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Abstract  

Heart failure is  a leading cause of  mortality, yet our understanding of  the genetic interactions  underlying 

this  disease remains  incomplete.  Here, we harvested  1352 healthy and  failing human  hearts  directly 

from transplant center operating rooms, and  obtained  genome-wide genotyping and  gene expression 

measurements  for a subset of  313.  We built failing and  non-failing cardiac regulatory gene networks, 

revealing important regulators  and  cardiac expression  quantitative trait loci  (eQTLs).  PPP1R3A emerged 

as  a novel  regulator whose network  connectivity changed  significantly between  health  and  disease. 

Time-course RNA  sequencing after PPP1R3A  knock-down  validated  network-based  predictions  of 

metabolic pathway expression, increased  cardiomyocyte size, and  perturbed  respiratory metabolism. 

Mice lacking PPP1R3A  were  protected  against pressure-overload  heart failure.  We present a global  gene 

interaction  map  of  the human  heart failure transition, identify new cardiac eQTLs, and  demonstrate the 

discovery potential  of  disease-specific networks  through  the description  of  PPP1R3A as  a novel  central 

protective  regulator in  heart failure.  
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Heart failure (HF)  is  a life-threatening syndrome characterized  by an  inability of  the heart to  meet the 

metabolic demands  of  the body and  costs  the US  more than  $34 billion  a year to  treat 6 million 

patients. 1,2  Despite this, the underlying molecular mechanisms  remain  poorly understood  and  the few 

approved  therapeutics  target maladaptive compensatory mechanisms  rather than  proximate molecular 

mechanisms  3,4.  

Studies  of  gene expression  in  heart failure have focused  predominantly on  determining transcriptional 

signatures  in  small  numbers  of  diseased  human  hearts  or have used  animal  models  to  examine changes 

in  established  pathways 5–9.  These efforts  have revealed  changes  in  gene  expression  of  key sarcomeric, 

calcium cycling, and  metabolic genes.  However, due to  the lack of  a comprehensive gene  regulatory 

network  of  the failing heart, it remains  unclear how these differentially expressed  genes  interact and  to 

what extent they are  causal  for disease.  The lack of  expansive cardiac gene expression  measurements  in 

sufficient numbers  of  human  tissues  has  precluded  the creation  of  an  interaction  map  of  the failing 

heart.  In  addition, because of  the significant logistical  challenge of  harvesting healthy hearts, very few 

studies  have included  a non-failing control  group, making conclusions  regarding the transition  to  heart 

failure hard  to  draw.  Finally, the high  metabolic rate of  the heart limits  the utility of  tissue collected 

post-mortem, such  as  that from public resources  such  as  GTEx 10–12, since gene  expression  programs  are 

rapidly altered  in  an  environment of  high  oxidative and  nitrosative stress  13. 

Results 

Real  time harvesting of transplant hearts yields high-quality transcriptomic measurements 

The MAGnet consortium was  founded  to  establish  best practices  for the harvesting of  human  cardiac 

tissue (see Online Methods)  and  to  explore the genetic landscape of  cardiac gene expression  7,13,14.  Using 

this  consensus  protocol, we obtained  1352 human  cardiac samples  and  chose a subset of  313 hearts, 

including 177 failing hearts  collected  immediately post-transplantation  and  136 healthy donor controls 

that were  suitable for transplantation  but did  not reach  a recipient due to  logistical  reasons.  We 

measured  left-ventricular genome-wide gene  expression  and  genotyping of  these samples  and  corrected 

the measurements  for known  covariates  (see  Supplementary Methods).   We assessed  the quality of 

these measurements  in  several  ways.  First,  we found  that disease status  was  the dominant source of 

variation  suggesting no  major confounding sources  of  variation  (Figure 1A).  Second, we confirmed 

enhanced  expression  of  NPPA and  NPPB , depletion  of  SERCA2A, and  isoform switch  from MYH7 towards 

MYH6 expression  --  established  signatures  of  heart failure (Supplemental  Figures  1A and  B).  Finally, since 
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our sample collection  was  done on-site immediately before or after cardiac transplantation, unlike 

post-mortem samples, we were  able to  investigate whether gene  programs  involved  with  oxidative 

stress  were  unperturbed.  We compared  oxidative stress  gene  expression  in  our samples  to  left 

ventricular sample data in  GTEX, collected  post-mortem, (data obtained  from the recount2 database 15) 

and  found  that our samples  conserved  comparable contractility gene expression  but had  significantly 

less  oxidative gene  expression  and  less  perturbation  in  other metabolic pathways  (Supplemental  Figure 

1C).  Having established  the quality of  our data, we limited  our downstream analyses  to  the top  40% 

most variable genes  (n=7960). 

