

Experimenting with reproducibility in bioinformatics
Yang-Min KIM 1,2,3,4, *, Jean-Baptiste POLINE5 and Guillaume DUMAS 1,2,3,4
1Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France, 2CNRS UMR 3571 Genes, Synapses and Cognition,
Institut Pasteur, Paris, France, 3University Paris Diderot, Sorbonne Paris Cité, Paris, France, 4Centre de Bioinformatique, Biostatis-
tique et Biologie Intégrative (C3BI, USR 3756 Institut Pasteur and CNRS), Paris, France, 5Henry H. Wheeler Jr. Brain Imaging Cen-
ter, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA

*To whom correspondence should be addressed.

Abstract
Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of the scien-
tific activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study
of our attempt to reproduce a promising bioinformatics method [1] and illustrate the challenges to use a published method
for which code and data were available. First, we tried to re-run the analysis with the code and data provided by the au-
thors. Second, we reimplemented the method in Python to avoid dependency on a MATLAB licence and ease the execu-
tion of the code on HPCC (High-Performance Computing Cluster). Third, we assessed reusability of our reimplementation
and the quality of our documentation. Then, we experimented with our own software and tested how easy it would be to
start from our implementation to reproduce the results, hence attempting to estimate the robustness of the reproducibility.
Finally, in a second part, we propose solutions from this case study and other observations to improve reproducibility and
research efficiency at the individual and collective level.
Availability: last version of StratiPy (Python) with two examples of reproducibility are available at GitHub [2].
Contact: yang-min.kim@pasteur.fr

1 Background
The collective endeavour of science depends on researchers being able to
replicate the work of others. In a recent survey of 1,576 researchers, 70%
of them admitted having difficulty in reproducing experiments proposed
by other scientists [3]. For 50%, this reproducibility issue even concerns
with their own experiments. Despite the growing attention on the replica-
tion crisis in science [4,5], this controversial subject is far from being
new: already in the 17th century, scientists criticized the air pump in-

vented by physicist Robert Boyle because it was too complicated and
expensive to build [6].

Several concepts for reproducibility in computational science are
closely associated [7,8]. Here we define them as mentioned by K.
Whitaker [8]: obtaining the same results using same data and same code
is Reproducibility; if code is different, it is Robustness. If we used
different data but with the same code, it is Replicability. lastly, using
different data and different code is referred as Generalisability. Here we
will primarily elaborate on Reproducibility and Robustness. Indeed, it

takes great efforts and competence to overcome all the obstacles on the
path to reproduction. The process is costly in resources, both in time and
funding. In computational science, there are also many technical barriers
ranging from unavailable data to hardware infrastructure [9]. Even when
authors provide data and code, the outcome can vary either marginally or
fundamentally [10]. Tackling irreproducibility in bioinformatics thus
requires considerable effort beyond code and data availability. In most
cases, there is a significant gap between apparent executable work (Fig 1
- i.e. above water portion of iceberg) and necessary effort in practice (Fig

1 - i.e. full iceberg). Such effort is nevertheless necessary to increase the
consistency of the literature and efficiency of the scientific research
process. Indeed, behind reproducibility hides reusability.

Figure 1: Hidden reproducibility issues like underwater iceberg. Scientific journals

readers have the impression that they can almost see the full work of method. But in

reality, articles do not take into account adjustment and configuration for significant

replication in most cases. Therefore, there is a significant gap between apparent executa-

ble work (i.e. above water portion of iceberg) and necessary effort in practice (i.e. full

iceberg).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

2 Reproducibility and Robustness in bioin-
formatics: a case study

2.1 Reproducibility: from MATLAB to MATLAB, OS
and environment

Our team studies Autism Spectrum Disorders (ASD), a group of neuro-
developmental disorders well known for its heterogeneity. One of the
current challenges of our research is to uncover homogeneous subgroups
of patients (i.e. stratification) with more precise clinical outcomes,

