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Summary

1. The disease costs of sociality have largely been understood through the link

between group size and transmission. However, infectious disease spread is

driven primarily by the social organization of interactions in a group and not

its size.

2. We used statistical models to review the social network organization of 47

species, including mammals, birds, reptiles, fish and insects by categorizing

each species into one of three social systems, relatively solitary, gregarious
∗ps875@georgetown.edu

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


and socially hierarchical. Additionally, using computational experiments of

infection spread, we determined the disease costs of each social system.

3. We find that relatively solitary species have large variation in number of

social partners, that socially hierarchical species are the least clustered in

their interactions, and that social networks of gregarious species tend to

be the most fragmented. However, these structural differences are primarily

driven by weak connections, which suggests that different social systems have

evolved unique strategies to organize weak ties.

4. Our synthetic disease experiments reveal that social network organization

can mitigate the disease costs of group living for socially hierarchical species

when the pathogen is highly transmissible. In contrast, highly transmissible

pathogens cause frequent and prolonged epidemic outbreaks in gregarious

species.

5. We evaluate the implications of network organization across social systems

despite methodological challenges, and our findings offer new perspective

on the debate about the disease costs of group living. Additionally, our

study demonstrates the potential of meta-analytic methods in social network

analysis to test ecological and evolutionary hypotheses on cooperation, group

living, communication, and resilience to extrinsic pressures.

Keywords

animal social network, contact network, epidemiology, infectious disease dynamics,
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Introduction

Host social behaviour plays an important role in the spread of infectious diseases.1

Socially complex species from honeybees to African elephants live in large groups2

and are considered to have elevated costs of pathogen transmission due to high3

contact rates (Loehle, 1995; Altizer et al., 2003). Previous studies have tested4

hypotheses about the disease costs of sociality by associating group size with in-5

fection transmission (Rifkin, Nunn & Garamszegi, 2012; Patterson & Ruckstuhl,6

2013). Beyond a simple dependence on group size, however, recent work in the7

field of network epidemiology has shown that infectious disease spread largely de-8

pends on the organization of infection-spreading interactions between individuals9

(Godfrey et al., 2009; White, Forester & Craft, 2015; Craft, 2015; VanderWaal &10

Ezenwa, 2016). Indeed, even when interactions between individuals are assumed11

to be homogeneous, the expectation of higher disease costs of group living has12

been mixed (Arnold & Anja, 1993; Rifkin, Nunn & Garamszegi, 2012; Patterson13

& Ruckstuhl, 2013).14

Mathematically, social networks describe patterns of social connections be-15

tween a set of individuals by representing individuals as nodes and interactions16

as edges (Croft, James & Krause, 2008; Krause et al., 2014; Farine & Whitehead,17

2015). The advantage of social network analysis is that it integrates heterogeneity18

in interaction patterns at individual, local and population scales to model global19

level processes, including the spread of social information and infectious diseases20

(Krause, Croft & James, 2007; Krause et al., 2014; Silk et al., 2017a,b). In recent21

years, network analysis tools have allowed for rapid advances in our understanding22

of how individual interaction rates are related to the risk of acquiring infection23
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(Otterstatter & Thomson, 2007; Leu, Kappeler & Bull, 2010). A fundamental24

individual-level characteristic relevant to the spread of social or biological conta-25

gion in networks is the number of direct social partners, associates or contacts,26

capturing the interaction necessary for transmission. While much attention has27

been focused on the implications of individual sociality, the disease implications of28

a species’ social system remains unclear.29

By quantifying group-level metrics that describe global structures in interac-30

tion patterns, the network approach provides a unique opportunity to examine the31

disease costs of species social system. The role of higher-order network structures32

such as degree heterogeneity (Fig. 1A), subgroup cohesion (Fig. 1D), network33

fragmentation (Fig. 1E), and average clustering coefficient (Fig. 1F) on infectious34

disease spread is complex, but is relatively well understood (see network structure35

definitions in Table S1)(Keeling, 2005; Meyers et al., 2005; Sah et al., 2017). For36

example, as degree heterogeneity (or variation in the number of social partners)37

in a network increases, the epidemic threshold (i.e., the minimum pathogen trans-38

missibility that can cause large outbreaks) decreases (Anderson, May & Anderson,39

1992). However, the probability of epidemic outbreaks is lower in networks with40

high degree variance for moderately and highly transmissible pathogens (Meyers41

et al., 2005). Network metrics such as average clustering coefficient, subgroup42

cohesion and network fragmentation capture the tendency of individuals to form43

cliques and subgroups (Fig. 1). Although the dynamics of infectious disease spread44

remain largely unaffected in networks with moderate levels of clustering, cohesion45

and fragmentation, extreme levels of these metrics in networks reduce epidemic46

size and prolong epidemic outbreaks (Keeling, 2005; Sah et al., 2017).47

Recent mathematical models predict that the network structure of socially48
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complex species can serve as a primary defence mechanism against infectious dis-49

ease by lowering the risk of disease invasion and spread (Hock & Fefferman, 2012).50

It remains uncertain, however, whether the structure of social networks naturally51

observed in less-complex social systems mediates infectious disease risk and trans-52

mission. A systematic examination of the disease costs associated with species53

social system requires a comparative approach that isolates unique structural char-54

acteristics of social connections, while controlling for population size, data collec-55

tion methodology and type of interaction recorded. However, comparing networks56

across different taxonomic groups has proven to be a difficult task, with only a few57

cross-species network comparisons previously published in the literature (Faust &58

Skvoretz, 2002; Faust, 2006; Sah et al., 2017).59

In this study, we conduct a quantitative comparative analysis across 47 species60

to investigate whether social network organization alone, without the presence of61

physiological or behavioural immune responses, can reduce the disease costs of62

group living for various social systems. This is achieved in three steps. First, we63

categorize the continuum of species sociality into three distinct social systems (rela-64

tively solitary, gregarious and socially hierarchical); we then use phylogenetically-65

controlled Bayesian generalized linear mixed models to identify social network66

structures which are predictive of the three social systems. Second, we perform67

computational experiments of infection spread to compare epidemiological out-68

comes (epidemic probability, epidemic duration and epidemic size) associated with69

the identified social network structures. In the final step, we investigate whether70

the differences in these network structures across the three social systems trans-71

lates to differences in their disease outcomes.72

We hypothesize that a social species can mitigate disease costs associated with73
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group living through the organization of their social structure. However, we expect74

the presence of alternate disease defence mechanisms to also play an important role:75

social insects, for example, use social immunity as a primary strategy to minimize76

disease transmission; the structure of the social network in such species may not77

be effective in preventing future outbreaks or reducing disease transmission. Our78

analysis, by broadening the scope of network analysis from species-specific anal-79

ysis to a meta-analytic approach, offers new perspective on how social structure80

strategies mediate the disease costs of group living. A better understanding of the81

association between network structure and different social systems can facilitate82

investigations on other evolutionary and ecological hypotheses on group living, so-83

cial complexity, communication, population robustness and resilience to extrinsic84

population stressors.85

Materials and methods86

Dataset87

We first conducted electronic searches inGoogle Scholar and popular data reposito-88

ries, including Dryad Digital Repository and figshare for relevant network datasets89

associated with peer-reviewed publications. We used the following terms to per-90

form our search: "social network", "social structure", "contact network", "interac-91

tion network", "network behaviour", "animal network", "behaviour heterogeneity"92

and "social organization". Only studies on non-human species were considered in93

our primary search. Network studies not reporting interactions (such as biologi-94

cal networks, food-web networks) were excluded. By reviewing the quality (i.e.,95
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whether enough information was provided to accurately reconstruct networks) of96

published networks datasets, we selected 666 social networks spanning 47 animal97

species and 18 taxonomic orders. Edge connections in these networks represented98

several types of interactions between individuals, including dominance, grooming,99

physical contact, spatial proximity, direct food-sharing (i.e. trophallaxis), forag-100

ing, and interactions based on the asynchronous use of a shared resource. Fig.101

