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Abstract

Côte d’Ivoire has one of the largest HIV epidemics in West Africa with around
half million people living with HIV. Key populations like gay men and other men

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/


who have sex with men (MSM) are often disproportionately burdened with HIV due
to specific acquisition and transmission risks. Quantifying the MSM population sizes
at subnational level is critical to improving the HIV prevention interventions. While
survey-based direct estimates of MSM numbers are available at a few urban centers
in Côte d’Ivoire, no data on MSM population size exists at other areas without
any community infrastructure to facilitate sufficient access to the MSM community.
We use this limited data in a Bayesian regression setup to produce first empirically
calculated estimates of the numbers of MSM in all areas of Côte d’Ivoire prioritized in
the HIV response. Our hierarchical model imputes missing covariates using geospatial
information and allows for proper uncertainty quantification leading to meaningful
confidence bounds for the predicted MSM population size estimates. The intended
impact of this process is to increase uptake and use of high quality, comprehensive
epidemiologic and interventional data in program planning. These estimates will
help design future surveys and support the planning of the scale and content of HIV
prevention and treatment programs for MSM in Côte d’Ivoire.

Keywords: AIDS, Bayesian model, Côte d’Ivoire, Gaussian process, HIV, MSM population,
small area estimation, spatial model, West Africa
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1 Introduction

The last five years have witnessed significant advancements in the response to HIV including

universal treatment for those living with HIV, antiretroviral based pre-exposure prophy-

laxis to prevent HIV, and new diagnostic approaches including HIV-self testing (UNAIDS

2017). However, leveraging these strategies to achieve an AIDS-Free generation by 2030

necessitates understanding who and why people continue to acquire HIV (Beyrer et al.

2014, Stahlman et al. 2016). In concentrated epidemics, it has long been understood that

the majority of HIV infections are among populations with specific acquisition and trans-

mission risks for HIV including gay men and other men who have sex with men (MSM),

sex workers, people who use injection drugs, and transgender women (Beyrer et al. 2014).

However, in generalized HIV epidemics, the specific proximal risks for HIV have been less

studied which challenges the ability to effectively specify both the most appropriate bene-

factors for these new interventions as well as the number of people in need (Boily et al.

2015, Mishra et al. 2016). To address the former, there has been a number of epidemio-

logic and mathematical modeling studies demonstrating the importance of addressing the

HIV prevention and treatment needs of key populations in the context of generalized HIV

epidemics (Mishra et al. 2016). However, there remain limited data on the sizes of key

populations across most generalized HIV epidemic settings (Abdul-Quader et al. 2014).

Characterizing the numbers of key populations facilitates an understanding of the num-

bers of potential eligible candidates for more intensive HIV prevention interventions, the

overall potential impact of those interventions when implemented at scale, and finally an

improved understanding of the local HIV epidemic (Abdul-Quader et al. 2014, Holland

et al. 2016). Moreover, to effectively parameterize mathematical models characterizing

the modes of transmission, high quality data regarding the size, characteristics, and HIV

burden among key populations are needed (UNAIDS/WHO Working Group on Global

HIV/AIDS and STI Surveillance 2010). Concurrently, there has been increasing consen-

sus on the appropriate methods for population size estimation for key populations (Quaye

et al. 2015, UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance

2010). However, many current size estimates that have been completed resulted in national

estimates, with less in the literature focused on subnational estimates in the majority of
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low and middle income settings (Tanser et al. 2014). Ultimately, size estimates at the

subnational level are those most often used by by local ministries of health, implement-

ing partners, and bilateral and multilateral funding agencies to guide the geographic and

population prioritization of resources and efforts (Yu et al. 2014). Often the direct esti-

mates of key population size have been in urban or peri-urban areas where the population

densities of key populations are higher and where the community infrastructure exists to

facilitate sufficient access to the community (Yu et al. 2014). However, HIV prevention

and treatment needs are universal, necessitating methods for estimating population size of

key populations at high risk of HIV acquisition and transmission at the subnational level

(Tanser et al. 2014).

There exist a range of extrapolation methods to generate estimates at the national

and subnational level. These methods differ in terms of their reliance on data, cost, and

scientific rigor (Yu et al. 2014). Expert opinion involves consulting experts, including

national stakeholders, technical experts, and key population groups, on how confident they

are with the direct estimates and seeking their advice on how to apply these numbers to

other off-sample areas. This method has low reliance on data, little cost, and relatively low

scientific rigor. Simple and stratified imputation apply the mean from areas with direct

estimates to the areas where predictions are needed. These methods have some reliance

on auxiliary data and result in arguably more evidence-based rigor than relying on expert

opinion alone. Less is known about other more complex methods, including regression,

treating off-sample areas a missing data problem, and utilizing geospatial covariation or

correlation to predict values, i.e., small-area estimation.

In West Africa, the epidemiology of HIV has been distinct from that in Eastern and

Southern Africa (Djomand et al. 2014, Holland et al. 2016, Papworth et al. 2013). Specifi-

cally, the population HIV prevalence among all adults has not surpassed 5% though very

high burdens have been observed among key populations Djomand et al. (2014). The bur-

den of HIV in Côte d’Ivoire was estimated to be 3.2% among all adults equating to nearly

half a million people living with HIV, nearly all of whom are over fifteen years old. In

the national strategic plan for HIV, key populations including MSM, female sex workers

(FSW), and people who inject drugs (PWID) have been deemed to be priority populations
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for HIV prevention and universal treatment for those living with HIV. However, similar to

other settings, the enumeration and representative sampling of key populations has been

challenged by the criminalized nature of these populations combined with high levels of

stigma (Beyrer et al. 2012). Consequently, specialized sampling strategies for key popula-

tions in these settings have been used including respondent-driven sampling, time-location

sampling, the prioritization for local AIDS control efforts (PLACE) and others. However,

the majority of these studies have taken place in urban centers resulting in limited study

of population size estimates for key populations in the majority of the country including

rural, less densely populated settings Abdul-Quader et al. (2014).