improving their prognosis and treatment [11,12]. An interesting stratifi-
cation method was recently proposed in the field of cancer research [1],
where the authors proposed to combine genetic profiles of patients’
tumours with protein-protein interaction networks to uncover meaningful
homogeneous subgroups, a method called Network Based Stratification
(NBS).
Before using this NBS method on our data, we studied the method by
reproducing results from the original study. We are very grateful to the
main authors who kindly provided online all the related data and code,

and gave us invaluable input upon request. The authors of this study thus
should not be blamed for the difficulty that we experienced in attempting
to reproduce and to make more robust their study, as they did more to
help reproduce their results than is generally done. Despite their help we
experienced a number of difficulties that we document here, hoping that
this report will help future researchers to improve the reproducibility of
results and reusability of research products.
The first step of our project was to execute the original method code with
the given data: reproducibility. The programming code was written in

MATLAB, an interpreted language originally developed for linear
algebra computations which is easier and faster to write as well as more
readable than compiled language such as C, making our reproducibility
attempt easier. To improve execution speed, the original authors used a
library for MATLAB using executable compiled code MEX file [13]
callable from MATLAB: MTIMESX [14], a library with compiled code
allowing acceleration of large matrix multiplication. MEX files however
are specific to the architecture and have to be recompiled for each Oper-
ating System (OS). The original MEX file was initially developed for

Linux. Since our lab was using Mac OS X Sierra, the compilation of this
MEX file into a mac64 binary required a new version of MTIMESX. It
was also necessary to install and to configure properly OpenMP [15], a
development library for parallel computing. After this, the original
MATLAB code was successfully run in our environment.
These issues are classic, but may not be overcome by researchers with
little experience in compilation or installation issues. For these reasons
alone, many individuals may turn down the opportunity of reusing code.
The next part will focus on code re-implementation, a procedure, which

can help understanding the method, but can be even more costly

2.2 Robustness: from MATLAB to Python, language and
organization

To fully master the method, adapt it to our data, and ease its reuse, we

developed a complete open source toolkit of genomic stratification in
Python [2]. Python is also an interpreted programming language, but
contrary to MATLAB is free of use and has a GPL-compatible license
[16]. This is particularly interesting for both robustness and generaliza-
bility. Recoding in another language in a different environment will lead
to be some unavoidable problems such as variation in low level libraries
(e.g. glibc): it is likely that the outcomes will vary even if the same
algorithm is implemented. In addition, we rely on Python packages to

perform visualization or linear algebra computations (e.g. Matplotlib,
SciPy, NumPy), and results may depend on these packages ver-
sions. Python is currently in a transitional period between two major
versions 2 and 3. We chose to write the code in Python 3, which is the
current recommendation.

2.2.1 Metadata and file formats

Even if the original code could be run, we had to handle several file
formats to check and understand the structure of the original data. For
instance the data on patients with cancer data was provided by The
Cancer Genome (TCGA) [17] and made available in a MATLAB .mat
file format. Thanks to SciPy, Python can load all versions through v7.2

MATLAB files. To read v7.3 .mat files, we however needed an HDF5
Python library. Moreover, the original authors had denoted download
dates of patients’ data of TCGA, thereby clarifying source of data. But in
the absence of structural metadata, it was not always obvious how to
interpret patients’ dataset variables (e.g. patient ID, gene ID, phenotype).
Fig 2 shows an analogy between robustness issues and road transport:
driving in a different environment (e.g. OS), we attempt to obtain identi-
cal results (i.e. to reach the same location) using the same input data of
TCGA (i.e. gasoline). But there is a difficult to transfer proposed method

(i.e. engine) from one programming language to another (i.e. MATLAB
and Python roads).

Figure 2: Analogy between robustness issues and road transport. The aim is to

achieve same output (i.e. to reach the same location) using published methods (i.e.

engine). Despite the same input data (i.e. gasoline), we obtained different results due to

different programming languages —e.g. MATLAB and Python— (i.e. different road-

ways) and environments (i.e. different vehicles).