2 summarizes the species, the number of networks and the reported interaction102

types contributed by each taxonomic order represented in the study.103

Classifying species’ social system104

Developing a definition of social structure that encompasses the continuum of social105

systems across diverse taxonomic groups is challenging. Consequently, we followed106

Slater & Halliday (1994) and Kappeler & van Schaik (2002) to classify species107

into three broad categories of social structure based on the degree of association108

between adults during activities such as foraging, travelling, sleeping/resting and109

rearing offspring. Relatively solitary species were defined by infrequent aggregation110

or association between adults outside of the breeding period, and lack of synchro-111

nized movements in space by adults. Examples of relatively solitary species in the112

database include the desert tortoise (Gopherus agassizii), wild raccoons (Procyon113

lotor), and the Australian sleepy lizard (Tiliqua rugosa). Recent studies suggest114

that the social structure of a species traditionally considered as solitary can be115

complex (Sah et al., 2016; Prange et al., 2011). We therefore categorized the three116

species as relatively solitary and not solitary. Species that aggregate for one or117

more activities, but have unstable or temporally varying group composition were118
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classified as gregarious. Examples of gregarious species in our database include bot-119

tlenose dolphins (Tursiops truncatus), bison (Bison bison), Indiana bats (Myotis120

sodalis), female Asian elephants (Elephas maximus), sociable weavers (Philetairus121

socius), golden-crowned sparrows (Zonotrichia atricapilla) and guppies (Poecilia122

reticulata). Species characterized by a permanent or long-term (i.e., at least over a123

single breeding season) stable social hierarchy were classified as socially hierarchi-124

cal. Examples of socially hierarchical species include carpenter ants (Camponotus125

fellah), yellow baboons (Papio cynocephalus), male elephant seals (Mirounga an-126

gustirostris) and spotted hyenas (Crocuta crocuta). We note that animal social127

behaviour is being increasingly recognized to span a continuum from solitary to128

eusocial (Aureli et al., 2008; Aviles & Harwood, 2012; Silk, Cheney & Seyfarth,129

2013), with most species showing some level of fission-fusion dynamics (Silk et al.,130

2014). The division of social systems into three discrete, albeit arbitrary, cate-131

gories allows for simple distinctions in the organization of network structure and132

disease risks among species that are characterized by different complexity in group133

living behavior.134

Identifying unique network structures of species’ social sys-135

tem136

To examine the structure of social networks associated with our three classified137

social systems, we used a Bayesian generalized linear mixed model (GLMM) ap-138

proach using the MCMCglmm package in R (Hadfield, 2010), with the species’139

social system as the response (categorical response with three levels - relatively140

solitary, gregarious and socially hierarchical). The following network measures141
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were included as predictors in the model (see Table S1 in Supporting information142

for definitions and Fig.1 for illustrations): degree heterogeneity, degree homophily,143

average clustering coefficient, weighted clustering coefficient, transitivity, average144

betweenness centrality, weighted betweenness centrality, average subgroup size,145

network fragmentation, subgroup cohesion, relative modularity and network di-146

ameter. Network fragmentation (i.e., the number of subgroups within the largest147

connected component of the social network) and Newman modularity was esti-148

mated using the Louvain method (Blondel et al., 2008). Relative modularity was149

then calculated by normalizing Newman modularity with the maximum modular-150

ity that can be realized in the given social network (Sah et al., 2014, 2017). The151

rest of the network metrics were computed using the Networkx package in Python152

(https://networkx.github.io/). We controlled for network size and density by in-153

cluding the number of nodes and edges as predictors, and mean edge weight was154

included to control for data sampling design. To control for phylogenetic relation-155

ships between species, a correlation matrix derived from a phylogeny was included156

as a random factor. The phylogenetic relationship between species was estimated157

based on NCBI taxonomy using phyloT (http://phylot.biobyte.de). We controlled158

for repeated measurements within groups, animal species, the type of interaction159

recorded, and edge weighting criteria by including group, taxa, interaction type160

(association vs. interaction) and edge weight type (weighted vs. unweighted) as161

random effects in the analysis. As the spatial scale of data collection can influence162

network structure (Table S3, Supporting information), we specified sampling scale163

(social sampling vs. spatial sampling) as random effect in all our analyses. Studies164

that collected data on specific social groups were categorized as social sampling,165

and those that sampled all animals within a fixed spatial boundary were labelled166
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as spatial sampling.167

All continuous fixed-effects were centered (by subtracting their averages) and168

scaled to unit variances (by dividing by their standard deviation) to assign each169

continuous predictor with the same prior importance in the analysis (Schielzeth,170

2010). Since network measures can be highly correlated to each other, variance171

inflation factor (VIF) was estimated for each covariate in the fitted model, and172

covariates with VIF greater than 5 were removed to avoid multicollinearity. We173

used a weakly informative Gelman prior for fixed effects and parameter-expanded174

priors for the random effects to improve mixing and decrease the autocorrelation175

among iterations (Gelman, 2006). Specifically, a χ2 distribution with 1 degree of176

freedom was used as suggested by Hadfield (2014). We ran three MCMC chains177

for 15 million iterations, with a thinning interval of 1000 after burn-in of 50,000.178

Convergence of chains was assessed using the Gelman-Rubin diagnostic statistic179

(Gelman & Rubin, 1992) in the coda package (Plummer et al., 2006).180

Groups of certain species in our database were represented with multiple net-181

works, each summarizing a set of interactions occurring in a discrete time period.182

To ensure that such animal groups were not over-represented in the original anal-183

ysis, we performed a cross-validation of our analysis by random sub-sampling.184

Specifically, we repeated the analysis 100 times with a random subset of the data185

composed of (randomly selected) single networks of each unique animal group in186

our database. An average of coefficient estimates across the multiple subsam-187

ples was then calculated and compared to the coefficients estimated using the full188

dataset.189
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Evaluating the role of weak ties in driving structural differences in190

species’ social system191

The analysis described in the previous section assumes equal importance of all192

edges recorded in a social network. To examine the role of weak ties in driving193

the structural differences between the three social systems, we removed edges with194

weights lower than a specified threshold. Four edge weight thresholds were ex-195

amined in detail: 5%, 10%, 15% and 20%. Specifically, all edges with weights196

below the specified threshold were removed to obtain thresholded social networks.197

For example, to construct a 10% threshold network from an original network with198

maximum edge weight ω, we removed all edges with weights below 0.1× ω. Next,199

the phylogenetically-controlled Bayesian mixed model analysis described in the200

previous section was repeated to determine the structural difference between the201

thresholded networks of the three social systems. We ran four separate models,202

each with one of the four thresholds.203

Disease implications of network structure and species’ social204

system205

We considered disease costs of the three social systems with synthetic experiments206

based on a computational disease model, and followed up with statistical analysis207

of the results.208

Disease simulations209

We performed Monte-Carlo simulations of a discrete-time susceptible-infected-210

recovered (SIR) model of infection spread through each network in our database.211
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For disease simulations, we ignored the weights assigned to social interactions212

between individuals, because the impact of interaction weight (whether they rep-213

resent contact duration, frequency or intensity) on infection spread is generally not214

well understood epidemiologically. Transmissibility of the simulated pathogen was215

defined as the probability of infection transmission from an infected to susceptible216

host during the infectious period of the host. Assuming infection transmission217

to be a Poisson process and a constant recovery probability (Grenfell & Dobson,218