Given limited data on population size of key populations in Côte d’Ivoire, the objective

of this study was to assess the utility of small area estimation approaches to estimate

the population size in the organizational units prioritized by the Presidents Emergency

Plan For AIDS Relief (PEFPAR) along with proper quantification of uncertainty of those

estimates. Specifically, the study aimed to utilize available direct estimates of population

size and other demographic covariates in Côte d’Ivoire to generate model based estimates

of population sizes of MSM for subnational areas.

2 Data

The size of MSM population was directly estimated for five regions of Côte d’Ivoire: Abid-

jan, Agboville, Bouake, Gagnoa, and Yamoussoukro from March 2015- February 2016. Re-

gions for direct size estimation were selected to coincide with a respondent-driven sampling

study of adult MSM in progress in these same five areas.

2.1 Direct estimates

Size estimates were generated through the use of various multiplier methods, including the

unique object multiplier, NGO membership multiplier, service multiplier, and social event

multiplier. Briefly, multiplier methods for size estimation compare two independent sources

of count population size, assessing the overlap between these independent estimates in order

to determine the total number of individuals in the population. The basis for these methods
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rests on the understanding that the proportion of individuals in the population who appear

at a specific institution during a certain time period, for example a current registry of NGO

membership, is equal to the proportion who appear at that same institution among the

survey participants.

The first independent source of data consisted of a count or listing from programme

data for NGO membership, service provision, and social event attendance. For the unique

object multiplier method, the first source of data was a log of how many objects were

distributed. The total number of MSM attending services at “Clinique de Confiance” was

captured from program logs. The total number of MSM who attended the social event

“evening GNARA” was recorded. The total number of MSM belonging to NGOs was also

captured from program logs.

The second independent source of data for our estimates was a representative survey in

which MSM were recruited through Respondent Driven Sampling (Heckathorn 1997, RDS),

which is a strategy employed when individuals in the target population are hard-to-reach

and when no known sampling frame exists. Methods for respondent-driven sampling have

been described previously. Individuals were purposively asked questions to generate this

second independent source of data for size estimation (Appendix A). As one example, for

the service multiplier method, participants were asked if they had ever received services

from “ Clinique de Confiance.”

From these two independent sources of data, direct estimates were generated using the

formula S = (N1 × N2)/R , where S is the estimate of total population size, N1 and N2

respectively are the total numbers of people captured in the first and second indepen-

dent source of data (e.g. programme log and MSM recruited to the cross-sectional RDS

study), R is the overlap between two independent sources of data (e.g. number of MSM

participating in cross-sectional RDS study who reported accessing services). Since, the es-

timates were based on RDS, 95% confidence intervals could be calculated (Salganik 2006)

for the proportion R/N2 of RDS participants who were also enlisted in the first programme.

Subsequently they are used to create confidence intervals for S.

Because those sampled were 90% from the age group 18-29, population size estimates

were age-standardized to get a better estimate of all men (15-49) who have sex with other
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men. In order to age-standardize, a population size estimate proportion was calculated

using the male population 18-29 of the given region. In accordance with previous studies

looking to estimate the size of men who have sex with men (Purcell et al. 2012), it was

assumed that the proportion of MSM remains constant across age groups. Therefore, the

calculated population proportion was applied to the total male population 15-49 to get

an estimate of the total number of men 15-49 who have sex with other men. However,

for the data analysis we used the direct estimates for the 18-29 age group, instead of the

age-standardized version for the 15-49 age group. Hence, the data analysis and subsequent

predictions of number of MSM in the age group of 18-29 years does not rely on any such

assumption.

Table 1 presents the data for the five regions. Observe that not all survey methods were

implemented in all areas. In Abidjan, there were two NGOs where we had access to the

total count of members. On the other hand, Agboville does not have a service multiplier

based estimate and Gagnoa does not have an estimate from NGO membership.

regions NGO membership Service multiplier Social event Unique object

Abidjan
3535 (2593, 5550)

2334 (1773, 3415)
2759 (2083, 4087) 2334 (1669, 3879) 1910 (1412, 2947)

Agboville 1015 (807, 1369) 480 (351, 760) 823 (599, 1315)

Bouake 3873 (2536, 8190) 747 (600, 988) 473 (397, 586) 831 (708, 1006)

Gagnoa 947 (628, 1925) 384 (287, 581) 555 (409, 860)

Yamoussoukro 1036 (721, 1835) 1688 (1038, 4517) 398 (300, 589) 983 (754, 1412)

Table 1: Population size estimates (and 95% confidence intervals) of MSM in age group of

18 to 29 years.

2.2 Prediction areas

In total, there were 61 prediction areas that were selected to coincide with PEPFAR’s

official Organizational Units (OUs), and that also roughly correspond with Côte d’Ivoire’s

department-level administrative division. Prediction areas were selected to coincide with

PEPFAR Organizational Units (OUs) in order to provide evidence-based estimates for

targeted prevention, care and treatment programs and to inform Country Operational
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Processes. These PEPFAR OUs also roughly correspond with the official department-

level administrative division in Côte d’Ivoire. In settings where public health systems are

decentralized, estimates for program denominators are needed at both the national and

sub-national level in order to set actionable targets. This is especially important if there

are large regional differences in burden of disease, resources, etc. The intended impact of

this process is to increase uptake and use of high quality, comprehensive epidemiologic and

interventional data in program planning, while building consensus on small area estimations

of available data to guide additional data collection and programmatic efforts focused on

HIV among key populations.