2.2.2 Codes and parameters

Once the environment and file format issues were resolved, the code was
finally executable with genetic data. Unfortunately, several attempts
produced error messages. Alternatively, “unexpected” results were
obtained: e.g. during the application of hierarchical clustering, we used
the clustering tools of SciPy. Both SciPy and MATLAB (MathWorks)
functions offer seven linkage methods, however, SciPy’s default option

(single method) [18] differs from MATLAB’s default option (UPGMA
or average method) [19], which was used in the original study. Another
key example is the value of one of the most important parameters of the
method, the graph regulator factor, which was not clarified in the origi-
nal paper. We believed that this factor had a constant value of 1.0 until

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Experimenting with reproducibility in bioinformatics

we found in the code that during iterations, its value was changing and
converged to a high optimal value (~1800). Therefore, we obtained
different results from the original NBS at the beginning (Fig 3). We
observed heterogeneous subgroups instead of obtaining homogeneous
clusters. No or little explanation on the parameter choices can explain

variability in the results as we explored the possible parameters. More-
over, during our attempts to run the original code to understand the
causes of the errors, we realized that some parts of the code were not run
anymore (e.g. discarded work, remaining traces of debugging) which
made the attempt to understand the implementation harder.
Readers are proposed to reproduce those two confusion matrices (Fig 3)
using different practical tools: GitHub, Docker and Jupyter/IPython
notebook, which are further described below.

Figure 3: Normalized confusion matrices between original and replicated results.

Before (a) and after (b) applying appropriate value of graph regularization factor on NBS

method. Each row or column corresponds to a subgroup of patients (here three sub-

groups). The diagonal elements show the frequency of correct classifications for each

subgroup: a high value indicates a correct prediction.

2.2.3 Jupyter/IPython

During the re-cording process, we used an enhanced Python interpreter
to debug: IPython, an interactive shell supporting both Python 2 and 3.
Since the dataset is large and the execution takes a significant amount of
time, we used IPython to re-run interactively some sub-sections of the
script, which is one of the most helpful features. IPython can be inte-
grated in the web interface Jupyter Notebook, offering an advanced
structure for mixing code and documentation. For instance, verifying
intermediate results by plotting helped us to better understand the origi-
nal code. While the Jupyter/IPython notebook was therefore initially

convenient, it does not scale well and is not well adapted to versioning.
However, ability of mixing code with document text is very useful for
tutorials: a user of the code can read documentation (docstring), text
explanations, and see how to run the code, explore parameters and
visualize results in the browser. Our work on NBS, as related here, can
be reproduced with a Jupyter/IPython notebook available on our GitHub
[2]. You can find more examples and several helpful links on this “gal-
lery of interesting Jupyter Notebooks” [20], which even contains a
section about “Reproducible academic publications”.

2.3 Reproducibility of Robustness: from Python to Py-
thon

Besides Jupyter/IPython notebook, we used versioning tools like the git
code version control system (VCS) to document the development of our

Python code. Git is arguably one of the most powerful VCS, allowing

easy development of branches and helping us to work together as a
distributed team (Paris, Berkeley) on the same project. This project,
StratiPy, is hosted on GitHub, a web-based Git repository hosting service
[2]. While the original code was not available on GitHub, the main
authors shared their code on a website. This should be sufficient for our

purpose, but makes it less easy to collaborate on code. While working on
our GitHub repository, several researchers from all over the world
contacted us about our robustness experiment. Not only GitHub supports
a better organization of projects, it also facilitates the collaboration of
open-source software projects, thanks to several social network functions
[21]. We tried to comply with open source coding standards and to learn
how to efficiently use Git and GitHub. Both required considerable efforts
on the short-term but brought clear benefits on the long-term, especially
regarding collaboration and debugging.