The  cardiac  gene co-expression map exhibits a drastic change of regulators in heart failure 

We  inferred  undirected, cohort-specific gene co-expression  networks.  Gene regulatory network 

inference from co-expression  is  a challenging problem that no  single method  solves  adequately in  all 

contexts.  Therefore, we tested  four widely used  methods: ARACNE  16, inverse covariance estimation  via 

the Joint Graphical  LASSO (JGL)  17, the ZScore method  18, and  the standard  gene-by-gene Pearson 

correlation.  To  evaluate the resulting networks, we looked  at the connectivity patterns  of  known 

transcription  factors.  Given  their role in  transcriptional  regulation, we expected  them to  be more 

connected  to  other genes  than  most genes.  We therefore  tested  how many known  transcription  factors 

were  significantly connected  in  all  networks  and  all  methods  (Z  test, FDR cutoff  0.05 using the 

Benjamini-Hochberg method).  While all  methods  showed  significant connectivity for similar numbers  of 

transcription  factors, Pearson  correlation  yielded  the combined  highest number of  transcription  factor 

regulators  (Figure 1B).  We therefore  chose the Pearson  correlation  networks  for subsequent analyses. 

Between  the  heart failure and  non-failing control  networks, known  regulators  changed  significantly.  The 

number of  regulators  that were highly connected  was  greater in  the control  network (Figure 1D)  and  the 

top  20 most connected  regulators  were different between  networks  (Figure 1E).  We found  that the 

highly connected  regulators  of  both  networks  had  known  co-expression, physical  interaction, and  shared 

protein  domain  relationships  (Supplemental  Figure 2B).  

Both  networks  formed  cohesive gene  modules  as  apparent through  a node embedding visualization  19 

and  Birch  clustering (Figure 1E).  Each  group  of  genes  was  specifically enriched  with  functional 

annotations  as  revealed  by enrichR 20, with  the heart failure modules  having more diversity of  signaling 

and  metabolic annotations. 
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We  then  manually curated  sets  of  genes  representing five key processes  and  cellular structures  involved 

in  heart failure (metabolic, sarcomeric,  electric-contraction  (EC)  coupling, cell  adhesion, and  cardiac 

remodeling).  Network connectivity changed  between  both  networks: the failing heart network saw a 

general  rewiring  in  connectivity within  and  without these gene  sets  (Figure 2), with  EC  coupling genes 

gaining connectivity with  cell  adhesion  genes  but losing connectivity with  sarcomeric, and  cardiac 

remodeling (Figure 2A,  red); metabolic genes  gaining a few specific ‘hubs’ such  as  the protein 

phosphatase 1 catalytic and  regulatory subunits  ( PPP1CC, PPP1R1A , and  PPP1R3A/B/C )  and  the muscle 

6-phosphofructokinase PFKM  in  the heart failure network  (Figure 2B,  blue); cell  adhesion  gene observing 

increase in  connectivity within  its  own  genes  but loss  of  connectivity with  others  in  heart failure (Figure 

2C, purple); and  sarcomeric and  cardiac remodeling genes  observing an  increase in  connectivity 

throughout other processes  (Figure 2D  and  2E  orange and  green,  respectively). 

Network-enhanced  expression profiles reveal novel cis and trans cardiac eQTLs 

We  then  leveraged  genome-wide  genotypes  to  find  gene-expression-controlling loci  (eQTLs)  in  each 

cohort.  To  increase power for finding significant eQTLs, we applied  graph  convolution  to  the gene 

expression  measurements  prior to  association  testing (Supplementary Methods).  We then  used 

QTLtools  to  perform association  testing for each  cohort separately (Online Methods).   We found  that the 

heart failure cohort had  more associated  eQTLs  than  the control  group  (867 vs  416, respectively, 

Supplementary Files  S1 and  S2); as  expected  these eQTLs  showed  proximity to  known  transcription 

factor binding sites  (Figure 3A).  We then  tested  these eQTLs  for enrichment of  regulatory associations 

using RegulomeDB, a database of  known  and  predicted  regulatory regions  of  the genome 21.  Here  again, 

the heart failure cohort had  higher number of  eQTLs  with  regulatory annotation  than  the control  group 

(356/867 [43%] and  165/416 [40%] of  variants,  for failing vs  control, respectively,  had  some adjacent 

regulatory signature and  were predicted  for transcription  factor binding (Figure S3).   We then  compared 

our eQTLs  with  those found  by the GTEx project.  Our set of  eQTLs  contained  hundreds  of  novel 

assoaciations  while overlapping known  associations  for cardiac left ventricular tissue (431/867 [50% 

novel  associations] for the heart failure group  and  141/416 [34% novel  associations] for the control 

group;Figure 3B).  

To  assess  the physiological  impact of  our eQTLs, we verified  whether these  loci  overlapped 

genome-wide association  study (GWAS)  associations.  Many of  our eQTLs  were replicated  in  several 

GWAS  results.  In  particular 94 of  the failing heart eQTLs  replicated  in  the GWAS  catalog 22  and  had 

associations  with  sudden  cardiac arrest, heart rate  variability, and  coronary heart disease among other 
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diseases/traits  (Supplementary file S3), whereas   49 of  the non-failing control  eQTLs  had  associations  in 

the catalog, including QT  interval  and  heart rate variability traits  (Supplementary file S4).  