1995; Kiss, Miller & Simon, 2017), the pathogen transmissibility can be calculated219

as T = β
β+γ

, where β and γ is the infection and recovery probability parameter,220

respectively (Bansal, Grenfell & Meyers, 2007). The stochastic epidemiological221

simulations used in this study are based on a discrete-time, chain binomial, SIR222

model (Bailey, 1957). Each disease simulation was initiated by infecting a ran-223

domly chosen individual in the social network. At subsequent time steps every224

infected individual in the network could either transmit infection to a susceptible225

neighbour with probability parameter β or recover with probability γ. The disease226

simulations were terminated when there were no remaining infected individuals in227

the network. We performed disease simulations with a wide range of transmissibil-228

ity values (0.05 to 0.45, with increments of 0.05), by varying infection probability229

(β) and assuming a constant recovery probability (γ = 0.2 or average infectious230

period of 5 days). In the paper, we focus our discussion on three specific values of231

pathogen transmissibility (T = 0.05, 0.15, and 0.45) because they correspond to232

low, moderate and highly contagious infectious diseases with average basic repro-233

duction numbers (R0) of 1.6, 4.6 and 14.0, respectively (Heffernan, Smith & Wahl,234

2005). The detailed results of disease simulations over a wider range of pathogen235

transmissibility (0.05 – 0.45) are included in the Supporting information.236
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To investigate the effects of recovery probability on the behavior of pathogen237

spread, we repeated disease simulations with a similar range of transmissibility238

values as before (0.05 to 0.45), but with a longer infectious period (10 days or239

γ = 0.1). For each combination of pathogen transmissibility and social network,240

500 simulations of disease spread were carried out and summarized using three241

measures: (a) epidemic probability, the likelihood of an infectious disease invasion242

turning into a large epidemic (outbreaks that infect at least 15% of the population)243

(b) epidemic duration, the time to epidemic extinction, and (c) epidemic size, the244

average percentage of individuals infected in an epidemic outbreak.245

Evaluating disease outcomes of network structure and species’ social246

system247

Three separate linear Gaussian models, one corresponding to each outbreak mea-248

sure (epidemic probability, epidemic duration, and epidemic size), were fit to es-249

tablish disease costs of network measures associated with species’ social system250

using using the R package MCMCglmm (Hadfield, 2010). To evaluate the role251

of network structure on the probability of large outbreaks, pathogen transmissi-252

bility and network measures included in the final model of the previous analysis253

were included as predictors (Table1). We repeated the analysis with the species’254

social system as predictor to directly estimate the vulnerability of different social255

structure towards disease transmission.256

In all models, the effective number of nodes (i.e., the number of individuals257

with degree greater than zero), network density and the size of the largest con-258

nected component of the network were also included as controlling predictors. As259

before, we controlled for the presence of phylogenetic correlations, group identi-260
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fication, animal species, edge weight type, and sampling scale of networks. As261

infectious disease spread over different interaction types represents different trans-262

mission routes, we also controlled for pathogen transmission mode by including the263

interaction type as a random effect. Minimally informative priors were used for264

fixed effects (normal prior) and (co)variance components (inverse Wishart; Had-265

field (2010)). We ran three MCMC chains for 100 thousand iterations, with a266

thinning interval of 10 after burn-in of 2000, and assessed convergence using the267

Gelman-Rubin diagnostic statistic (Gelman & Rubin, 1992) in the coda package.268

To make posthoc comparisons within the models, we performed pairwise compar-269

isons between the three social systems with a Tukey adjustment of P values, using270

the lsmeans R package (Lenth, 2016).271

Results272

Unique network structures associated with species’ social sys-273

tem274

The final model (after removing collinear predictors) consisted of seven global275

network measures - degree heterogeneity, degree homophily, average betweenness276

centrality, average clustering coefficient, subgroup cohesion, network fragmentation277

and network diameter (Fig. 1, Table 1). Out of the five random effects included in278

the model (phylogeny, group identification, interaction type, edge type, sampling279

scale), phylogeny explained a large portion of the variance (Table S2, Supporting280

information), indicating that there is a substantial phylogenetic correlation within281

the social systems. Of the three social systems (relatively solitary, gregarious282
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and socially hierarchical), the social networks of relatively solitary species demon-283

strated the largest variation in the number of social partners, or degree hetero-284

geneity (Table 1). In contrast, socially hierarchical species had the least variation285

in number of social partners, and experienced a local social environment that is286

not as well inter-connected; this is evident by the low average clustering coefficient287

of their social networks as compared to other social systems (average clustering288

coefficient, Table 1). In terms of network fragmentation (which was calculated on289

the largest connected component of networks), the social networks of gregarious290

species were the most subdivided into socially cohesive groups. No statistically291

significant differences were observed between the social systems with respect to292

other network metrics. Table S3 of Supporting information reports the average293

coefficient estimates of all seven global network metrics from the cross-validation294

analysis; all estimates were within the 95% credible interval of the effect sizes re-295

ported in the full model (Table 1). We also find that the organization of social296

networks depends on the sampling scale of social associations, but not on the type297

of interactions recorded (including when the interaction types are grouped into298

two categories of direct interactions vs. associations, and when the recorded inter-299

actions are categorized into ten distinct types mentioned in Fig. 2). For example,300

networks measured at a population scale rather for social groups tended to have301

low local connectivity, as measured by the average clustering coefficient, and low302

average betweenness centrality (Table S4, Supporting information).303
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Disease costs of network structure and species’ social system304

Our previous analysis revealed that only a few features of social networks are sig-305

nificant in distinguishing the three social systems. Next we ask: Do these key306

topological differences mediate differential disease costs of each social system? To307

answer this question, we first examined how degree heterogeneity, clustering coef-308

ficient and network fragmentation influence epidemic risk and transmission of low,309

moderate and highly transmissible pathogens (Fig. 3; see Fig. S2, S4 in Supporting310

information for results on an extended range of pathogen transmissibility values311

and Fig. S5 for results on disease simulations with extended infectious period).312

High variation in individual sociality (i.e., high degree heterogeneity) in social net-313

works was predictive of small and short epidemic outbreaks for low transmissible314

pathogens. Moderately spreading pathogens in network with high degree hetero-315

geneity led to less frequent, shorter epidemics that infected a smaller proportion316

of the population (degree heterogeneity, Fig. 3). The presence of cliques in social317

networks was associated with prolonged but small outbreaks of low transmissible318

pathogens, and higher epidemic risk of moderately transmissible infections (aver-319

age clustering coefficient, Fig. 3). Subdivisions of networks into socially cohesive320

groups (high fragmentation) was associated with reduced risk of lowly transmissible321

infections becoming large epidemics; outbreaks that did reach epidemic proportion322

were shorter and infected a lower proportion of the population. Conversely, highly323

contagious pathogens caused frequent, large, and prolonged epidemic outbreaks in324

networks with high network fragmentation (network fragmentation, Fig. 3).325

Consequently, socially hierarchical species experienced elevated risk of epidemic326

outbreaks of moderately transmissible pathogen due to homogeneous individual327
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connectivity (low degree heterogeneity) and high global connectivity (low net-328

work fragmentation) nature of their social networks (epidemic probability, Fig.329

4, Fig. S3 and S5 in Supporting information). The highly fragmented networks330

of gregarious species were more vulnerable to frequent, large, and prolonged epi-331

demic outbreaks of highly transmissible pathogens as compared to other social332

systems. Given that degree heterogeneity and network fragmentation is associ-333

ated with shorter outbreaks of low transmissible pathogens (Fig. 3, Fig. S3 and334