We then attempted to re-run and reproduce the results we obtained on
another platform. While the Python code was developed under Mac OS
X Sierra (10.12) we used an Ubuntu 16.04.1 (Xenial) computer to test
the Python implementation. Some additional issues emerged. First, our
initial documentation was not complete enough to know which packages
were required and how to launch the code. Second, the code was very
slow to the extent that it was impractical to run it on a laptop because the
Numpy package had not been compiled with BLAS (Basic Linear Alge-
bra Subprograms), low-level routines performing basic vector and matrix

operations. Last, there was (initially) no easy way to check whether the
results obtained on a different architecture were the expected ones. We
added documentation and tests on the results files md5sum to solve this.
To summarize, although the reuse and reproducibility of the results of
the developed package were improved, these were far from being opti-
mal.

3 Potential solutions: from local to global

3.1 Act locally: simple practices and available tools

Given the observed difficulties, we draw some conclusions on this
reproducibility case study experiment and suggest some practices and
tools. In addition to this guidance, computer scientists are strongly
encouraged to follow detailed advice of Wilson et al. such as modulariz-
ing and re-using code, unite testing, document design, data management,

and project organization [4,22]. Sandve and colleagues [23] also suggest
to keep the data provenance with recording all intermediate results.

3.1.1 Environment

Container technologies such as Docker [24], Vagrant [25], or Singularity
[26,27] (easily works in cluster environments) are becoming a standard
solution to installation issues. These rely however on competencies that

we think few biologists possess today. Also, while the container will
encapsulate everything needed for the software execution, it could be
hard to develop in a container. For instance, running Jupyter/IPython
notebooks in Docker’s container requires certain knowledge of computer
science (e.g. advanced port forwarding), which can become a discourag-
ing task. Therefore, we decided to propose two options in our example
implementation of reproducibility: 1) a step-by-step process to follow in
a Jupyter/IPython notebook; or 2) a Docker container ready to be built
and run. Nevertheless, mastering Docker –or other container tools– will

become an important skill for computational reproducible researchers.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

3.1.2 Metadata

Standard metadata are vital for an efficient documentation of both data
and software. In our example, we still lack the standard lexicon to docu-
ment the data as well as documenting the software: e.g. using HDF5 file
instead of .mat file is more suitable to store patient's’ data. We however
aim to follow the recommendations by Stodden et al. [28]: “Software

metadata should include, at a minimum, the title, authors, version,

language, license, Uniform Resource Identifier/DOI, software descrip-

tion (including purpose, inputs, outputs, dependencies), and execution

requirements”. The more comprehensive is the metadata description, the
more likely the reuse will be both efficient and appropriate [29].

3.1.3 Write readable code

Anyone who has spent time to understand someone else’s code would
advise some simple basic rules to help make the code readable and

understandable.
First, the structure of the program should be clear and easily accessi-

ble. Second, good concise code documentation and naming convention
will help readability. Third, the code should not contain left-overs of
previously tested solutions. When a solution takes a long time to com-
pute, an option to store it locally can be proposed. Using standard coding
and documentation conventions (e.g. PEP 8 and PEP 257 in Python
[30,31]) with detailed comments and references of papers makes the
code more accessible. When an algorithm from another paper is used,

any modification should be explained and discussed in the paper as well
as in the code. All these remarks are not necessarily obvious especially if
the developer is working on her/his own, and to some extent “writes for
her/himself”. We advocate for researchers to write code “for their col-
leagues”, hence, the opinion and notice of co-working or partner labora-
tories should be very helpful. Furthermore, the collaboration between
researchers working on different environments can more easily isolate
reproducibility problems. In the future, journals may consider review of
code as part of the standard review process.

3.1.4 Test the code

To check if the code is yielding a correct answer, software developers
associate test suites (unit tests or integration tests) with their software.
While we developed only a few tests in this project, we realize that this
has a number of advantages, such as checking if the software installation
seems correct, check if updates in the operating system impact the re-

sults, etc. This does not in general validate the method, but at least
provides a basic check. In our case, we propose to check for the integrity
of the data and for the results of some key processing.