2.3 Covariates

Covariates were selected based on relevance to prediction model and availability of quality

data at the appropriate administrative division (department level). Data for population

density, density change and male population was obtained from publicly available data pub-

lished by the Institut National de la Statistique, Republique de Côte d’Ivoire. Data for HIV

prevalence was obtained from a UNAIDS report on subnational estimates of HIV prevalence

in Côte d’Ivoire (http://www.unaids.org/sites/default/files/media_asset/2014_

subnationalestimatessurvey_C\unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\

@tempboxa\hbox{o\global\mathchardef\accent@spacefactor\spacefactor}\accent94o\

egroup\spacefactor\accent@spacefactortedivoire_en.pdf)

There was no department-level age-stratified, sex-stratified data. We assumed a con-

stant age and sex distribution across all departments: 55% of total male population for

each of the departments/region seats is in the age group 18-29. Also, for Abidjan, close

to 90% of our sample reported being from either Abobo, Cocody, Marcory, Triechville, or

Youpougon. This is just five communes out of the total ten in Abidjan. We therefore

considered our sample to better represent these five communes of Abidjan rather than the

whole city. The total male (15-49) population for these communes was 842551 rather than

1286750 for the whole city and for men 18-29 was 368097 rather than 562160. We also

assumed that the age-sex distribution was the same across all the communes.

Additionally, we also used estimated population density from the Landscan database

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

(http://www.unaids.org/sites/default/files/media_asset/2014_subnationalestimatessurvey_C\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 o\egroup \spacefactor \accent@spacefactor tedivoire_en.pdf)
(http://www.unaids.org/sites/default/files/media_asset/2014_subnationalestimatessurvey_C\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 o\egroup \spacefactor \accent@spacefactor tedivoire_en.pdf)
(http://www.unaids.org/sites/default/files/media_asset/2014_subnationalestimatessurvey_C\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 o\egroup \spacefactor \accent@spacefactor tedivoire_en.pdf)
(http://www.unaids.org/sites/default/files/media_asset/2014_subnationalestimatessurvey_C\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 o\egroup \spacefactor \accent@spacefactor tedivoire_en.pdf)
https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/


(http://web.ornl.gov/sci/landscan/) based on night light data. The night light data

is from Defense Meteorological Satellite Program (DMSP) Operational Linescan System

(OLS) which detects nighttime lights from satellite imagery. Landscan provided estimated

population size over 1km×1km grid cells. For each of the 61 prediction areas, the population

estimates were averaged over a 25 km2 radius centered on the area to obtain the average

population density for the areas.

3 Methods

3.1 Linear model

We use the data for the five regions to train a regression model for predicting the MSM

population size based on the covariates, and subsequently use this model to extrapolate at

all other regions. A lot of our modeling choices are guided by the extremely small sample

size (19 datapoints in total from five regions) which proscribed the use of complex models

involving many parameters. For the ith region, let Ni denote the total male population in

the age group of 18-29 years, xi denote the set of demographic covariates and nij denote

the direct estimate obtained from the jth method. A natural choice for modeling the

population size would have been a generalized linear model (GLM) nij ∼ Binomial(Ni, pi)

where pi = logit(xTi β). However, note that not all the direct estimates are equally reliable.

For example, we observe in Table 1 that the NGO membership based estimate of MSM

population in Bouake differs by an order of magnitude from the other three estimates for

the same region. The confidence interval for this estimate is also very wide suggesting

limited reliability of the estimate. While it is less clear how to incorporate information

from the confidence intervals in a binomial GLM setup, we can leverage these data in a

linear regression setup via heteroskedastic errors.

Defining yij = log(nij/Ni), we specify the linear regression model as yij
ind∼ N(xTi β, τ

2
ij).

The variance of a normally distributed random variable is proportional to the square of

two-tailed 95% coverage interval. Therefore, we specify τ 2ij = τ 2(yij·u − yij·l)2 where yij·u

and yij·l denotes the upper and lower bounds corresponding to yij. This ensures that more

uncertain estimates with very wide confidence bounds are given less weights in the model
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than the ones with narrow confidence intervals providing more precise information.

Regression models for small area estimation often include region specific random effects

to improve estimation (Fay & Herriot 1979). However, Datta et al. (2011) argued that when

the number of regions is small, the simpler model without random effects often performs

better. Owing to the very small sample size of the dataset, we decided against introducing

region specific random effects as it involves additional parameters.

Finally, we have used a log-transformation to define the yij’s instead of a logit trans-

formation, although the latter is more natural, as nij/Ni is a fraction. In the dataset, the

proportions nij/Ni are typically very small (80% are less than 0.05). So the two trans-

formations yield very similar yij’s. Furthermore, as we discuss in Section 3.2, the log

transformation is more interpretable in our final model which includes log(Ni) as one of

the covariates. Hence, we preferred the log-transformation.