S6 in Supporting information), epidemic duration of less transmissible pathogens335

was lowest in gregarious species, followed by relatively solitary species (epidemic336

duration, Fig. 4, Fig. S3 and S6 in Supporting information). For moderately337

contagious pathogens, highly fragmented networks of gregarious species experi-338

enced longer epidemic outbreaks as compared to relatively solitary and socially339

hierarchical species.340

Role of weak ties in distinguishing species’ social system, and341

disease implications342

When the weakest 5% edges were removed from all weighted networks, the struc-343

tural differences between the three social systems were observed mainly in two344

network metrics - degree heterogeneity and network fragmentation. Similar to345

the empirical networks (Table 1), the 5% thresholded social networks of relatively346

solitary species demonstrated the highest variation in number of social partners;347

and 5% thresholded networks of gregarious species were more fragmented com-348

pared to relatively solitary and socially hierarchical species (Table S5, Supporting349

information). When the weakest 10% and 15% edges were removed, the global net-350
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work measures across all social systems were similar to each other, except for one351

important difference. Both 10% and 15% thresholded networks of social species352

(gregarious and socially hierarchical) demonstrated a statistically significant higher353

average betweenness centrality, or higher global connectivity than relatively soli-354

tary species (Table S6, S7 and S8, Supporting information).355

Disease simulations through 20% edge weight thresholded social networks re-356

vealed no differences in epidemiological outcomes between the three social systems357

for all except low pathogen transmissibility (Fig. S7, Supporting information).358

For slow spreading pathogens, networks of relatively solitary species experienced359

prolonged epidemic outbreaks as compared to social species.360

Discussion361

It is becoming increasingly clear that the impact of an infectious disease on a pop-362

ulation depends on the organization of infection-spreading interactions between363

individuals rather than group size. (Godfrey et al., 2009; Craft, 2015; White,364

Forester & Craft, 2015; Sah et al., 2017). Since organization of social network365

structure concurrently impacts the transmission of information and infectious dis-366

eases, it has critical implications for understanding the evolutionary tradeoffs be-367

tween social behavior and disease dynamics. The disease implications of social368

network structure can differ depending on the evolutionary trajectory of social369

systems. For instance, social complexity can emerge as a result of selective pres-370

sures of past infectious diseases, and therefore may have the ability to lower the371

risk of transmission of future infectious disease (Hock & Fefferman, 2012). Con-372

versely, the patterns of social interactions may not provide protection from disease373
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transmission in species that use alternate defense mechanisms (physiological or374

behavioral) to combat disease spread once it is introduced in the population (Cre-375

mer, Armitage & Schmid-Hempel, 2007; Stroeymeyt, Casillas-Pérez & Cremer,376

2014; Meunier, 2015). In this study, we assessed whether network structure alone377

(in absence of physiological or behavioral disease defense mechanisms) can reduce378

the risk of infectious disease transmission in different social systems, using com-379

parative methods on an extensive database of animal social networks.380

Our analysis compares global structural features associated with social net-381

works of species classified into three social systems: relatively solitary, gregarious382

and socially hierarchical. The evidence that we present here suggests that, at the383

least, relatively solitary, gregarious, and higher social organizations can be distin-384

guished from each other based on (i) degree of variation among social partners385

(i.e. degree heterogeneity), (ii) local connectivity, as indicated by the presence of386

cliques within the social networks (i.e, average clustering coefficient), and (iii) the387

extent to which the social network is divided into cohesive social groups (i.e., net-388

work fragmentation). Specifically, we find that social networks of relatively solitary389

species tend to demonstrate the highest degree heterogeneity, that social networks390

of gregarious species tend to be the most fragmented, and that socially hierar-391

chical species are least clustered in their interactions. The structural differences392

between the social systems were detected after controlling for systematic biases393

in the data-collection (that might generate non-biological differences between the394

social structures). This suggests that the underlying differences in social network395

structures associated with each social system are biologically significant.396

Social species are typically assumed to have a skewed degree distribution (for397

e.g. bottlenose dolphins Lusseau et al. (2003), wire-tailed manakins Ryder et al.398

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


(2008)), which implies that a small proportion of individuals have a large num-399

ber of social partners. Our results, however, show that degree heterogeneity in400

relatively solitary species can be much higher than social species. Large variation401

in the number of social connections in relatively solitary species may simply arise402

due to a high variation in spatial behavior as compared to social species (Pinter-403

Wollman, 2015; Sah et al., 2016). A homogeneous degree distribution in socially404

hierarchical species, such as ants and savanna baboons, could allow for efficient405

and equitable information transfer to all individuals (Blonder & Dornhaus, 2011;406

Cantor & Whitehead, 2013). Low average clustering coefficient, as observed in so-407

cially hierarchical species, indicates that an individual’s local social network is not408

tightly interconnected (i.e., individual’s contacts do not form a tight clique), and409

is known to increase network resilience and stability in response to perturbations410

such as the removal or death of individuals (Flack et al., 2006; Krause et al., 2014).411

Our results also show that social networks of gregarious species are the most412

subdivided (but not disconnected) into cohesive social subgroups. The presence of413

many but small, socially cohesive subgroups within social networks of gregarious414

species can be explained based on the behavioural tendency to switch affiliative415

partners; as a result, individuals form consistent social bonds with a only small416

subset of individuals (Rubenstein et al., 2015). Many gregarious species also form417

groups based on sex or age class, kinship and functional roles (Kanngiesser et al.,418

2011) or due to high spatial or temporal variability in resources (Couzin, 2006;419

Couzin & Laidre, 2009; Sueur et al., 2011). Previous theoretical models have420

shown that modular subdivisions promote behavioural diversity and cooperation421

(Whitehead & Lusseau, 2012; Gianetto & Heydari, 2015). Gregarious species may422

therefore limit the size of their social subgroups to maximize benefits of coopera-423
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tion, making their social networks subdivided (Marcoux & Lusseau, 2013).424

Our results show that the observed structural differences between the three so-425

cial systems are primarily driven by the presence weak ties in their social networks.426

The reason why filtering out weak weighted edges removes most structural differ-427

ences between social systems lies in their organization of weak ties. Individuals428

of social species disproportionately allocate effort among their social connections429

in order to maintain overall group connectivity (Fig. S1, Supporting information)430

and are also known to have high social fluidity (Colman & Bansal, 2017). Re-431

moving weak ties from networks of social species therefore increases variation in432

individual connectivity (degree heterogeneity), with a relatively minor decrease433

in their global connectivity (average betweenness centrality). Consequently, the434

global connectivity of social species in 10%-15% thresholded networks is signifi-435

cantly higher than relatively solitary species.436

Previous studies have typically focused on group size as the key parameter437

impacting disease transmission and group living costs. However, the expectation438

of higher disease costs of group living has yielded mixed results (Arnold & Anja,439

1993; Rifkin, Nunn & Garamszegi, 2012; Patterson & Ruckstuhl, 2013), which can440

be explained in part by the presence of group-level behavioural (Meunier, 2015;441

Schaller et al., 2015) and physiological defense (Habig, Archie & Habig, 2015)442

against infection spread, as well as the presence of chronic social stress (Kappeler443

et al., 2015; Nunn et al., 2015). While group size might be easy parameter to444

measure, it does not capture the complex spatio-temporal dynamics of most an-445

imal societies. By performing disease simulations over empirical networks with446

different interaction types, we consider a range of infectious diseases with differ-447

ent transmission routes, including those that spread by direct contact, and those448
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that spread by asynchronous contact between individuals in a population. Our449

analysis shows that the organization of social patterns may not provide general450

protection against pathogens of a range of transmission potential. We note that451

our results on epidemic size and duration are specific to pathogens that follow452