3.2 Think globally: from education to community stand-
ards

3.2.1 Training the new generation of scientists to digital tools
and practices

Unlike theoretical and academic courses and projects, software testing
systems are well developed in industry since software quality is not the
priority in Academia [32]. For a student, discovering and learning this
core system of reproducibility, possibly during an internship in coopera-
tion with industry, is a great opportunity for her/his future. Furthermore,
as Internet applications in science are growing, networks of scientists
and developers are forming and provide learning opportunities on the

development practices. For instance, software developers have recently
adopted “agile” practices and fast prototyping, test based development,

etc. Some of these ideas and practices can —and should— be adapted to
scientific software development.

The training in coding is still too limited for biologists. Often, it is
self-training, from searching answers on Stack Overflow or equivalent.
Despite efforts by organizations such as software [33] or data carpentry

[34] and the growing demand for ‘data scientists’ in life science, univer-
sity training on coding practices is still not enough generalized. The
difficulty to access and understand code may lead to applying code
blindly without checking the validity of the results: often, scientists may
prefer to believe that the results are correct because of the time that
would be needed to check the validity of the results. Mastering a package
such that results are truly understood can take a long time, as it was the
case in our experiment.

Academia could instruct young scientists best practices for reproduci-

bility. For instance, Hothorn and Leisch organized a reproducibility
workshop gathering mostly PhD students and young postdocs specialized
in bioinformatics and biostatistics. Then they evaluated 100 random
sample papers from Bioinformatics [5]. Their study revealed how such a
workshop can raise young scientists awareness about “what makes

reproduction easy or hard at first hand”. Indeed, they found out that
only a third of the original papers and two-thirds for applications notes
had given access to the source code of software used.

3.2.2 Standard consensus dataset and workflow system

We propose here that bioinformatics methods publications are systemati-
cally accompanied with a test dataset, code source and some basic tests.
As the method is tested on new datasets, the number of tests of the
method would increase in number and cover a wider range of applica-
tions. We give a first example with our NBS re-implementation. We
develop below how this could generalize and what would be the benefit

for the scientific community. In a sense, we propose to use the software
development test framework idea but apply it to the scientific context.

A schematic overview of workflow system is shown in Fig 4. The
core of this system would be a standard consensus dataset used to vali-
date methods. For instance in the field of machine learning, standard
image databases are widely used for training and testing (e.g. MNIST for
handwritten digits [35]). In the case of our proposal, data could be classi-
fied in general categories such as binary, text, image (A, B, C in Fig 4 b),
and with sub-categories to introduce criteria such as size, quantita-

tive/qualitative, discrete/continuous using a tagging system (e.g. A-2, B-
1, C-5 in Fig 4 b). Dataset could be issued from simulations or from
acquisition, and would validate a method on a particular component.
This workflow system will help scientists that cannot release their data
because of privacy issues (Fig 4 a.1) (although these can often be over-
come) but also give access to data and tests to a wide community. Scien-
tists can use only standard data at the beginning of the project. And if
there is no appropriate data, they have to suggest a new standard data.

Roughly, we divide those who interact with scientific software or

analysis code in two categories. First, the authors (“A”) who propose a
method and need to verify its validity and usefulness with public and/or
their own – often private – data. Second, the users (“U”, e.g. developers,
engineers, bioinformaticians) who need to test and evaluate the proposed
methods with other data.

When authors launch a research about a method, this method must
belong to a general category of methods (e.g. classification, regression)
and could have a reproducibility profile, which will progressively be
built by authors and users (Fig 4 b.3, b.4). Even the information of which

method does or does not work with a standard data is a crucial informa-
tion for future work. During optimization of project, the programming
code with guide should be accessible although authors do not publish. To

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Experimenting with reproducibility in bioinformatics

achieve current work, they can also post on preprint servers such as
bioRxiv [36,37] associated with a GitHub repository by digital object
identifiers (DOI).