We  then  sought to  find  modules  of  coordinating genetic loci  and  associated  networks  of  genes 

within  these associations  by finding non-trivial  connected  components  (i.e.  with  more than  3 nodes) 

within  the bipartite association  graph  of  variants  and  genes.  To  expand  our view of  the possible 

downstream influence of  the variants  in  these modules, we included  genes  significantly connected  in 

our networks  ( r greater than  0.7)  to  the genes  controlled  by these variants.  We found  4 and  12 of  these 

variant-gene association  modules  in  the failing and  control  groups  respectively (Figures  S4 and  S5). 

Notably, we found  that three eQTLs, r10492099,  rs7314608,  and  rs4763223,  were  within  a region 

enriched  with  predicted  histone modifications  and  controlled  a network of  several  TAS2R  members   in 

cis, a family of  G protein-coupled  receptors, in  both  failing and  control  groups  (Figure 3C).  These 

associations, prevalent in  both  cohorts, highlight a common  module of  G protein-coupled  receptors  that 

have been  previously observed  to  be expressed  in  the healthy and  failing heart 23,24  and  that may play a 

role in  contraction  25.  

Another interesting finding included  rs11065951, associated  with  the cell  cycle checkpoint gene 

RAD9B  and  protein  phosphatase 1 catalytic subunit PPP1CC that were  strongly connected  with 

enzymatic genes  involved  in  protein  synthesis  and  proliferation  in  the heart failure group  (Figure 3D). 

Protein  phosphatase 1 is  thought to  be jointly regulating metabolic and  proliferative process  26  and  this 

network  of  associations  highlights  its  role in  heart failure 27.   Finally, we found  a large network  of  genes 

that were  highly correlated  with  the PARP9  and  PARP14  polymerase genes,  which  were associated  with 

the rs6758280 variant in  the heart failure group  (Figure 3E).  These polymerases  have been  found  as 

regulators  of  the macrophage response in  vascular cells  28  .  The extended  association  network contains 

several  genes  whose  post-translational  modifications  are regulated  by PARP9  and  PARP14  .  These 

include STAT1 and  STAT2, genes  known  to  modulate the immune response, highlighting the 

up-regulation  of  these processes  during heart failure. 

In  summary,  our heart transplant cardiac samples  and  inferred  gene co-expression  networks 

enabled  us  to  find  several  novel  cardiac eQTLs  in  the failing and  non-failing heart.  Many of  the eQTL 

variants  were  also  associated  with  cardiac phenotypes  in  GWAS  and  some are  associated  with  genes  in 

highly-connected  parts  of  the co-expression  network, suggesting coordinated  regulation. 
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Network modeling identifies genes with differential regulatory potential in heart failure 

Next,  we used  our networks’ topology to  identify and  prioritize genes  that were  differentially connected 

between  the  failing and  control  heart networks.  We achieved  this  via two  approaches: i)  examining 

changes  for each  gene  in  its  local  network connectivity from control  to  failing networks, and  ii) 

examining changes  of  a gene’s  connectivity globally in  known  pathways.  We defined  local  connectivity 

(LC)  as  a per gene difference in  the normalized  number of  edges  from the control  to  failing networks. 

Global  connectivity (GC)  was  defined  as  the differential  enrichment of  known  heart failure pathways  in  a 

gene’s  neighborhood, comparing failing to  control, with  higher GC  meaning a gain  of  pathway 

associations  in  heart failure (Supplementary Figure S6 ).  

Using GC  and  LC, we assigned  each  gene to  one of  four categories.   Non-hubs  (N-hubs)  were genes  with 

negative  LC  and  low GC  that includes  genes  that lose co-expression  with  other genes  in  heart failure in 

comparison  to  control  and  have no  change in  how their neighbors  are associated  with  known  pathways. 

Local  hubs  (L-hubs)  had  high  LC  but low GC, indicating gain  of  gene co-expression  but with  genes  that 

possessed  similar pathway associations.  Pathway hubs  (P-hubs)  were genes  with   high  GC  but  negative 

LC, genes  with  a significant rewiring in  pathways  but losing local  connectivity in  the process.  Finally, 

coordinated  hubs  (C-hubs)  had  both  high  GC  and  LC, genes  that gain  both  connectivity and  pathway 

function  (Figure 4A).  

We  plotted  gene-wise local  and  global  connectivity metrics  against each  other in  a scatter plot (Figure 

4B)  to  reveal  genes  in  these  network  roles  (N-hubs, lower-right quadrant; L-hubs, upper-left quadrant; 

P-hubs, lower-right quadrants; and  E-hubs, upper-right quadrant).  Ranking by any of  the global  and  local 

connectivity metrics  gave  an  informative list of  genes  that transitioned  towards  centrality in  the failing 

state and  are enriched  in  OMIM/KEGG cardiomyopathy terms  and  pathways  (hypertrophic and  dilated 

cardiomyopathy KEGG pathway and  OMIM terms, test p-values  < 0.001).  This  includes  the myosin  heavy 

chain  7 MYH7, myosin  binding protein  C3 MYBPC3, LIM domain  binding LDB3, and   nebulette NEBL  – 

genes  that have  previously been  implicated  in  the Mendelian  cardiac muscle diseases, hypertrophic 

cardiomyopathy and  dilated  cardiomyopathy 29,30  (red  genes,  Figure 4B).  Particularly, we noted  that 

several  genes  with  highest differential  global  connectivity regulated  heart failure related  pathways 

across  several  processes  including metabolism, muscle contraction, and  cardiomyopathy-related  genes 

(Figure 4C).   In  contrast, prioritization  by differential  gene expression  did  not reveal  many genes 

genetically associated  with  cardiovascular disease (1 of  the top  20 were  associated  with  cardiac 
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pathologies  compared  to  7 out of  the top  20 for the connectivity-derived  list – a significant enrichment 

difference [Fisher exact test p-value < 0.001]). 