SIR (susceptible-infected-recovered) infection dynamics. The outcome of epidemic453

probability, however, is expected to be similar across different models of infectious454

disease spread (such as infections that provide temporary immunity or chronic455

infections).456

We find that socially hierarchical species experience longer outbreaks of low457

transmissibility infections and frequent epidemics of moderately contagious infec-458

tions because of low variation in individual and local connectivity (i.e., degree459

heterogeneity and average clustering coefficient) as compared to other social sys-460

tems. Networks with low degree heterogeneity are known to experience steady461

protracted outbreaks, in contrast to explosive rapid outbreaks fueled by super-462

spreaders in high degree heterogeneity networks (Meyers et al., 2005; Kiss, Green463

& Kao, 2006; Bansal, Grenfell & Meyers, 2007). High average clustering coefficient464

is also believed to create redundant paths between individuals making it harder for465

slow spreading infections to encounter new susceptible individuals and percolate466

throughout the network, prolonging infection spread (Newman, 2003).467

In our disease simulations, highly fragmented social networks of gregarious468

species experienced frequent epidemics of highly contagious infections, and longer469

epidemics of moderately to highly transmissible pathogens. Our recent work has470

shown that infection spread in highly fragmented networks gets localized within471

socially cohesive subgroups (structural trapping), which enhances local transmis-472

sion but causes structural delay of global infection spread (Sah et al., 2017). In473
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addition, our results suggest that highly transmissible pathogens are able to avoid474

stochastic extinction in fragmented networks by reaching "bridge" nodes, but ex-475

perience delay in transmission due to the presence of structural bottlenecks.476

As this study involved comparisons of social networks across a broad range477

of taxonomic groups and data sampling methods, we made a number of assump-478

tions that could shape the results. First, because the impact of edge weights on479

disease transmission can be context-dependent, depending on the type of inter-480

action, transmission mode of pathogen, and the relative time scale of network481

collection and pathogen spread, we have chosen to not include edge weights while482

performing our computational disease experiments. Future meta-analytic studies483

can leverage a growing number of transmission studies to explicitly incorporate484

the role of contact intensity on disease transmission (Aiello et al., 2016; Manlove485

et al., 2017). Second, we assume that social contacts remain unaltered after an486

infection is introduced in population. Presence of infection, however, can alter487

the social connectivity of hosts (Croft et al., 2011; Lopes, Block & König, 2016).488

Future species specific studies can take advantage of host specific experimental489

manipulations, where possible, to gain in-depth insight towards host behavior -490

infection feedback (Ezenwa et al., 2016; Silk et al., 2017a). Finally, in our network491

database there were some systematic differences in data-collection methodologies492

across social systems. Specifically, all data for relative solitary species were col-493

lected by sampling individuals over a specified spatial range, because definition of494

social groups for these species can be vague. As observations of direct interactions495

in relatively solitary species are rare, all networks of relatively solitary species in496

our database were based on direct or indirect spatial associations. Although the497

meta-analysis described in this study controlled for such biases in data-collection,498
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the results should be interpreted as a conceptual understanding about the differ-499

ences between the social systems in terms of empirical networks that have been500

published in the literature, and not as a general prediction about the differences501

in social systems.502

Overall, our results suggests that the organization of social networks in gregar-503

ious species are more efficient in preventing outbreaks of moderately contagious504

pathogens than socially hierarchical species. Conversely, networks of socially hier-505

archical species experience fewer outbreaks of fast spreading infectious diseases as506

compared to gregarious species. The question of why this is so warrants detailed507

future investigations of the eco-evolutionary trajectory of social connectivity in the508

two social systems. It is likely that the organization of social networks in socially509

hierarchical species may have evolved to prevent outbreaks of highly transmissible510

pathogens, while relying on alternate group-level disease defense mechanisms (in-511

cluding sanitary behaviors, allogrooming, and the use of antimicrobials) to prevent512

outbreaks of low to moderate transmissibility infections. Since the social networks513

included in the meta-analysis were selected regardless of the presence of infectious514

diseases in the populations, the organization of network structure could also reflect515

the selection pressure of past infections, presence of other ecological/evolutionary516

drivers (Pinter-Wollman et al., 2013), or conflicting selection pressures posed by517

the effort to maximize transmission of information.518

Challenges and opportunities519

The sociality of animal species has been traditionally classified based on qualitative520

phenotypes and life history traits, and the classification typically differs between521
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taxonomic groups. While this categorization scheme is convenient, it does not522

capture the continuum of social behaviour. As a step forward, recent studies have523

proposed quantitative indices of sociality (Silk, Altmann & Alberts, 2006; Aviles524

& Harwood, 2012). The results of our study support the potential use of network525

structure as a means of quantifying social complexity across taxonomic bound-526

aries. Similar predictive meta-analyses can also be used to identify species that527

are outliers in the current sociality classification system based on the organization528

of their social structure.529

However, we need to overcome several challenges before robust comparative530

analysis can be performed on social networks across broad taxonomic groups to531

address such issues. First, comparing network structure across taxonomic groups532

where data is aggregated over different spatio-temporal scales is challenging. Ag-533

gregating interactions over small time-periods may omit important transient inter-534

actions, whereas aggregating data over long time-periods may lead to a saturated535

network where distinguishing social organization may be difficult. Spatial con-536

straints and environmental heterogeneity can also impose a considerable influence537

on the social network structure (Davis et al., 2015; Leu et al., 2016). Additionally,538

the consideration of relative time scale of animal interaction and infectious period539

of pathogen is critical in making accurate predictions of disease spread. Future540

comparative studies should therefore consider standardizing data over temporal541

and spatial scales.542

The second challenge lies in effectively controlling for inherent biases in data543

collection methodologies across taxonomic groups. As direct observation of inter-544

actions is difficult in relatively solitary species, social networks are usually con-545

structed based on direct or indirect spatial associations (rather than interactions)546
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between individuals in a population (rather than a local group). Network size547

correlates to sampling intensity in many cases, and is therefore a poor proxy to548

group size. Social network studies of relatively solitary species are also relatively549

sparse compared to social species.550

The third challenge for comparative studies of animal social networks is uti-551

lizing data-sources published in inconsistent formats. To facilitate in-depth meta-552

analyses of network data, we encourage researchers to accompany animal network553

datasets with the following details: data sampling method, location of the data554

collection, type of population monitored (captive, semi-captive, free-ranging), edge555

definition, edge weighting criteria, node attributes (such as demography), tempo-556

ral resolution of data, temporal and spatial aggregation of the data, proportion of557

animals sampled in the area, and population density. When exact measurements558

of these data attributes are difficult, using reasonable approximations or proxies559

would be more useful than no information.560

Conclusions561

In summary, our study broadens the scope of network analysis from being just562

species-specific to a meta-analytic approach, and provides new insights towards563

how the organization of interaction patterns can mediate disease costs of sociality.564

We note that there is enormous potential of adopting a comparative approach to565

study the commonalities and differences in social networks across a wide range566

of taxonomic groups and social systems. Future studies can use this approach to567

quantitatively test several evolutionary and ecological hypotheses, including ones568

on the tradeoffs of group living, the contributions of social complexity to intelli-569
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gence, the propagation of social information, and social resilience to population570

stressors.571

Acknowledgements572

We thank José David Méndez for his assistance in organizing data. We are grateful573

for the constructive and insightful reviews provided by Matthew Silk, Damien574

Farine and two anonymous reviewers; as well as for the feedback provided by575

Stephan Leu on a previous version of this manuscript. This work was supported576

by the National Science Foundation Ecology and Evolution of Infectious Diseases577

grant 1216054.578

Data accessibility579

The data for all animal social network measures used in the study, and references580

where the actual network can be accessed, is available through the Bansal Lab581

Dataverse at (link).582

References583

Aiello, C.M., Nussear, K.E., Esque, T.C., Emblidge, P.G., Sah, P., Bansal, S.584

& Hudson, P.J. (2016) Host contact and shedding patterns clarify variation in585

pathogen exposure and transmission in threatened tortoise Gopherus agassizii :586

implications for disease modeling and management. Journal of Animal Ecology,587

85, 829–842. ISSN 00218790.588

27

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Altizer, S., Nunn, C.C.L., Thrall, P.P.H., Gittleman, J.L.J., Antonovics, J., Cun-589

ningham, A.A.a., Dobson, A.A.P.A., Ezenwa, V., Jones, K.K.E.K., Pedersen,590

A.A.B., Poss, M. & Pulliam, J.J.R.J. (2003) Social organization and parasite591

risk in mammals: Integrating theory and empirical studies. Annual Review of592

Ecology, Evolution, and Systematics, 34, 517–547.593

Anderson, R.M., May, R.M. & Anderson, B. (1992) Infectious diseases of humans:594

dynamics and control, vol. 28. Wiley Online Library.595

Arnold, W. & Anja, V.L. (1993) Ectoparasite loads decrease the fitness of alpine596

marmots (Marmota marmota) but are not a cost of sociality. Behavioral Ecology,597

