








Figure 9: Inferring the model parameters from VSDi recordings . (A)
Mean depolarization �VN for different parameters of the model. See parameters
values on the figures. From (i) to (ii) we decreased the conduction velocity vc,
from (i) to (iii) we decreased the rise � 1 and decay � 2 time constants of the
stimulus, from (i) to (iv) we enlarged the stimulus extent lstim and decreased
the excitatory lateral conectivity lexc . (B) Comparison between data (top) and
model (bottom) for the parameters filling the least-square criteria. Shown for
three representative recording sessions. Note the common normalization and
spatio-temporal sampling that allow to compute the difference between model
and experiments (see Methods). (C) Estimated model parameters over the
whole dataset (n=6 sessions in monkey WA, n=6 sessions in monkey BR): (i)
lateral propagation speed vc, (ii) spatial extent of the excitatory (green, lexc ) and
inhibitory (green, lexc ) connectivity profiles, (iii) spatial extent of the stimulus
lstim , (iv) onset time constant of the stimulus � 1 and (v) decay time constant
of the stimulus � 2. We show the domain D over which the optimization was
performed (see Methods).

see Fig. 8Aiii). Those two last discrepancies (overestimating lateral connectivity
while underestimating stimulus spatial extent) can be explained by the fact that
disambiguating between a narrow stimulus with wide lateral propagations and a
wide stimulus of narrow lateral propagation is not straightforward (see difference
between (i) and (iv) in Fig. 9A). The onset dynamics (captured by the constant
� 1), was found invariant with respect to the length of stimulus presentation
(c=0.1, p>0.1, pearson correlation). On the other hand, the decay dynamics
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was found correlated with the duration of stimulus presentation (c=0.8, p=2e-3,
pearson correlation), consistent with the more sustained thalamic activations for
longer stimuli presentations as a consequence of the relative linearity of thalamic
responses with respect to visual stimulus features (Gawne et al., 1991).

4 Discussion
In the present study, we investigated a mean-field model of networks with
different electrophysiological properties, described using the AdEx model with
conductance-based synapses. We found that the Markovian formalism proposed
in El Boustani and Destexhe (2009) was able to describe the steady-state and
temporal dynamics of such networks. Though this formalism was shown to
be a relatively accurate description of the response simulated in numerical
networks, we also showed the limits of this formalism. The relative complexity
of the theoretical problem should be stressed: our model includes non-linear
phenomena such as spike-frequency adaptation or a voltage-dependent activation
curve for spike emission. The proposed semi-analytical approach thus offers a
convenient description for theoretical models where an exact analytical treatment
would not be achievable.

Unlike previous studies (Brunel, 2000; Vogels and Abbott, 2005; Kumar et
al., 2008; El Boustani and Destexhe, 2009), we considered networks of non-
linear integrate-and-fire neurons with asymmetric electrophysiological properties
between excitatory and inhibitory cells. This type of network is more realistic
because it includes the adaptation properties of excitatory cells, and the fact that
inhibitory cells are more excitable and fire at higher rates. We could demonstrate
the relative accuracy of the Markovian formalism (with the semi-analytical
approach) in a situation including this increased complexity. The mean-field
model obtained was able to predict the level of spontaneous activity of the
network, as well as its response to external time-varying inputs.

This versatile theoretical description of the local cortical network could be
improved. For example the strong hyperpolarization of population activity
after a transient rise (see Fig. 5B) was shown to be missed by the mean-field
formalism. Indeed, this version does not have a memory of the previous activity
levels and thus can not account for the effect of the long-lasting spike-frequency
adaptation mechanism that has been strongly activated by the activity evoked by
the stimulus. One could design another version of the Markovian formalism to
capture such adaptation-mediated effects. Instead of accounting for adaptation
within the transfer function (i.e. accounting only for its stationary effects),
one can introduce a new variable with a dependency on time and activity: a
“population adaptation current”, that can directly be derived from the equation
of the AdExp model. Additionally, recent semi-analytical work (Augustin et al.,
2016) in current-based networks yielded very accurate descriptions of network
activity both at low and high frequency content, translating those results to
conductance-based networks could overcome the limitations of our description.
Investigating such formalisms and their accuracy should be the focus of future
work.

We further showed that the present mean-field approach can be used to
model VSDi data. Not only the present mean-field framework gives access
to the mean voltage and its time evolution, but it can easily be extended to
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model VSDi signals. The present model represents a local population of cortical
excitatory and inhibitory neurons, and thus can be thought to represent a “pixel”
of the VSDi. The full VSDi model was obtained by embedding the present local
population description within a spatial model, under the form of a ring-like
arrangement of RS-FS mean-field units (see Fig. 8). In this simple model, a
localized input led to propagating-wave activity, very similar to experiments (see
Fig. 8). This demonstrates that the present mean-field approach can be used
to model VSDi experiments. This study thus constitutes a "proof of concept"
validated on the spatio-temporal pattern of neocortical activity evoked by a
single stimulus. Investigating whether the present theoretical model yield deeper
insight into neocortical computation is the focus of current work.
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