Among those genes  whose network  topology was  maximally changed  between  failing and  control 

human  heart tissue was  protein  phosphatase 1 regulatory subunit 3A ( PPP1R3A ; a P-hub  with  high  GC), 

which  encodes  a muscle-specific regulatory subunit of  protein  phosphatase 1 (PP1)  31  and  has  not been 

previously associated  with  heart failure.  To  examine the importance of  PPP1R3A  to  cardiomyocyte 

hypertrophy across  cardiomyopathic etiologies, we also  examined  its  importance in  the HCM pathway 

(KEGG), and  found  that its  differential  connectivity to  the hypertrophic cardiomyopathy pathway (Figure 

4D)  exceeded  even  that of  MYH7 (Figure 4E), an  exemplar HCM gene.  Additionally, we noted  that 

connectivity of  PPP1R3A  to  our lists  of  sarcomeric and  contraction  genes  was  increased  drastically in 

heart failure (Figure 1G,  blue heatmap).  Previous  work indicates, PPP1R3A  contains  a glycogen-binding 

domain 32  and  is  thought to  promote glycogen  synthesis. 33,34  As  cardiac metabolism in  heart failure is 

known  to  switch  toward  a glucose-based  metabolism, we hypothesized  that PPP1R3A would  play an 

important role in  the transition  from healthy to   failing myocardium  

PPP1R3A  knockdown ablates hypertrophy, a key heart failure phenotype, in vitro 

To  investigate the role of  PPP1R3A  in  heart failure, we first determined  the effect of  perturbing PPP1R3A 

expression  via RNA silencing on  global  gene expression  in vitro (Figure 5A).  We used  RNA sequencing to 

measure  global  gene expression  at various  time points  with  and  without PPP1R3A knockdown  in 

phenylephrine treated  NRVMs  (an  in vitro model  of  cardiomyocyte hypertrophy in  heart failure).   Global 

expression  across  all  genes  significantly changed  after knockdown  and  phenylephrine perturbations 

(Student t-test < 0.05, Figure 5B).  The expression  of  genes  highly connected  to  PPP1R3A in  the failing 

network  were  significantly altered  and  exhibited  a trend  towards  decreasing expression  (Figure 5C), 

evidence of  a “network knockdown”.  Interestingly, knockdown  of  PPP1R3A also  reduced  MYH7/MYH6 

gene  expression  ratio, a marker for cardiac hypertrophy (t-test p<0.01,  Figure 5D).  Cell  size was  also 

reduced  (Figure 5E)  as  assessed  by cell  area (Figure 5F).  Taken  together, these results  indicate that 

reduction  of  PPP1R3A expression  slows  cardiac hypertrophy and  its  associated  signaling in vitro. 

PPP1R3A suppresses cardiomyocyte pyruvate metabolism in association with PDK expression 

We  hypothesized  that PPP1R3A’s  role in  the development of  heart failure was  related  to  the metabolic 

switch  from respiratory to  glycolytic glucose metabolism observed  in  failing myocardium.  We found  that 

under phenylephrine-treated  conditions, PPP1R3A  knockdown  resulted  in  the alteration  of  genes  critical 
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to  glucose metabolism such  as  glucose transporters  GLUT1 and  GLUT4 (up-regulation  and 

down-regulation, respectively,  Figure 5G).   Further, under normal  cell  culture conditions, knockdown  of 

PPP1R3A  induced  a significant down-regulation  of  critical  fatty acid  metabolism genes, such  as  the 

pyruvate  dehydrogenases  PDK2  and  PDK4, and  the carnitine palmitoyltransferase CPT1B (Figure 5G). 

Quantitative RT-PCR validated  these findings, as  treatment of  NRVM with  siRNA to  PPP1R3A  significantly 

decreased  expression  of  pyruvate dehydrogenase 4 ( PDK4 )  (p  = 0.03, Supplemental  Figure 7).  PDK4 is  a 

major molecular driver of  decreased  respiratory glucose metabolism in  heart failure via inactivation  of 

pyruvate  dehydrogenase 35.  This  results  in  shunting of  pyruvate away from the oxidative TCA cycle into 

lactate,  thus  decreasing energetic efficiency of  glucose metabolism in  cardiomyocytes.  We therefore 

hypothesized  that decreasing PPP1R3A expression  would  lead  to  liberation  of  respiratory metabolism, 

and  found  that siRNA mediated  knockdown  of  PPP1R3A leads  to  increased  basal  and  maximal 

respiratory metabolism of  pyruvate by NRVM as  measured  by oxygen  consumption  (  p=0.02 (Basal 

Respiration)  and  p  <0.01 (Maximal  Respiration)  Figure 5H, see  Online Methods).  