3.2 Covariate Selection

The covariates described in Section 2 were region specific. Hence, although there were 19

datapoints, there were only 5 unique sets of covariate values, one for each region. This

impeded exploring nonlinear models linking yij’s to xi and confined us to the parsimony

of the linear model. Even in a linear setup, we want to select only one or two most

relevant covariates from the five available — male population, population density, density

change, HIV prevalence and Landscan density. We kept HIV prevalence in the model as

we expected areas of where there are more MSM to be areas with high HIV prevalence,

as MSM are disproportionately affected by HIV given the biology of HIV transmission

combined with limited programming focused on mitigating risks specifically among gay

men and other MSM. The total male population in the age group (Ni) has already been

used to define yij’s. Hence, it seems natural to exclude it from the linear model. However,

Figure 1 reveals that yij’s have a very strong negative correlation with log(Ni)’s. Initially

this negative correlation seems counter-intuitive given a rural-to-urban migration. One

likely explanation is that in large urban centers the MSM community grows at a slower

rate than the overall population even if the absolute numbers of MSM is higher. For

example, if the numbers of MSM population grows at a rate proportional to Nγ
i for some
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Figure 1: Negative correlation in log-log scale between MSM proportion and total male

population of age 18-29

γ < 1, then cov(yij, log(Ni)) = γ − 1 which is negative. Hence, we included log(Ni) as a

covariate, which in turn justifies use of a log-transformation to define yij’s, as it imparts a

nice interpretability about of the relative growth rates of the MSM population and the total

population. The other explanation would be that in urban areas a higher proportion of

MSM are not accounted for in the survey or that the independent assumption is violated in

the capture-recapture method. While both reasons are conceivable, the first is a feature of

MSM population dynamics while the second is a sampling issue. In the absence of additional

data collection, it is not feasible to discern between these two scenarios. However, internet-

based surveys may facilitate learning more about the numbers of MSM in more stigmatizing

settings.

Due to limited sample size, we restricted model selection only from linear models using

no more than two of the five covariates and used leave-one-out cross validation to choose

the covariate (alongside HIV prevalence). For each of the 4 models, we leave one region out

and fit the model using the remaining regions to predict the MSM population size at the

left out region. We repeat this for all the five regions and the average squared error between
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the predicted estimate and average direct estimate for each region gives the leave-one-out

cross validated (LOOCV) error.

Table 2 provides the LOOCV based Mean Square Error for the four models. We found

Covariates included MSELOOCV

log(male population) + HIV prevalence 3.5× 10−3

Landscan density + HIV prevalence 5.7× 10−3

population density + HIV prevalence 6.5× 10−3

density change + HIV prevalence 6.7× 10−3

Table 2: Leave-one-out cross validated mean square error for the four models

that the model with log male population and HIV prevalence as covariates has the lowest

MSE. Thus, the final linear regression model is yij = β0 + β1 log(Ni) + β2 Hi + εij where

Hi denotes the HIV prevalence for the ith region.

3.3 Spatial model for HIV prevalence

HIV prevalence data were missing at around 50% (30 out of 61) of the locations where we

want to predict MSM population. Since, it is one of the covariates in the model, we need to

impute the missing values. A simple choice for imputation would be to use the average of

the observed values. However, exploratory data analysis using empirical and exponential

semivariograms confirms significant spatial pattern (see Figure 2) which can be potentially

leveraged to improve the quality of imputation (we refer the reader to the books by Cressie

& Wikle 2011, Banerjee et al. 2014, for details on variograms and spatial models).

The use of a spatial model was corroborated by a leave-one-out cross validation using the

available HIV prevalence data for the 31 regions. Let si denote the co-ordinates representing

the ith region and H(si) = Hi denote the corresponding HIV prevalence. We modeled H(s)

as a Gaussian Process (GP) with constant mean and exponential covariance function. If

H(S) denotes the vector formed by stacking up the HIV prevalence data for a set of

regions S, then the GP specification effectuates a multivariate Gaussian distributionH(s) ∼

N(µ1,Σ) where Σ = σ2 exp(−φ || si − sj || )si,sj∈S. The prevalence data at S is used to
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Figure 2: Empirical (black dots) and exponential (red line) variogram for HIV prevalence

estimate the parameters (µ, σ2, φ). Subsequently, the prevalence at any new location s is

given by

[H(s) |H(S)] ∼ N(v(s)TΣ−1H(S), σ2 − v(s)TΣ−1v(s)) (1)

where v(s) = σ2(exp−φ||s− si||)si∈S. For the cross validation, we use these kriging equa-

tions to impute the HIV prevalence at each left out region, based on parameter estimates

using data from the remaining regions. For comparison, we used the mean HIV prevalence

of the in-sample data to predict at the left out region. The leave-one-out MSE for the spa-

tial model (MSE=0.37) was around 20% better than for the mean imputation (MSE=0.48).

Hence, we use the spatial GP model for imputing the missing HIV prevalence data.

3.4 Hierarchical Bayesian Modeling

Obtaining meaningful confidence bounds for the predicted MSM population is critical. The

uncertainty of the regression parameters and especially the spatial parameters are often

ignored in frequentist predictions. Furthermore, for regions with missing HIV prevalence

data, the kriging estimates in Equation 1 are accompanied by the kriging variances which

can be large if the location is far from the data locations. Hence ignoring this source of

uncertainty can lead to narrow prediction bounds. In a frequentist setting, it is unclear

how to utilize the kriging variance when the imputed HIV prevalence will be used as
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a covariate to predict MSM population size. However, we can seamlessly integrate this

multistage procedure into a hierarchical Bayesian model which allow for proper propagation

of uncertainty associated with all different parts of model estimation into the final prediction

of population size estimates.