4, 36–39.598

Aureli, F., Schaffner, C.M., Boesch, C., Bearder, S.K., Call, J., Chapman, C.A.,599

Connor, R., Fiore, A.D., Dunbar, R.I.M., Henzi, S.P., Holekamp, K., Korstjens,600

A.H., Layton, R., Lee, P., Lehmann, J., Manson, J.H., Ramos-Fernandez, G.,601

Strier, K.B. & Schaik, C.P.v. (2008) Fission-Fusion Dynamics. Current Anthro-602

pology, 49, 627–654.603

Aviles, L. & Harwood, G. (2012) A Quantitative Index of Sociality and Its Ap-604

plication to Group-Living Spiders and Other Social Organisms. Ethology, 118,605

1219–1229.606

Bailey, N.T. (1957) The mathematical theory of epidemics.607

Bansal, S., Grenfell, B.T. & Meyers, L.A. (2007) When individual behaviour mat-608

ters: homogeneous and network models in epidemiology. Journal of the Royal609

Society, Interface / the Royal Society, 4, 879–91. ISSN 1742-5689.610

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Blondel, V.D., Guillaume, J.L., Lambiotte, R. & Lefebvre, E. (2008) Fast unfolding611

of communities in large networks. Journal of Statistical Mechanics: Theory and612

Experiment, 2008, P10008.613

Blonder, B. & Dornhaus, A. (2011) Time-ordered networks reveal limitations to614

information flow in ant colonies. PloS one, 6, e20298. ISSN 1932-6203.615

Cantor, M. & Whitehead, H. (2013) The interplay between social networks and616

culture : theoretically and among whales and dolphins The interplay between617

social networks and culture : theoretically and among whales and dolphins.618

Philosophical transactions of the Royal Society of London. Series B, Biological619

sciences, 368, 1–10. ISSN 0962-8436, 1471-2970.620

Colman, E. & Bansal, S. (2017) Social fluidity mobilizes infectious disease in human621

and animal populations. bioRxiv.622

Couzin, I.D. & Laidre, M.E. (2009) Fission-fusion populations. Current Biology,623

19, 633–635. ISSN 09609822.624

Couzin, I. (2006) Behavioral ecology: social organization in fission–fusion societies.625

Current Biology, 16, 169–171. ISSN 0960-9822.626

URL http://www.sciencedirect.com/science/article/pii/S0960982206011924627

Craft, M.E. (2015) Infectious disease transmission and contact networks in wildlife628

and livestock. Philosophical Transactions of the Royal Society of London. Series629

B, Biological Xciences, 370, 1–12. ISSN 1471-2970.630

Cremer, S., Armitage, S.a.O. & Schmid-Hempel, P. (2007) Social immunity. Cur-631

rent biology : CB, 17, R693–702.632

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Croft, D.P., Edenbrow, M., Darden, S.K., Ramnarine, I.W., Oosterhout, C.v.633

& Cable, J. (2011) Effect of gyrodactylid ectoparasites on host behaviour and634

social network structure in guppies Poecilia reticulata. Behavioral Ecology and635

Sociobiology, 65, 23–35.636

Croft, D.P., James, R. & Krause, J. (2008) Exploring Animal Social Networks.637

Princeton University Press.638

Davis, S., Abbasi, B., Shah, S., Telfer, S. & Begon, M. (2015) Spatial analyses of639

wildlife contact networks. Journal of the Royal Society, Interface, 12.640

Ezenwa, V.O., Ghai, R.R., McKay, A.F. & Williams, A.E. (2016) Group living641

and pathogen infection revisited. Current Opinion in Behavioral Sciences, 12,642

66–72. ISSN 23521546.643

Farine, D.R. & Whitehead, H. (2015) Constructing, conducting, and interpreting644

animal social network analysis. The Journal of animal ecology, pp. 1144–1163.645

Faust, K. (2006) Comparing Social Networks : Size , Density , and Local Structure.646

Metodološki zvezki, 3, 185–216.647

Faust, K. & Skvoretz, J. (2002) Comparing Networks across Space and Time, Size648

and Species. Sociological Methodology, 32, 267–299. ISSN 0081-1750.649

Flack, J.C., Girvan, M., de Waal, F.B.M. & Krakauer, D.C. (2006) Policing sta-650

bilizes construction of social niches in primates. Nature, 439, 426–429. ISSN651

0028-0836.652

Gelman, A. & Rubin, D.B. (1992) Inference from iterative simulation using mul-653

tiple sequences. Statistical science, pp. 457–472.654

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Gelman, A. (2006) Prior distributions for variance parameters in hierarchical mod-655

els (Comment on Article by Browne and Draper). Bayesian Analysis, 1, 515–534.656

Gianetto, D.A. & Heydari, B. (2015) Network Modularity is essential for evolution657

of cooperation under uncertainty. Scientific Reports, 5, 9340.658

Godfrey, S.S., Bull, C.M., James, R. & Murray, K. (2009) Network structure and659

parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii.660

Behavioral Ecology and Sociobiology, 63, 1045–1056.661

Grenfell, B.T. & Dobson, A.P. (1995) Ecology of infectious diseases in natural662

populations, vol. 7. Cambridge University Press.663

Habig, B., Archie, E.A. & Habig, B. (2015) Social status, immune response and664

parasitism in males: a meta-analysis. Philosophical Transactions of the Royal665

Society B, 370, 20140109. ISSN 1471-2970.666

Hadfield, J. (2014) MCMCglmm course notes.667

Hadfield, J.D. (2010) MCMC methods for multi-respoinse generalized linear mixed668

models: The MCMCglmm R package. Journal of Statistical Software, 33, 1–22.669

Heffernan, J., Smith, R. & Wahl, L. (2005) Perspectives on the basic reproductive670

ratio. Journal of The Royal Society Interface, 2, 281–293. ISSN 1742-5689.671

Hock, K. & Fefferman, N.H. (2012) Social organization patterns can lower disease672

risk without associated disease avoidance or immunity. Ecological Complexity,673

12, 34–42.674

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Kanngiesser, P., Sueur, C., Riedl, K., Grossmann, J. & Call, J. (2011) Grooming675

network cohesion and the role of individuals in a captive chimpanzee group.676

American Journal of Primatology, 73, 758–767.677

Kappeler, P.M. & van Schaik, C.P. (2002) Evolution of Primate Social Systems.678

International Journal of Primatology, 23, 707–740. ISSN 1573-8604.679

Kappeler, P.M., Cremer, S., Nunn, C.L. & Kappeler, P.M. (2015) Sociality and680

health: impacts of sociality on disease susceptibility and transmission in animal681

and human societies. Philosophical transactions of the Royal Society of London.682