Ppp1r3a-/- mice are  protected  against pressure-overload-induced left ventricular failure 

We  then  investigated  the effect of  PPP1R3A  on  heart failure in vivo using a model  of  pressure overload, 

transaortic constriction  (TAC)  in  Ppp1r3a+/+  and  Ppp1r3a-/-  mice.  No  difference was  observed  in  fractional 

shortening between  Ppp1r3a +/+ and  Ppp1r3a-/-  mice at baseline.  However, six and  eight weeks  after TAC, 

Ppp1r3a +/+  mice exhibited  signs  of  heart failure with  significantly reduced  contractility, while Ppp1r3a -/- 

mice did  not (p=0.03 (6 weeks), p<0.01 (8 weeks),  Figure 6A).  This  effect was  associated  with  increased 

levels  of  the heart failure markers  NPPA  and  NPPB  in  the LV  of  Ppp1r3a+/+  TAC  mice, but not Ppp1r3a-/- 

TAC  mice (Figure 6B,  compared  to  sham treated  animals  of  the same genotype ( NPPA : p=0.01 

( Ppp1r3a +/+  TAC  vs  Sham)  NPPB : p<0.01 ( Ppp1r3a +/+  TAC  vs  Sham).  The ratio  of  MYH7 to  MYH6 was 

increased  in  Ppp1r3a+/+  TAC  vs  sham animals  (p<0.01), and  was  not different between  Ppp1r3a-/-  TAC  vs 

Sham animals.  This  ratio  trended  toward  increase in  Ppp1r3a-/-  vs  Ppp1r3a +/+  sham, but this  difference 

did  not reach  statistical  significance (p=0.08). 

In  accordance with  these findings, while immunohistochemical  staining showed  significantly increased 

cell  size in  Ppp1r3a+/+  TAC  vs  sham animals  (p<0.01), there  was  no  difference between  Ppp1r3a -/-  TAC 

and  sham in  cardiomyocyte size, nor was  there a significant difference in  cardiomyocyte size between 

Ppp1r3a +/+  and  Ppp1r3a-/-  sham-treated  animals  (Figure 6C).  Left ventricular fibrosis  as  measured  by 

trichrome staining and  quantification  of  percent affected  area showed  increased  fibrosis  in  Ppp1r3a+/+ 
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TAC  mice compared  to  Ppp1r3a-/-  TAC  (p<0.01), but no  significant increase in  fibrosis  in  Ppp1r3a-/- 

animals  after TAC  compared  to  Ppp1r3a-/- sham (Figure 6D). 

Discussion 

We  have constructed  a comprehensive gene  regulatory map  of  human  heart failure.  This  effort has  been 

facilitated  by a systematic approach  to  the collection  of  control  and  failing heart tissue from the 

operating rooms  of  cardiac transplant centers  and  the resulting measurements  have allowed  us  to 

describe several  previously unrecognized  molecular features  of  heart failure.  Notably, the network 

structure of  heart failure differs  markedly from that of  normal  heart tissue.  Specifically, we find  a larger 

number of  highly-connected  regulators  in  the non-failing heart and  a rewiring of  co-expression 

relationships  in  key processes  such  as  sarcomeric structure, excitation-contraction  coupling, cell 

adhesion, metabolism, and  cardiac remodeling --  many of  these changes  marking an  activation  and 

deactivation  of  entire subnetworks  in  heart failure such  as  Protein  Phostphatase 1 related  complexes 

and  Contactin-associated  proteins, respectively,  indicating a complete remodeling of  heart that requires 

coordination  in  a diversity of  cell  structures.  

The inferred  networks  also  aided  in  the discovery of  new eQTLs  in  the healthy and  pathological  contexts. 

Notably, we found  a greater number of  eQTLs  in  the failing heart, half  of  which  were novel  but that were 

still  implicated  in  higher phenotype associations  in  GWAS.  In  some cases,  the expression  of  entire 

subnetworks  of  genes  were  found  to  be associated  with  only a few variants, such  as  several  members  of 

the TAS2R G protein  coupled  receptor family, receptors  typically associated  with  the sensation  of  taste 

but recently found  to  be variously expressed  in  cardiac tissue.  23  Further, these eQTLs  were  enriched  for 

regulatory annotations, which  were more prevalent in  the failing heart cohort. 

Topological  aspects  of  the networks  aided  in  pinpointing central  genes  that gained  and  lost connectivity 

from non-failing to  failing conditions  as  well  as  significant gain  or loss  of  connectivity in  known  pathways 

--  measures  of  local  and  global  connectivity.  In  particular, our network analyses  identified  PPP1R3A as  a 

gene  with  a central  role in  heart failure.  Although  this  gene has  not previously been  associated  with 

human  cardiac  disease, studies  in  both  mouse and  human  have found  that loss-of-function  mutations  in 

PPP1R3A  reduce  glycogen  content in  skeletal  muscle34,36.  We found  that loss  of  PPP1R3A has  different 

effects  on  metabolic genes  in  failing versus  healthy hearts  in vitro and  in vivo.  Elimination  of  PPP1R3A in 

a murine model  of  heart failure revealed  a maladaptive role for this  gene in  heart failure, and  our in vitro 

studies  implicate it in  myocyte hypertrophy, and  specifically in  the observed  metabolic switch  of  failing 
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myocardium: toward  inefficient glycolytic glucose metabolism and  away from the use of  pyruvate in 

respiratory metabolism.  