Let S denote the set of locations where HIV data are available. Also, for any location

s, let N(s) and H(s) respectively denote the male population of 18-29 years and the HIV

prevalence. Finally, defining yj(si) = yij, wij = (yij,u − yij,l)2 and β = (β0, β1, β2)
′, the full

specification of the hierarchical model is given by:

∏5
i=1

∏
j N(yj(si) | β0 + β1 log{N(si)}+ β2 H(si), τ

2wij)×

N(H(S) | µ1,Σ(σ2, φ)) ×

N(β | 0, 106I)×N(µ | 0, 106)× Unif(φ | 0, 10) ×

Gamma(1/τ 2 | 0.01, 0.01)×Gamma(1/σ2 | 2, 1)

(2)

The top row of 2 is the log-normal regression model for the MSM percentages, the middle

row is the spatial Gaussian Process model for HIV imputation and the bottom two rows are

the parameter priors. Gamma(a, b) denotes the Gamma distribution with shape parameter

a and rate parameter b and Unif(a, b) is the uniform distribution on (a, b). We use the

Nimble package in R (https:\\r-nimble.org) to generate 30, 000 MCMC samples from

this model, the first 15, 000 of which is discarded as burn-in. The posterior estimates for all

the parameters are provided in Table 3. We observe that there is strong negative correlation

β0 2.62 (0.04, 5.23) µ 2.55 (1.54, 3.61)

β1 -0.79 (-1.09, -0.51) σ2 0.86 (0.5, 2.29)

β2 0.63 (-0.07, 1.33) φ 7.68 (2.71, 9.89)

τ 2 0.65 (0.34, 1.43)

Table 3: Posterior median and 95% credible interval for the hierarchical model

between yij and log(Ni) which we have discussed in Section 3.2. The association with HIV

prevalence is relatively weak. The estimates of the spatial parameters indicate a strong

spatial dependence in HIV prevalence, previously insinuated by the variograms in Figure

2.
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3.5 Prediction

We use composition sampling to obtain posterior predictive distributions of MSM popula-

tion size at a new location. If s ∈ S, then this is simply given by the samples {y(m)
new(s) =

β
(m)
0 + β

(m)
1 log{N(s)} + β

(m)
2 H(s) |m = 1, 2, . . . ,M} where {β(m)

i |m = 1, 2, . . . ,M} de-

note the MCMC samples from posterior distribution of βi. For locations outside S with no

HIV prevalence data, posterior distribution of H(s) is given by∫
p{H(s) |H(S), µ, σ2, φ}p{µ, σ2, φ |H(S)}dµdσ2dφ

This is effectively accomplished using the samples {µ(m), (σ2)(m), φ(m)} to generateH(s) |H(S)

via the kriging Equation in (1). Subsequently, the samples {y(m)
new(s) = β

(m)
0 +β

(m)
1 log{N(s)}+

β
(m)
2 H(m)(s) |m = 1, 2, . . . ,M} represent posterior predictive distribution for MSM popu-

lation size at those locations.

We train the linear regression model on a very limited set of values of the predictors,

based on just five unique datapoints. It is difficult to assess a priori whether we can ex-

trapolate this linear relationship to other regions with significantly different demographics.

We observed that for some areas with very low population, the predicted MSM population

percentage was abnormally high. Further investigation into this reveals that the minimum

total male population among the five regions with survey data corresponds to the 36th

percentile of the empirical distribution of total male population among all the 61 regions.

Hence, the training data corresponds to larger areas with greater population and does

not inform much about the regression relationship in regions where the population is very

low. This, combined with the strong negative value of β1 in Table 3 results in such high

estimated MSM fractions.

As a heuristic remedy, we assume that the negative relationship flattens out below a

certain population threshold. We truncate the total male population at the 10% quantile

of the empirical distribution and use these thresholded values for prediction. While this

is ad hoc, more formal methods like estimating the truncation point based on the data

will always truncate within the data values, whereas replacing a linear regression with a

general monotonic function will involve more parameters and hence is infeasible for our

small dataset. Of course, our truncation does not affect parameter estimation as all the

total population values for the training data are above the truncation level. This issue is
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less severe for HIV prevalence as the observed values for the five regions better represent

the empirical distribution of HIV prevalence. Since, it also has a much weaker association

with population size of MSM, we do not truncate the HIV prevalence values.

4 Size estimates

Figures 3, 4 and 5 present the uncertainty quantified predictions of HIV prevalence, MSM

population fraction and size respectively while the actual numbers are presented in Ta-

ble 4. For the regions with no direct estimates, the predicted MSM population percentage
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Figure 3: Predicted and observed HIV. 4 represents observed data. IQR 95% is the 95%

Inter-quantile range, i.e. width of the 95% credible interval.

typically varied between as low as 0.5% to around 10%. The highest MSM percentages

are predicted in Katiola, Kouassi-kouassikro and Bettie. However, these areas also had the

widest credible intervals indicating the large uncertainties associated with the predictions.

Figure 6 demonstrates the impact of HIV imputation on the prediction uncertainties. Since,

the variance and width of confidence intervals of log-normal distribution are proportional

to the mean, we use relative width (ratio of the 95% cofidence interval width to the esti-

mate) as a more meaningful measure of uncertainty. In Figure 6a we plot the predictions of
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represents observed data. IQR 95% is the 95% Inter-quantile range, i.e. width of the 95%

credible interval.

MSM population percentage against the relative width. We observe that the relative width

was in general larger for locations with missing HIV prevalence data. This is expected as

the Bayesian model properly propagates the uncertainty associated with the imputation

of HIV prevalence in the final predictions. This is nicely reflected in the CI widths. In

Figure 6b we plot the relative width against leverages for each region. For regions with

HIV prevalence data, the relative widths increase with the leverage as expected indicating

that predictions for regions with covariates values distant from those of any of the observed

regions are accompanied with larger uncertainty. Among regions with missing HIV preva-

lence, this trend was less prominent due to the added component in the uncertainty from

the imputation.

In terms of absolute numbers, Abidjan has by far the highest predicted MSM population

size although it has one of the lowest percentages. Both occurrences are due to the massive

population of Abidjan. Outside of the five data regions, Katiola and Sassandra has the

highest predicted MSM population size whereas some regions has predicted numbers as low
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is the 95% Inter-quantile range, i.e. width of the 95% credible interval.

as 100.