Furthermore, users who test and approve reproducibility on original or

new data could be credited and recognized by the scientific and devel-
oper communities (i.e. Stack Overflow, GitHub). This workflow system
thus could facilitate the gathering of diverse users of the science com-
munity.

Figure 4: Working principles of Workflow system with private data. Figure 4a shows

a classical workflow: (a.1) Authors (“A”) take private data; (a.2) Authors publish their

method and corresponding outputs/results; (a.3) Users (“U”) having their own data find a

relevant paper but will be lost in the labyrinth of reproducibility. Figure 4b shows

workflow with standard consensus dataset: (b.1) If authors work with their own data, they

must identify corresponding standard data tag(s) (e.g. A-2); (b.2) Users choose a method

category (e.g. "Classification"); (b.3) Reproducibility profile with standard data is

progressively built with method upgrade throughout publication of the first version. Color

corresponds to method category depending score and bar length corresponds to progres-

sion of replication test; (b.4) Users can test proposed method with other data standards

and thus participate to enhancement of the reproducibility profile; (b.5) Thanks to the

collective work on testing, the method could be optimized and authors can upgrade their

initial paper (versioning).

4 Conclusion and perspective
Across the scientific fields, the reproducibility issue is seen as a growing
concern. Before reusing a published method, we attempted to reproduce
the initial results and recoded the method to have a deep understanding
of it. The investment in time to verify a previously published method can
be more important than the work needed to publish a new paper. Despite
the willingness of the authors to share their tool and help us in our work,
we have faced computational reproducibility and robustness problems
due to compatibility between environments, programming languages and
software versions, choice of parameters, etc. In addition to individual

effort to write well documented and readable code, we recommend to use
online repositories and tools to help other scientists in their exploration
of the method: Docker for environment standardization, GitHub for code
version management, and Jupyter notebooks for demonstration and
tutorial [20,21,24]. Scientists are strongly encouraged to adopt such
practices, not only for writing code but also manuscripts [4]. At the
community level, we should enhance the cooperation between academic
education and industry to foster a new generation of well-trained scien-
tists in software development. For instance, Academia-Industry Software

Quality & Testing summit (AISTQ) has organised conference in order to
encourage collaboration between Academia and Industry [38]. Here, we
propose a workflow system where the community uses standard datasets
to validate tools. The proposed method success on data profile will be

evaluated continuously with new datasets. Eventually, data and software
can be versioned and cited to give credit to the individuals who have
contributed to these building blocks of Science. This workflow is not
merely a reproducibility validation tool, it is an attempt to make research
product more reusable by the community using an online platform,

beyond the publication process. Such system could be seen as a generali-
sation of already existing workflow systems such as Galaxy or GATK,
integrating data provenance [39,40]. Some top-down initiatives already
provide some incentives for such a process i.e. Horizon 2020 (H2020)
[41] project of the European Commission (EC) mandates open access of
research data, while respecting security and liability. H2020 supports
OpenAIRE [42], a technical infrastructure of the open access, which
allows the interconnection between projects, publications, datasets, and
author information across Europe. Thanks to common guidelines,

OpenAIRE interoperates with other web-based generalist scientific data
repositories such as Zenodo, hosted by CERN, which allows combining
data and GitHub repository using DOI. The Open Science Framework
also hosts data and software for a given project [43]. Respecting standard
guidelines to transparently communicate the scientific work is a key step
towards tackling irreproducibility and insures a robust scientific endeav-
or.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Y.Kim et al.

Key points
� Main barrier for reproducibility is in the lack of compatibility

between environments, programming languages, software ver-
sions, etc.

� At the individual level, the key is in research practices such as
proper code and data documentation and exploitation of online
repositories and collaborative tools.

� At the community level, we propose a workflow system where
standard consensus datasets are used to validate new methods
and foster their generalizability.