Since genome-wide expression  studies  were introduced, there  has  been  interest in  quantifying genes 

that are significantly differentially expressed, e.g.  between  control  and  failing states.  What this  linear, 

unitary approach  fails  to  capture are  mechanisms  influencing higher order phenotypes  reflected  in 

re-wiring of  transcriptional  partners  that do  not affect expression  levels  of  specific genes.  Earlier work 

has  already led  to  the discovery of  central  genes  using co-expression  changes  37,38.   Here,  we expanded 

this  use of  gene co-expression  by exploiting not only gene interaction  degree,  but also  integrated 

topological  network differences  and  known  pathway information.  In  our heart failure networks,  we have 

shown  how differences  between  these network  topology properties  in  failing and  control  can  be used  to 

highlight key genes.  

 

Online  Methods 

Tissue collection and processing 

To  accelerate  the understanding of  the molecular underpinnings  of  heart failure, we established  a 

collaborative multi-institution  network with  a 24/7 notification  system and  a team of  travel-ready 

surgeons  at major transplant centers  to  systematize the collection  of  cardiac tissue from failing hearts 

and  unused  heart transplant donors  at operating rooms  and  remote locations.  We put in  place a series 

of  best practices  for procurement of  explanted  cardiac transplant tissue including harvesting explanted 

cardiac tissue at the time of  cardiac surgery from subjects  with  heart failure undergoing transplantation 

and  from unused  donor hearts.  Hearts  were perfused  with  cold  cardioplegia solution  prior to 

cardiectomy to  arrest contraction  and  prevent ischemic damage, and  explanted  cardiac tissue specimens 

were  flash  frozen  in  liquid  nitrogen.  

Expression  and genotype datasets and clinical variables  

We  performed  RNA  expression  measurements  and  obtained  genotype information  in  genome-wide 

markers  for 313 patients  (177 failing hearts  , 136 donor, non-failing [control]  hearts)  using Affymetrix 

expression  and  Affymetrix Human  6.0 respectively.   Clinical  variables  for each  individual  were recorded 

during the course of  the research  and  were  compiled  using REDCap 39. 
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eQTL discovery 

To  test associations  between  gene expression  in  each  cohort separately, we used  QTLTools  with  an 

additive model  accounting for gender, age,  and  sample site covariates.  We  corrected  for eQTL  multiple 

association  testing using a 10000 permutations  per locus  in  a 2 megabase window and  a false discovery 

rate  cutoff  of  5% 

Quantifying global and local centrality using network and community membership parameters  

The local  connectivity metric (LC)  of  any gene G  was  calculated  as  the difference between 

max-normalized  network degree  of  G considering edges  exceeding an  absolute correlation  coefficient of 

0.7.  The global  connectivity metric (GC)  of  any gene G was  calculated  as  the number of  gene sets  that 

were  significantly differentially enriched  between  gene rankings  of  failing and  control  networks  obtained 

by ordering the genes  by their absolute correlation  coefficient to  G (details  included  in  Supplement). 

Isolation, culture, perturbation, and visualization of cardiac myocytes  

Cardiac myocytes  were  isolated  from neonatal  rats  using standard  collagenase protocols  as  described 

previously 9  and  cultured  in  serum-free, glucose-free DMEM media.  In  order to  attenuate the effects  of 

fibroblast contamination  a final  concentration  of  20 μM of  the fibroblast inhibitor Ara-C  (Sigma-Aldrich) 

was  incorporated.  At least 1 million  cells  were plated  in  a 12-well  plate, corresponding to  at least 70% 

confluency.  For phenylephrine-treated  cells, 50-μM of  phenylephrine was  added  48 hours  after 

isolation.  For the knockdown  experiments, cells  were  transfected  either with  a siRNA targeted  to 

PPP1R3A  (Stealth  siRNA, Invitrogen)  or a scrambled  siRNA using the RNAiMAX system (Invitrogen) 

according to  manufacturer's  instructions; transfections  were performed  24 hours  after isolation.  RNA 

extraction  was  performed  using the Qiagen  RNeasy kit according to  manufacturer instructions  and  were 

DNAse-treated  using the  DNA-free  RNA  kit from Zymo  research.  CDNA  was  synthesized  with  the 

High-capacity cDNA reverse  transcription  kit from ABI and  qRT-PCR assays  were performed  using KAPA 

SYBR FAST  on  a ViiA 7 ABI system.   

RNA sequencing and analysis pipeline 

After RNA  extraction, RNA  integrity was  checked  using a 2100 BioAnalyzer (Agilent); all  RNA samples  had 

an  RIN of  7.0 or higher.  Samples  were screened  for PPP1R3A  knockdown  efficiency and  phenylephrine 

treatment using qRT-PCR prior to  library construction.  RNA-seq  libraries  were prepared  using the 

TrueSeq  Stranded  mRNA kit (Illumina), according to  manufacturer instruction.  Libraries  were barcoded, 
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quality-checked  using a 2100 BioAnalyzer and  run  in  rapid  run  flow cells  in  a HiSeq  2500 (Illumina), 

producing at least 30 million  paired-end  reads.  