Series B, Biological sciences, 370, 20140116. ISSN 0962-8436.683

Keeling, M. (2005) The implications of network structure for epidemic dynamics.684

Theoretical population biology, 67, 1–8. ISSN 0040-5809.685

Kiss, I.Z., Green, D.M. & Kao, R.R. (2006) Infectious disease control using con-686

tact tracing in random and scale-free networks. Journal of the Royal Society,687

Interface / the Royal Society, 3, 55–62.688

Kiss, I.Z., Miller, J.C. & Simon, P.L. (2017)Mathematics of epidemics on networks:689

from exact to approximate models, vol. 46. Springer.690

Krause, J., Croft, D.P. & James, R. (2007) Social network theory in the behavioural691

sciences: Potential applications. Behavioral Ecology and Sociobiology, 62, 15–27.692

ISSN 03405443.693

Krause, J., James, R., Franks, D.W. & Croft, D.P., eds. (2014) Animal social694

networks. Oxford University Press, USA.695

32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Lenth, R.V. (2016) Least-squares means: the R package lsmeans. Journal of696

Statistical Software, 69, 1–33.697

Leu, S.T., Farine, D.R., Wey, T.W., Sih, A. & Bull, C.M. (2016) Environment698

modulates population social structure: experimental evidence from replicated699

social networks of wild lizards. Animal Behaviour, 111, 23–31.700

Leu, S.T., Kappeler, P.M. & Bull, C.M. (2010) Refuge sharing network predicts701

ectoparasite load in a lizard. Behavioral Ecology and Sociobiology, 64, 1495–702

1503.703

Loehle, C. (1995) Social Barriers to Pathogen Transmission in Wild Animal Poplu-704

ations. Ecology, 76, 326–335.705

Lopes, P.C., Block, P. & König, B. (2016) Infection-induced behavioural changes706

reduce connectivity and the potential for disease spread in wild mice contact707

networks. Scientific Reports, 6, 31790. ISSN 2045-2322.708

Lusseau, D., Schneider, K., Boisseau, O.O.J., Haase, P., Slooten, E. & Dawson,709

S.S.M. (2003) The bottlenose dolphin community of Doubtful Sound features a710

large proportion of long-lasting associations. Behavioral Ecology and Sociobiol-711

ogy, 54, 396–405.712

Manlove, K.R., Cassirer, E.F., Plowright, R.K., Cross, P.C. & Hudson, P.J. (2017)713

Contact and contagion: Probability of transmission given contact varies with714

demographic state in bighorn sheep. Journal of Animal Ecology, 86, 908–920.715

ISSN 13652656.716

33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Marcoux, M. & Lusseau, D. (2013) Network modularity promotes cooperation.717

Journal of Theoretical Biology, 324, 103–108.718

Meunier, J. (2015) Social immunity and the evolution of group living in insects.719

Philosophical Transactions B of the Royal Society, 370, 20140102.720

Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M. & Brunham,721

R.C. (2005) Network theory and SARS: predicting outbreak diversity. Journal722

of theoretical biology, 232, 71–81.723

Newman, M. (2003) Properties of highly clustered networks. Physical Review E,724

68, 26121.725

Nunn, C.L., Craft, M.E., Gillespie, T.R., Schaller, M., Kappeler, P.M. & Nunn,726

C.L. (2015) The sociality – health – fitness nexus: synthesis, conclusions and727

future directions. Philosophical Transactions of the Royal Society B, 370,728

20140115. ISSN 1471-2970.729

Otterstatter, M.C. & Thomson, J.D. (2007) Contact networks and transmission of730

an intestinal pathogen in bumble bee (Bombus impatiens) colonies. Oecologia,731

154, 411–21.732

Patterson, J.E.H. & Ruckstuhl, K.E. (2013) Parasite infection and host group size:733

a meta-analytical review. Parasitology, pp. 1–11.734

Pinter-Wollman, N. (2015) Persistent variation in spatial behavior affects the struc-735

ture and function of interaction networks. Current Zoology, 61, 98–106.736

Pinter-Wollman, N., Hobson, E.A., Smith, J.E., Edelman, A.J., Shizuka, D.,737

de Silva, S., Waters, J.S., Prager, S.D., Sasaki, T., Wittemyer, G., Fewell, J.738

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


& McDonald, D.B. (2013) The dynamics of animal social networks: analytical,739

conceptual, and theoretical advances. Behavioral Ecology, 25, 242–255. ISSN740

1045-2249.741

Plummer, M., Best, N., Cowles, K. & Vines, K. (2006) CODA: Convergence diag-742

nosis and output analysis for MCMC. R news, 6, 7–11.743

Prange, S., Gehrt, S.D., Hauver, S. & Voigt, C.C. (2011) Frequency and duration744

of contacts between free-ranging raccoons: uncovering a hidden social system.745

Journal of Mammalogy, 92, 1331–1342.746

Rifkin, J.L., Nunn, C.L. & Garamszegi, L.Z. (2012) Do Animals Living in Larger747

Groups Experience Greater Parasitism? A Meta-Analysis. The American Nat-748

uralist, 180, 70–82.749

Rubenstein, D.I., Sundaresan, S.R., Fischhoff, I.R., Tantipathananandh, C. &750

Berger-wolf, T.Y. (2015) Similar but Different : Dynamic Social Network Anal-751

ysis Highlights Fundamental Differences between the Fission-Fusion Societies of752

Two Equid Species , the Onager and Grevy ’ s Zebra. PLoS ONE, 10, 1–21.753

Ryder, T.B., McDonald, D.B., Blake, J.G., Parker, P.G. & Loiselle, B.A. (2008)754

Social networks in the lek-mating wire-tailed manakin (Pipra filicauda). Pro-755

ceedings of the Royal Society B-Biological Sciences, 275, 1367–1374.756

Sah, P., Leu, S.T., Cross, P.C., Hudson, P.J. & Bansal, S. (2017) Unraveling757

the disease consequences and mechanisms of modular structure in animal social758

networks. Proceedings of the National Academy of Sciences of the United States759

of America, 114, 4165–4170. ISSN 1091-6490.760

35

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Sah, P., Nussear, K.E., Esque, T.C., Aiello, C.M., Hudson, P.J. & Bansal, S. (2016)761

Inferring social structure and its drivers from refuge use in the desert tortoise,762

a relatively solitary species. Behavioral Ecology and Sociobiology, pp. 1–13.763

Sah, P., Singh, L.O., Clauset, A. & Bansal, S. (2014) Exploring community struc-764

ture in biological networks with random graphs. BMC bioinformatics, 15, 220.765

Schaller, M., Murray, D.R., Bangerter, A. & Schaller, M. (2015) Implications766

of the behavioural immune system for social behaviour and human health in767

the modern world. Philosophical Transactions of the Royal Society B, 370,768

20140105. ISSN 1471-2970.769

Schielzeth, H. (2010) Simple means to improve the interpretability of regression770

coefficients. Methods in Ecology and Evolution, 1, 103–113.771

Silk, J., Cheney, D. & Seyfarth, R. (2013) A practical guide to the study of social772

relationships. Evolutionary Anthropology, 22, 213–225.773

Silk, J.B., Altmann, J. & Alberts, S.C. (2006) Social relationships among adult774

female baboons (papio cynocephalus) I. Variation in the strength of social bonds.775

Behavioral Ecology and Sociobiology, 61, 183–195.776

Silk, M.J., Croft, D.P., Delahay, R.J., Hodgson, D.J., Boots, M., Weber, N. &777

McDonald, R.A. (2017a) Using Social Network Measures in Wildlife Disease778

Ecology, Epidemiology, and Management. BioScience, 67, 245–257. ISSN 0006-779

3568.780

Silk, M.J., Croft, D.P., Delahay, R.J., Hodgson, D.J., Weber, N., Boots, M. &781

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


McDonald, R.A. (2017b) The application of statistical network models in disease782

research. Methods in Ecology and Evolution. ISSN 2041210X.783

Silk, M.J., Croft, D.P., Tregenza, T. & Bearhop, S. (2014) The importance of fis-784

sion – fusion social group dynamics in birds. Ibis, 156, 701–715. ISSN 00191019.785

