [20,21,24]. Scientists are strongly encouraged to adopt such 
practices, not only for writing code but also manuscripts [4]. At the 
community level, we should enhance the cooperation between academic 
education and industry to foster a new generation of well-trained scien-
tists in software development. For instance, Academia-Industry Software 

Quality & Testing summit (AISTQ) has organised conference in order to 
encourage collaboration between Academia and Industry [38]. Here, we 
propose a workflow system where the community uses standard datasets 
to validate tools. The proposed method success on data profile will be 

evaluated continuously with new datasets. Eventually, data and software 
can be versioned and cited to give credit to the individuals who have 
contributed to these building blocks of Science. This workflow is not 
merely a reproducibility validation tool, it is an attempt to make research 
product more reusable by the community using an online platform, 

beyond the publication process. Such system could be seen as a generali-
sation of already existing workflow systems such as Galaxy or GATK, 
integrating data provenance [39,40]. Some top-down initiatives already 
provide some incentives for such a process i.e. Horizon 2020 (H2020) 
[41] project of the European Commission (EC) mandates open access of 
research data, while respecting security and liability. H2020 supports 
OpenAIRE [42], a technical infrastructure of the open access, which 
allows the interconnection between projects, publications, datasets, and 
author information across Europe. Thanks to common guidelines, 

OpenAIRE interoperates with other web-based generalist scientific data 
repositories such as Zenodo, hosted by CERN, which allows combining 
data and GitHub repository using DOI. The Open Science Framework 
also hosts data and software for a given project [43]. Respecting standard 
guidelines to transparently communicate the scientific work is a key step 
towards tackling irreproducibility and insures a robust scientific endeav-
or. 
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Key points 
� Main barrier for reproducibility is in the lack of compatibility 

between environments, programming languages, software ver-
sions, etc.  

� At the individual level, the key is in research practices such as 
proper code and data documentation and exploitation of online 
repositories and collaborative tools.  

� At the community level, we propose a workflow system where 
standard consensus datasets are used to validate new methods 
and foster their generalizability. 
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