Sequencing reads  were aligned  to  the Rattus Norvegicus  rn5 UCSC  reference  genome using the STAR 

aligner 40.  Quantification  and  differential  expression  analysis  of  RNA-seq  data was  performed  using the 

Cufflinks  package 41: full  transcriptome assembly was  performed  with  Cufflinks, quantified  with 

Cuffquant, and  analyzed  for differential  expression  using Cuffdiff.  All  genes  deemed  to  be significantly 

up  or down-regulated  in  the main  text were  called  as  differentially expressed  by Cuffdiff. 

Animals,  Surgery and Phenotyping 

Ppp1r3a -/-  mice (C57Bl6 background)  were a generous  gift from Anna de Paoli  Roach  34.  Ppp1r3a+/+ 

animals  were C57Bl6 background  (Jackson).  All  procedures  involving animal  use, housing, and  surgeries 

were  approved  by the Stanford  Institutional  Animal  Care and  Use Committee (IACUC).  Animal  care and 

interventions  were provided  in  accordance with  the Laboratory Animal  Welfare Act. 

20 male mice (10 Ppp1r3a -/-  and  10 Ppp1r3a+/+ )  were  randomized  to  transaortic constriction  (TAC)  or 

sham surgery (5 in  each  group).  Animals  underwent TAC  as  previously described  42  at 10 weeks  of  age. 

Briefly,  mice were  anesthetized  using an  isoflurane inhalational  chamber, intubated  and  ventilated. 

After surgical  exposure of  the thoracic aorta, a 6.0 silk suture was  placed  between  the innominate and 

left carotid  arteries  to  induce a constriction  of  ∼0.4 mm in  diameter.  In  sham group  mice, an  identical 

procedure was  conducted, without the constriction  of  the aorta. 

In vivo left ventricular systolic function  was  evaluated  by echocardiography in  the short axis  view as 

previously described  42.  Measurements  occurred  at 1 day prior to  surgery (baseline), 7 days  and  14 days 

after surgery and  then  every 14 days  prior to  euthanasia and  tissue collection  at 8 weeks  after TAC. 

Upon  euthanasia, heart weight,  body weight and  tibia length  were measured  by standard  method 

(Supplementary Figure S8).  Hearts  were  paraffin  fixed, sectioned  and  mounted  on  slides.  Trichrome 

staining as  well  as  immunofluorescence stain  for cell  membrane (Rhodamine Wheat Germ Agglutinin 

antibody, 1:200 in  PBS, Vector laboratories, Burlingame, CA)  were  performed  for fibrosis  and  cell  size 

measurements,  both  of  which  were performed  using ImageJ after image  capture at 20X. 

Measurement  of Oxygen Consumption Rate 

Freshly isolated  NRVMs  were plated  in  a 96 well  plate at 75,000 cells/well  and  were maintained  in  kit 

medium with  0.5% fetal  bovine syndrome.  Transfection  of  siRNA to  PPP1R3A  or scrambled 
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oligonucleotide was  performed  as  described  above 5 days  after isolation.  Media was  changed  to  contain 

10% fetal  bovine syndrome after transfection. 

Seahorse technology (XF96, Flux pack, Agilent technologies  # 10-2416100)  was  used  to  measure oxygen 

consumption  rate (OCR)  48 hours  after transfection.  Cells  were either exposed  to  base media or media 

including pyruvate immediately before experiment.  Basal  metabolism was  measured  first.  Maximal 

respiration  was  measured  one minute after delivery of  p-triflouromethoxyphenylhydrazone (FCCP) 

(uncoupler of  oxidative phosphorylation).  After OCR measurements  were complete, viable cell  number 

was  assayed  using PrestoBlue Cell  Viability Assay (Thermofisher #A13261), and  data were analyzed  as 

OCR per cell. 

Data availability 

Expression  measurements  for the human  heart samples  and  clinical  variables  are available at the 

MAGNet portal  http://www.med.upenn.edu/magnet/ .  Rat expression  measurements  are available via 

Amazon  Web  Services  at http://s3.amazonaws.com/ashleylabrnaseq/timecourse_analysis  
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Figure  1 
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Regulatory rewiring  of  co-expression networks in heart failure .  (A)  Principal  component analysis  of  gene 

expression  profiles  for 177 failing hearts  and  136 non-failing, control, hearts.  (B)  Number of  transcription  factors 

that were  deemed  significantly more connected  than  average  for several  methods  for network inference: ARACNE, 

Z-score,  Pearson  correlation, and  the joint graphical  LASSO.  Overall, more  transcription  factors  have higher 

connectivity in  the control  hearts  and  Pearson  correlation  detects  the most.  (C)  Transcription  factor to  target 

connectivity scores  of  known  human  transcription  factors  in  the failing and  control  networks.  (D).  Most active 

transcription  factors  as  assessed  by their co-expression  with  their respective targets  for failing (red)  and  control 