Slater, P.J.B. & Halliday, T.R., eds. (1994) Behavior and Evolution. Cambridge786

University Press, USA.787

Stroeymeyt, N., Casillas-Pérez, B. & Cremer, S. (2014) Organisational immunity788

in social insects. Current Opinion in Insect Science, 5, 1–15. ISSN 22145745.789

Sueur, C., King, A.J., Conradt, L., Kerth, G., Lusseau, D., Mettke-Hofmann,790

C., Schaffner, C.M., Williams, L., Zinner, D. & Aureli, F. (2011) Collective791

decision-making and fission-fusion dynamics: A conceptual framework. Oikos,792

120, 1608–1617. ISSN 00301299.793

VanderWaal, K.L. & Ezenwa, V.O. (2016) Heterogeneity in pathogen transmission:794

mechanisms and methodology. Functional Ecology, pp. n/a–n/a. ISSN 02698463.795

White, L.A., Forester, J.D. & Craft, M.E. (2015) Using contact networks to ex-796

plore mechanisms of parasite transmission in wildlife. Biological Reviews. ISSN797

14647931.798

Whitehead, H. & Lusseau, D. (2012) Animal social networks as substrate for cul-799

tural behavioural diversity. Journal of Theoretical Biology, 294, 19–28.800

37

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 6, 2017. ; https://doi.org/10.1101/106633doi: bioRxiv preprint 

https://doi.org/10.1101/106633
http://creativecommons.org/licenses/by/4.0/


Table captions801

Table 1. Effect size estimates of the Bayesian generalized linear mixed models802

examining the characteristics of social network structure among the three social803

systems: relatively solitary, gregarious and socially hierarchical. Shown are the804

posterior means of the expected change in log-odds of being in focal social system805

(column headers), as compared to the base social system (row headers), with806

one-unit increase in the network measure. The 95% credible intervals (i.e., the807

coefficients have a posterior probability of 0.95 to lie within these intervals) are808

included in brackets. Significant terms with pMCMC < 0.05 are indicated in bold,809

where pMCMC is the proportion of MCMC samples that cross zero.810
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Fig. captions811

Fig. 1. A stylized illustration of the global network measures used (in the final812

model) to identify the structural differences in the social networks among different813

social systems. (A) Degree heterogeneity, measured as the coefficient of variation814

(CV) in the frequency distribution of the number of social partners (known as the815

degree distribution). Shown is the degree distribution of a homogeneous network816

(CV � 1), and an exponential degree distribution of a network with large varia-817

tion in individual degrees (CV = 1). (B) Degree homophily (ρ), or the tendency of818

social partners to have a similar degree. Shown is an example of a disassortative819

network, wherein high degree individuals tend to associate with low degree individ-820

uals (ρ < 0), and assortative degree networks, where high degree individuals tend821

to form social bonds with each other (ρ > 0). (C) Average betweenness centrality,822

that measures the tendency of nodes to occupy central position within the social823

network. Shown is an example of a network with low average betweenness central-824

ity and a network with high average betweenness centrality. Node colors represent825

the betweenness centrality values - nodes with darker colors occupy more central826

positions within the network. (D) Subgroup cohesion measures the tendency of827

individuals to interact with members of own subgroups (modules). The network to828

the left has three low cohesive subgroups, while the network to the right has highly829

cohesive subgroups where most of the interactions occur within (rather than be-830

tween) subgroups. (E) Network fragmentation, measured as the log-number of the831

subgroups (modules) present within the largest connected component of a social832

network. Shown is an example of low (left) and highly (right) fragmented network.833

(F) The average clustering coefficient measures the average fraction of all possible834
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triangles through nodes that exist in the network, and indicates the propensity of835

social partners of individuals to interact with each other. (G) Network diameter is836

the longest of all shortest paths between pairs of nodes in a network. Shown is an837

example of a network with low network diameter (longest of shortest paths = 3)838

and a similar network with network diameter of 5, indicated by red coloured edges.839

840

Fig. 2. Phylogenetic distribution of animal species represented in the social net-841

work dataset used in this study. Numbers next to the inner ring denote the842

total networks available for the particular species. The inner and the middle843

ring is color coded according to the taxonomic class and the social system of the844

species. The colors in the outer ring indicates the type of interaction represented845

in the network, and whether the interactions were coded as (direct) interactions846

or association in our analyses (in brackets). The tree was constructed in the In-847

teractive Tree Of Life (http://itol.embl.de/) from the NCBI taxonomy database848

(http://www.ncbi.nlm.nih.gov/Taxonomy/).849

850

Fig. 3. Role of network structures in influencing disease transmission summarized851

as epidemic probability (likelihood of large outbreaks infecting at least 15% of indi-852

viduals in the network), average epidemic duration (time to epidemic extinction),853

and average epidemic size (percent of individuals infected in the social network),854

for low (=0.05), moderate (=0.15) and highly (=0.45) transmissible pathogens.855

The average infectious period of the simulated disease is 5 days (γ=0.2). The856

three global network measures shown are the ones that were found to differ among857

the three social systems (Table 1). DH, degree heterogeneity; CC, average clus-858

tering coefficient; NF, network fragmentation. Error bars represent 95% credible859
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intervals. Credible intervals that do not include zero suggest significant association860

with disease transmission (red = significant effect, black = effect not significant)861

862

Fig. 4. Disease costs of social systems due to social network structure. Disease863

cost has been quantified in terms of epidemic probability, average epidemic du-864

ration and average epidemic size for low (=0.05), moderate (=0.15) and highly865

(=0.45) transmissible pathogens. The average infectious period of the simulated866

disease is 5 days (γ=0.2). Error bars represent standard errors, and different let-867

ters above the bars denote a significant difference between the means (P < 0.05)868

869
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Table 1:
Degree heterogeneity Base

Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary -3.96 [-7.57, -0.33] -9.46 [-15.21, -3.87]
Gregarious -6.39 [-11.67, -1.34]
Socially hierarchical

Degree homophily Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary -0.18 [ -1.66, 1.17 ] -1.69 [ -3.80, 0.25 ]
Gregarious -1.64 [ -3.25, 0.09 ]
Socially hierarchical

Average betweenness centrality Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary 0.68 [ -2.31, 3.76 ] 0.36 [ -2.91, 3.82 ]
Gregarious 0.27 [ -2.56, 2.12 ]
Socially hierarchical

Average clustering coefficient Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary -0.06 [ -2.49, 2.47 ] -3.40 [ -6.56, -0.24 ]
Gregarious -3.30 [-5.82, -0.88 ]
Socially hierarchical

Subgroup cohesion Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary -0.60 [ -2.98, 1.84 ] -0.40 [ -3.23, 2.42 ]
Gregarious 0.97 [ -1.14, 3.05 ]
Socially hierarchical

Network fragmentation Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary 3.94 [ 0.74, 7.26 ] 0.11 [ -4.01, 4.12 ]
Gregarious -3.27 [ -6.11, -0.51 ]
Socially hierarchical

Network diameter Base
Focal Relatively solitary Gregarious Socially hierarchical

Relatively solitary -1.79 [ -5.00, 1.45 ] 1.46 [ -2.79, 5.52 ]
Gregarious 2.86 [ -0.31, 5.89 ]
Socially hierarchical
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Figure 1:
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Figure 3:
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Figure 4:
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