Regions MSM population size MSM population % HIV prevalence

Abidjan 1818 (1113, 2941) 0.5 (0.3, 0.8) 3.6

Agboville 628 (352, 1134) 6.5 (3.7, 11.8) 3.1

Bouake 953 (741, 1218) 1.3 (1, 1.7) 3.1

Gagnoa 383 (187, 783) 1.6 (0.8, 3.2) 2

Yamoussoukro 822 (614, 1101) 2.3 (1.7, 3.1) 3.1

Abengourou 638 (457, 889) 1.8 (1.3, 2.6) 2.7

Agnibilekrou 755 (472, 1218) 4.3 (2.7, 7) 3.2

Beoumi 476 (305, 746) 3.1 (2, 4.8) 2.5

Biankouma 356 (176, 721) 2.1 (1, 4.2) 2

Bouafle 591 (377, 922) 1.3 (0.9, 2.1) 2.5

Bouna 328 (164, 666) 2.8 (1.4, 5.8) 2

Dabakala 497 (323, 769) 2.6 (1.7, 4) 2.5

Daloa 439 (182, 1051) 0.7 (0.3, 1.6) 1.9

Danane 421 (216, 816) 1.5 (0.8, 2.9) 2.1

Dimbokro 377 (216, 673) 4.1 (2.4, 7.3) 2.3

Divo 422 (198, 894) 1.1 (0.5, 2.3) 2
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Guiglo 772 (495, 1214) 4 (2.6, 6.3) 3.2

Issia 387 (171, 865) 1.1 (0.5, 2.5) 1.9

Katiola 1134 (413, 3078) 10.3 (3.7, 27.8) 4

Korhogo 543 (301, 975) 1 (0.6, 1.8) 2.3

Lakota 374 (184, 761) 1.7 (0.8, 3.5) 2

Man 680 (503, 914) 1.9 (1.4, 2.6) 2.8

Odienne 261 (110, 630) 2.8 (1.2, 6.7) 1.7

Oume 540 (354, 829) 1.9 (1.2, 2.9) 2.5

Sakassou 262 (111, 634) 2.7 (1.1, 6.6) 1.7

Sassandra 1037 (647, 1684) 3.2 (2, 5.2) 3.5

Seguela 328 (141, 755) 1.6 (0.7, 3.6) 1.8

Sinfra 525 (343, 806) 2.1 (1.4, 3.2) 2.5

Toumodi 488 (313, 763) 3.8 (2.4, 5.9) 2.6

Vavoua 278 (80, 948) 0.6 (0.2, 2.2) 1.3

Zuenoula 214 (57, 783) 1 (0.3, 3.5) 1.1

Bettie 525 (179, 2025) 8.9 (3, 34.4) 3 (1.6, 4.3)

Blolequin 597 (204, 1859) 4.1 (1.4, 12.7) 2.9 (1.6, 4.2)

Bocanda 473 (153, 1342) 3.8 (1.2, 10.8) 2.6 (1.2, 3.9)

Botro 612 (218, 2234) 7.9 (2.8, 29) 3.1 (1.8, 4.5)

Didievi 434 (136, 1345) 4.9 (1.5, 15.2) 2.5 (1.2, 3.9)

Dikodougou 415 (129, 1253) 5.3 (1.6, 15.9) 2.5 (1.2, 3.8)

Djekanou 261 (81, 890) 9.5 (3, 32.4) 2.6 (1.3, 3.9)

Doropo 328 (89, 945) 5 (1.4, 14.4) 2.2 (0.8, 3.5)

Fresco 527 (180, 1695) 4.9 (1.7, 15.8) 2.8 (1.4, 4.1)

Gbeleban 111 (28, 344) 6 (1.5, 18.5) 1.9 (0.5, 3.2)

Guitry 474 (140, 1309) 3 (0.9, 8.4) 2.5 (1.2, 3.8)

Kani 304 (79, 849) 3.9 (1, 11) 2 (0.7, 3.3)

Kouassi-kouassikro 263 (82, 921) 9.3 (2.9, 32.4) 2.6 (1.2, 3.9)

M’bengue 363 (103, 999) 4.1 (1.2, 11.3) 2.3 (1, 3.6)

Madinani 255 (66, 776) 6.4 (1.7, 19.4) 2 (0.6, 3.3)

Nassian 347 (102, 1150) 7.6 (2.2, 25.3) 2.4 (1.1, 3.7)

Niakaramandougou 636 (229, 1990) 4.6 (1.7, 14.4) 3 (1.7, 4.3)

Samatiguila 106 (25, 327) 5.8 (1.4, 18.1) 1.8 (0.5, 3.2)

Seguelon 166 (43, 514) 6.3 (1.7, 19.6) 2 (0.6, 3.3)

Sikensi 547 (195, 1838) 6.7 (2.4, 22.5) 2.9 (1.6, 4.3)

Sinematiali 363 (110, 1114) 6.4 (2, 19.7) 2.4 (1.1, 3.7)

Sipilou 285 (76, 873) 6.3 (1.7, 19.2) 2.1 (0.7, 3.4)
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Taabo 371 (116, 1122) 6.2 (1.9, 18.8) 2.4 (1.1, 3.7)

Tai 567 (193, 1822) 5 (1.7, 16.2) 2.9 (1.5, 4.2)

Tehini 310 (88, 996) 7.5 (2.1, 24.1) 2.2 (0.9, 3.6)

Tiassale 550 (178, 1557) 2.8 (0.9, 7.9) 2.7 (1.3, 4)

Tiebissou 443 (139, 1277) 4.4 (1.4, 12.7) 2.5 (1.2, 3.8)

Toulepleu 459 (148, 1554) 7.4 (2.4, 24.9) 2.7 (1.4, 4.1)

Zouan-hounien 511 (157, 1350) 2.6 (0.8, 6.8) 2.5 (1.2, 3.8)

Zoukougbeu 342 (87, 905) 2.8 (0.7, 7.3) 2 (0.7, 3.4)

Table 4: Predicted MSM population size, population fraction and HIV prevalence along

with credible intervals (within braces). Bold font indicates HIV prevalence for regions were

they were observed (these are direct estimates and hence don’t have credible intervals).