(gray)  networks.  (E)  Two-dimensional  projection  of  highly connected  subnetworks  of  genes  in  the failing and 

control  networks  using node2vec, clustered  into  gene modules.  
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Figure  2  
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Differential connectivity of  known biological processes in heart failure.  (A)  Mean  correlation  between  five  known 

processes  that play critical  roles  in  heart failure: cardiac remodeling, metabolism, cell  adhesion, sarcomeric genes, 

and  contractility in  the failing and  control  networks.  (B-F)  Change in  gene-by-gene degree  breakdown  for cardiac 

remodeling, sarcomeric,  cell  adhesion, contractility, and  metabolism genes.  
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Figure  3 
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Network-enhanced discovery of  heart failure  eQTLs.  (A)  Transcription  factor annotation  to  eQTL  distance 

distributions  for failing (red)  and  control  hearts.  (B)  Number of  cis  eQTLs  found  for each  group  that overlapped 

with  GTEx  eQTLs.  (C)  A set of  three variants  from one locus  control  a network of  G protein  coupledreceptors  TAS2R 

present in  both  the failing and  control  groups.  P-values  indicate association  significance to  gene expression.   (D)  An 

eQTL  that controls  the proliferative function  of  the protein  phosphate 1 through  associations  of  PPP1CC and 

RAD9B  (E)  A variant controls  immune response through  association  to  PARP9 and  PARP14  expression, which 

regulate  downstream post-translational  modifications  of  a large network of  factors.  
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Figure  4 
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Gene  prioritization  through  network topology.  (A)  Roles  emerging when  comparing differences  in 

knowledge-based  connectivity with  local  network connectivity.  (B).  Local   and  global  connectivity, and 

roles  for all  genes  comparing heart failure and  control  networks.  (C)  Significance statistics  between  top 

50 differential  pathways  and  top  50 genes  with  highest global  connectivity (D)  Difference in  cumulative 

membership  distributions  for the KEGG Hypertrophic Cardiomyopathy (HCM)  pathway for the myosin 

gene  MYH7 which  is  known  to  be involved  in  HCM.  (E)  Difference for HCM pathway enrichment in  the 

protein  phosphatase 1 regulatory subunit PPP1R3A  is  more dramatic than  for MYH7.  
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Figure  5 
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Time-course  measurements of  PPP1R3A ablation  in  vitro  reveal new metabolic  role . (A)  Experimental 

design  and  analysis  pipeline for whole-transcriptome, time course measurements  of  an  in vitro model  of 

heart failure to  test network-derived  hypotheses.  Neonatal  rat ventricular myocytes  (NRVMs)  are 

isolated  and  split into  several  groups: phenylephrine treatment induces  a heart failure phenotype while 

PPP1R3A  siRNA transfection  perturbs  a highly connected  gene in  the human  cardiac networks.  As  in  the 

previous  time course, RNA  gene  expression  is  measured  at 36, 48,  72,  and  96 hours  after isolation.  (B) 

Differences  in  expression  fold  change distributions  at different timepoints  after PPP1R3A knockdown. 

(C)  Clustered  heatmap  of  normalized  gene expression  values  (blue, lowly-expressed  to  red, 

highly-expressed)  of  known  heart failure markers  and  genes  in  the PPP1R3A  neighbors  at several  time 

points  after isolation  under hypertrophic stimulation  and  scrambled/ PPP1R3A knockdown  conditions. 

(D)  Expression  level  changes  (X-axis)  of  the heart metabolic gene program as  well  as  the MYH7/MYH6 

ratio, a marker for heart failure,  as  a function  of  time (Y-axis)  and  PPP1R3A knockdown  conditions 

(scrambled  siRNA conditions  in  black, PPP1R3A  siRNA condition  in  gray, error bars  represent standard 

deviations).  Significant changes  occur over time between  PPP1R3A  knockdown  and  scrambled  healthy in 

the PDK2  and  CPT1B genes  under normal  conditions  and  in  glucose transporters  GLUT1 and  GLUT4 

under failure (phenylephrine)  conditions.  Further, under in  vitro  heart failure conditions, the marker 

ratio  MYH7/MYH6 is  significantly decreased  upon  PPP1R3A silencing.  (E)  Left, cell  size measurements  of 

a sample of  cells  under heart failure and  normal  conditions, with  and  without PPP1R3A knockdown; 

right, sample cell  images.  (F)  Respiratory pyruvate metabolism measured  via oxygen  consumption  with 

and  without PPP1R3A knockdown.  Knockdown  of  PPP1R3A leads  to  increased  basal  and  maximal 

respiratory metabolism of  pyruvate as  measured  by oxygen  consumption. 
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Figure  6 

 

 

Cardiac  and  heart failure  effects of  PPP1R3A ablation  in  vivo.  (A)  Fractional  shortening readings; (B) 

fold  change gene  expression  of  heart failure gene  markers; (C)  cardiomyocyte  size quantification  and  (D) 

sample images; and  (D)  fibrosis  and  measurements  for murine PPP1R3A  knockdowns  and  wild  type in  an 

in vivo model  of  heart failure and  (E)  sample fibrosis  images.  All  measurements  point to  an  amelioration 

of  heart failure upon  PPP1R3A silencing. 
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