Funding
This work was supported by the Institut Pasteur; Centre National de la
Recherche Scientifique; University Paris Diderot; the Conny-Maeva
Charitable Foundation; the Cognacq-Jay Foundation; the Orange Foun-
dation; Fondation pour la Recherche Médicale; the GenMed Labex; and

the BioPsy Labex. The research leading to these results has received
funding from the H2020 research program COSYN.

References
1. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of

tumor mutations. Nat. Methods [Internet]. 2013 [cited 2015 Aug 12];10. Available

from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/

2. Stratipy: Graph regularized nonnegative matrix factorization (GNMF) in Python

[Internet]. GHFC; 2017. Available from: https://github.com/GHFC/Stratipy

3. Baker M. 1,500 scientists lift the lid on reproducibility. Nat. News.

2016;533:452.

4. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough

practices in scientific computing. PLOS Comput. Biol. 2017;13:e1005510.

5. Hothorn T, Leisch F. Case studies in reproducibility. Brief. Bioinform.

2011;12:288–300.

6. Shapin S, Schaffer S. Leviathan and the Air-Pump: Hobbes, Boyle, and the

Experimental Life (New in Paper). Princeton University Press; 2011.

7. Peng RD. Reproducible research in computational science. Science.

2011;334:1226–7.

8. Whitaker K. Showing your working: a how to guide to reproducible research

[Internet]. 2017. Available from:

https://figshare.com/articles/Showing_your_working_a_how_to_guide_to_reprodu

cible_research/5443201

9. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhanc-

ing reproducibility and accessibility. Nat. Rev. Genet. 2012;13:667–72.

10. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle econom-

ic growth? A critique of Reinhart and Rogoff. Camb. J. Econ. 2014;38:257–79.

11. Bourgeron T. From the genetic architecture to synaptic plasticity in autism

spectrum disorder. Nat. Rev. Neurosci. 2015;16:551–63.

12. Loth E, Spooren W, Ham LM, Isaac MB, Auriche-Benichou C, Banaschewski

T, et al. Identification and validation of biomarkers for autism spectrum disorders.

Nat. Rev. Drug Discov. 2016;15:70–73.

13. Introducing MEX Files - MATLAB & Simulink - MathWorks France [Inter-

net]. [cited 2017 Aug 18]. Available from:

https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-

files.html?requestedDomain=www.mathworks.com

14. Tursa. MTIMESX - Fast Matrix Multiply with Multi-Dimensional Support -

File Exchange - MATLAB Central [Internet]. 2009 [cited 2017 Apr 24]. Available

from: http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-

matrix-multiply-with-multi-dimensional-support

15. tim.lewis. Specifications [Internet]. OpenMP. [cited 2017 Aug 18]. Available

from: http://www.openmp.org/specifications/

16. Python Software Foundation. History and License — Python 3.6.1 documenta-

tion [Internet]. 2017 [cited 2017 Apr 24]. Available from:

https://docs.python.org/3/license.html#licenses-and-acknowledgements-for-

incorporated-software

17. TCGA [Internet]. Cancer Genome Atlas - Natl. Cancer Inst. [cited 2017 Apr

24]. Available from: https://cancergenome.nih.gov/

18. Eads. Hierarchical clustering (scipy.cluster.hierarchy) — SciPy v0.19.0 Refer-

ence Guide [Internet]. 2007 [cited 2017 Apr 24]. Available from:

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

19. Hierarchical Clustering - MATLAB & Simulink - MathWorks France [Inter-

net]. [cited 2017 Apr 24]. Available from:

https://fr.mathworks.com/help/stats/hierarchical-clustering-12.html

20. A gallery of interesting Jupyter Notebooks · jupyter/jupyter Wiki [Internet].

[cited 2017 Aug 18]. Available from: https://github.com/jupyter/jupyter/wiki/A-

gallery-of-interesting-Jupyter-Notebooks

21. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version

Control with Git and GitHub. PLoS Comput Biol. 2016;12:e1004668.

22. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al.