5 Discussion

We have provided fully Bayesian predictions combined with meaningful credible bounds for

the population size of MSM in the 61 regions prioritized for HIV prevention and treatment

services in Côte d’Ivoire. We have used the RDS based estimates as raw data and treated

the associated confidence intervals as constant weights for the variances in regression. While

it is common in survey sampling to treat an estimate of the sampling variance as known, in

philosophy, this practice departs from proper modeling norms. More sophisticated models

can be conceived where the data for each region is envisioned as a triplet consisting of

the estimate, the upper and the lower quantiles. Directly using the individual survey

data as an input to the model would be an even more fundamental approach. However,

incorporating the RDS network into a hierarchical Bayesian area-level model remains a

challenging problem.

The missing covariates adds to complications in statistical model evaluation of the

two-step model. We evaluated the covariate selection and HIV prevalence imputation

separately, before coalescing these two parts into the hierarchical model. Since, the spatial

GP model induces dependence among all the observations, commonly used proper scoring

rules (Gneiting & Raftery 2007) based on conditional independence, do not apply here.

Further research needs to be conducted to come up with a proper scoring rule to evaluate
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Figure 6: Impact of imputing HIV on uncertainty: Plots of (a) relative 95% CI widths

versus estimates and (b) relative 95% CI widths versus the leverages leverages. Red and

blue dots correspond to respectively regions with and without HIV prevalence

the joint model in (2).

Bao et al. (2015) have demonstrated how to estimate populations sizes by incorporating

data from multiple surveys and other data sources, in a fully Bayesian setup. While we have

multiple estimates for each region, all of them are based on RDS and it is not clear how to

adapt that approach when working with estimates from RDS. This once again highlights

the need for more research on properly using RDS data in hierarchical models. Other

relevant datasets, like MSM populations in other countries, if available, can be potentially

leveraged to borrow strength in parameter estimation. However, care has to be taken when

leveraging data from other countries, as different countries often have entirely different key

population dynamics and borrowing strength may not be meaningful. Perhaps, more useful

will be data for other associated key populations like Female Sex Workers, for the same set

of regions. The correlation can be exploited in a multivariate setup to improve estimation

of both populations.
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The small sample size of numbers of cities with population size data for MSM has been

a major limiting factor in modeling. However, the predictions presented here from this

model represent the first empirically calculated estimates of the numbers of MSM in all

areas of Côte d’Ivoire prioritized in the HIV response. This scenario of limited centers

with measured population size is also not uncommon in the areas of the world where HIV

prevalence is the highest given that these settings often also tend to criminalize same-sex

practices or at least have significant stigma affecting MSM. In Southern and Eastern Africa,

there is often only HIV prevalence data and size estimate data in one or a few urban centers

for MSM though where studied, the HIV prevention and treatment needs are significant

across these countries. While Côte d’Ivoire is in West Africa, it has one of the larger HIV

epidemics in the region though limited information has been traditionally available for the

numbers of MSM and the HIV burden among them. Thus, while the estimates provided

here require further validation by supporting data to be collected in additional centers for

MSM where predictions were completed, in the interim, these estimates can support the

planning of the scale and content of HIV prevention and treatment programs for MSM in

Côte d’Ivoire. Specifically, areas with wide credible intervals should be targeted for future

surveys to improve modeling precision. Subsequently, validation and additional data points,

will highlight the strengths and weaknesses of the current approach and pave the way for

modeling improvements.
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A Appendix: RDS questions for multiplier methods

Questions asked of MSM recruited to participant in an RDS survey in order to provide an

independent source of data for size estimation in Côte d’Ivoire in 2014

• Unique object: “Did you receive this object before?” [show single object]

• NGO membership: “Are you a member of the NGO Rainbow Plus, or have

you ever participated one of their activities or even was hit by one of their peer

educators?”

“Are you a member of the NGO Alternative CI, or have you ever participated one of

their activities or even was hit by one of their peer educators?”

• Service: “Have you received care at the Clinique de Confiance through the year

2014?”

• Social event: “Have you participated in the social event called ”evening GNARA”

which took place on Saturday, March 21, 2015 to space Embassy located in the Riviera

II?”

23

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

Abdul-Quader, A. S., Baughman, A. L. & Hladik, W. (2014), ‘Estimating the size of key

populations: current status and future possibilities’, Curr Opin HIV AIDS 9(2), 107–14.

URL: https://www.ncbi.nlm.nih.gov/pubmed/24393694

Banerjee, S., Carlin, B. P. & Gelfand, A. E. (2014), Hierarchical Modeling and Analysis for

Spatial Data, second edn, Chapman & Hall/CRC, Boca Raton, FL.

Bao, L., Raftery, A. E. & Reddy, A. (2015), ‘Estimating the sizes of populations at risk of

hiv infection from multiple data sources using a bayesian hierarchical model’, Statistics

and Its Interface 8, 125–136.

Beyrer, C., Baral, S., Weir, B., Curran, J., Chaisson, R. & Sullivan, P. (2014), ‘A call to

action for concentrated hiv epidemics’, Curr Opin HIV AIDS 9(2), 95–100.