Best Practices for Scientific Computing. Eisen JA, editor. PLoS Biol.

2014;12:e1001745.

23. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproduc-

ible Computational Research. Bourne PE, editor. PLoS Comput. Biol.

2013;9:e1003285-4.

24. Boettiger C. An introduction to Docker for reproducible research, with exam-

ples from the R environment. ACM SIGOPS Oper. Syst. Rev. 2015;49:71–9.

25. Introduction [Internet]. Vagrant HashiCorp. [cited 2017 Oct 13]. Available

from: https://www.vagrantup.com/intro/index.html

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

Experimenting with reproducibility in bioinformatics

26. Singularity | Singularity [Internet]. [cited 2017 Oct 13]. Available from:

http://singularity.lbl.gov/

27. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for

mobility of compute. PLOS ONE. 2017;12:e0177459.

28. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhanc-

ing reproducibility for computational methods. Science. 2016;354:1240–1.

29. Hill SL. How do we know what we know? Discovering neuroscience data sets

through minimal metadata. Nat. Rev. Neurosci. 2016;17:735–6.

30. PEP 8 -- Style Guide for Python Code [Internet]. Python.org. [cited 2017 Aug

21]. Available from: https://www.python.org/dev/peps/pep-0008/

31. PEP 257 -- Docstring Conventions [Internet]. Python.org. [cited 2017 Aug 21].

Available from: https://www.python.org/dev/peps/pep-0257/

32. Jasny BR, Wigginton N, McNutt M, Bubela T, Buck S, Cook-Deegan R, et al.

Fostering reproducibility in industry-academia research. Science. 2017;357:759–

61.

33. Software Carpentry [Internet]. Softw. Carpentry. [cited 2017 Aug 22]. Availa-

ble from: http://software-carpentry.org//index.html

34. Data Carpentry [Internet]. Data Carpentry. [cited 2017 Aug 22]. Available

from: http://www.datacarpentry.org/

35. MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris

Burges [Internet]. [cited 2017 Aug 23]. Available from:

http://yann.lecun.com/exdb/mnist/

36. Bourne PE, Polka JK, Vale RD, Kiley R. Ten simple rules to consider regarding

preprint submission. PLOS Comput. Biol. 2017;13:e1005473.

37. Preprints in biology. Nat. Methods. 2016;13:277–277.

38. Academia – Industry Software Quality & Testing summit - ISTQB® Interna-

tional Software Testing Qualifications Board [Internet]. [cited 2017 Aug 23].

Available from: http://www.istqb.org/special-initiatives/istqb-conference-network-

2istqb-conference-network-academia/academia-%E2%80%93-industry-software-

quality-testing-summit.html

39. Kanwal S, Khan FZ, Lonie A, Sinnott RO. Investigating reproducibility and

tracking provenance – A genomic workflow case study. BMC Bioinformatics.

2017;18:337.

40. Karim MR, Michel A, Zappa A, Baranov P, Sahay R, Rebholz-Schuhmann D.

Improving data workflow systems with cloud services and use of open data for

bioinformatics research. Brief. Bioinform. [Internet]. [cited 2017 Jul 31]; Available

from:

https://academic.oup.com/bib/article/doi/10.1093/bib/bbx039/3737318/Improving-

data-workflow-systems-with-cloud

41. Open Research Data in Horizon 2020 [Internet]. [cited 2017 Aug 23]. Available

from: https://ec.europa.eu/research/press/2016/pdf/opendata-

infographic_072016.pdf

42. Open Access in Horizon 2020 - EC funded projects [Internet]. [cited 2017 Aug

23]. Available from:

https://www.openaire.eu/edocman?id=749&task=document.viewdoc

43. Foster ED, Deardorff A. Open Science Framework (OSF). J. Med. Libr. Assoc.

JMLA. 2017;105:203–6.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/143503doi: bioRxiv preprint

https://doi.org/10.1101/143503
http://creativecommons.org/licenses/by/4.0/