Beyrer, C., Sullivan, P., Sanchez, J., Dowdy, D., Altman, D., Trapence, G., Collins, C.,

Katabira, E., Kazatchkine, M., Sidibe, M. & Mayer, K. (2012), ‘A call to action for

comprehensive hiv services for men who have sex with men’, Lancet 380(9839), 424–38.

Boily, M., Pickles, M., Alary, M., Baral, S., Blanchard, J., Moses, S., Vickerman, P. &

Mishra, S. (2015), ‘What really is a concentrated hiv epidemic and what does it mean

for west and central africa? insights from mathematical modeling’, J Acquir Immune

Defic Syndr. 68(Suppl 2), S74–82.

Cressie, N. A. C. & Wikle, C. K. (2011), Statistics for spatio-temporal data, Wiley Series

in Probability and Statistics, Wiley, Hoboken, NJ.

URL: http://opac.inria.fr/record=b1133266

Datta, G. S., Hall, P. & Mandal, A. (2011), ‘Model selection by testing for the presence of

small-area effects, and application to area-level data’, Journal of the American Statistical

Association 106(493), 362–374.

URL: http://dx.doi.org/10.1198/jasa.2011.tm10036

Djomand, G., Quaye, S. & Sullivan, P. (2014), ‘Hiv epidemic among key populations in

west africa’, Curr Opin HIV AIDS 9(5), 506–13.

24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fay, R. E. & Herriot, R. A. (1979), ‘Estimates of income for small places: An application of

james-stein procedures to census data’, Journal of the American Statistical Association

74(366), 269–277.

URL: http://www.jstor.org/stable/2286322

Gneiting, T. & Raftery, A. E. (2007), ‘Strictly proper scoring rules, prediction, and esti-

mation’, Journal of the American Statistical Association 102, 359–378.

URL: http://EconPapers.repec.org/RePEc:bes:jnlasa:v:102:y:2007:p:359-378

Heckathorn, D. (1997), ‘Respondent-driven sampling: a new approach to the study of

hidden populations.’, Social Problems 44(2), 174–199.

URL: http://dx.doi.org/10.1214/009053606000000281

Holland, C. E., Kouanda, S., Lougue, M., Pitche, V. P., Schwartz, S., Anato, S., Ouedraogo,

H. G., Tchalla, J., Yah, C. S., Kapesa, L., Ketende, S., Beyrer, C. & Baral, S. (2016),

‘Using population-size estimation and cross-sectional survey methods to evaluate hiv

service coverage among key populations in burkina faso and togo’, Public Health Rep

131(6), 773–782.

URL: https://www.ncbi.nlm.nih.gov/pubmed/28123223

Mishra, S., Boily, M., Schwartz, S., Beyrer, C., Blanchard, J., Moses, S., Castor, D.,

Phaswana-Mafuya, N., Vickerman, P., Drame, F., Alary, M. & Baral, S. (2016), ‘Data

and methods to characterize the role of sex work and to inform sex work programs in gen-

eralized hiv epidemics: evidence to challenge assumptions’, Ann Epidemiol. 26(8), 557–

69.

Papworth, E., Ceesay, N., An, L., Thiam-Niangoin, M., Ky-Zerbo, O., Holland, C. E.,

Drame, F., Grosso, A., Diouf, D. & Baral, S. (2013), ‘Epidemiology of hiv among female

sex workers, their clients, men who have sex with men and people who inject drugs in

west and central africa.’, J Int AIDS Soc 16(Suppl 3).

Purcell, D. W., Johnson, C. H., Lansky, A., Prejean, J., Stein, R., Denning, P., Gau, Z.,

Weinstock, H., Su, J. & Crepaz, N. (2012), ‘Estimating the population size of men who

have sex with men in the united states to obtain hiv and syphilis rates’, Open AIDS J

25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/


6, 98–107.

URL: https://www.ncbi.nlm.nih.gov/pubmed/23049658

Quaye, S., Fisher Raymond, H., Atuahene, K., Amenyah, R., Aberle-Grasse, J., McFarland,

W. & El-Adas, A. (2015), ‘Critique and lessons learned from using multiple methods to

estimate population size of men who have sex with men in ghana’, AIDS Behav. 19(suppl

1), S16–23.

Salganik, M. J. (2006), ‘Variance estimation, design effects, and sample size calculations

for respondent-driven sampling’, Journal of Urban Health 83(1), 98.

URL: http://dx.doi.org/10.1007/s11524-006-9106-x

Stahlman, S., Lyons, C., Sullivan, P., Mayer, K., Hosein, S., Beyrer, C. & Baral, S. (2016),

‘Hiv incidence among gay men and other men who have sex with men in 2020: where is

the epidemic heading?’, Sex Health. .

Tanser, F., de Oliveiera, T., Maheu-Giroux, M. & Barnighausen, T. (2014), ‘Concentrated

hiv subepidemics in generalized epidemic settings’, Curr Opin HIV AIDS 9, 115–125.

UNAIDS (2017), Ending aids: Progress towards the 90-90-90 targets, Report.

UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance (2010), Guide-

lines on estimating the size of populations most at risk to hiv, Report, World Health

Organization.

Yu, D., Calleja, J., Zhao, J., Reddy, A. & Seguy, N. (2014), ‘Estimating the size of key pop-

ulations at higher risk of hiv infection: a summary of experiences and lessons presented

during a technical meeting on size estimation among key populations in asian countries’,

Western Pac Surveill Response J. 5(3), 43–9.

26

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/213926doi: bioRxiv preprint 

https://doi.org/10.1101/213926
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Data
	Direct estimates
	Prediction areas
	Covariates

	Methods
	Linear model
	Covariate Selection
	Spatial model for HIV prevalence
	Hierarchical Bayesian Modeling
	Prediction

	Size estimates
	Discussion
	Appendix: RDS questions for multiplier methods

