
Modeling mesoscopic cortical dynamics using a
mean-field model of conductance-based networks
of adaptive exponential integrate-and-fire neurons

Yann Zerlaut1,2,∗, Sandrine Chemla3,
Frederic Chavane4 and Alain Destexhe1,5,∗

Journal of Computational Neuroscience, in press, 2017.

1. Unité de Neurosciences, Information et Complexité (UNIC). Centre
National de la Recherche Scientifique (CNRS), Gif sur Yvette, France.

2. Neural Coding laboratory. Istituto Italiano di Tecnologia. Rovereto, Italy.
3. Centre de Recherche Cerveau et Cognition, UMR 5549 CNRS & Université

Paul Sabatier Toulouse III, Place du Docteur Baylac, 31059 Toulouse, France.
4. Institut de Neurosciences de la Timone (INT), UMR 7289 CNRS &

Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France.
5. The European Institute for Theoretical Neuroscience (EITN), Paris,

France.

Abstract
Voltage-sensitive dye imaging (VSDi) has revealed fundamental prop-
erties of neocortical processing at macroscopic scales. Since for each
pixel VSDi signals report the average membrane potential over hun-
dreds of neurons, it seems natural to use a mean-field formalism to
model such signals. Here, we present a mean-field model of net-
works of Adaptive Exponential (AdEx) integrate-and-fire neurons,
with conductance-based synaptic interactions. We study here a net-
work of regular-spiking (RS) excitatory neurons and fast-spiking (FS)
inhibitory neurons. We use a Master Equation formalism, together
with a semi-analytic approach to the transfer function of AdEx neu-
rons to describe the average dynamics of the coupled populations.
We compare the predictions of this mean-field model to simulated
networks of RS-FS cells, first at the level of the spontaneous activity
of the network, which is well predicted by the analytical description.
Second, we investigate the response of the network to time-varying
external input, and show that the mean-field model predicts the re-
sponse time course of the population. Finally, to model VSDi signals,
we consider a one-dimensional ring model made of interconnected
RS-FS mean-field units. We found that this model can reproduce
the spatio-temporal patterns seen in VSDi of awake monkey visual
cortex as a response to local and transient visual stimuli. Conversely,
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we show that the model allows one to infer physiological parameters
from the experimentally-recorded spatio-temporal patterns.

1 Introduction
Recent advances in imaging technique, in particular voltage-sensitive dye imaging
(VSDi), have revealed fundamental properties of neocortical processing (Arieli
et al., 1996; Contreras and Llinas, 2001; Jancke et al., 2004; Ferezou et al.,
2006; Chen et al., 2006; Civillico and Contreras, 2012; Muller et al., 2014;
Gilad and Slovin, 2015): subthreshold responses to sensory inputs are locally
homogeneous in primary sensory areas, depolarizations tend to spread across
spatially neighboring regions and responses to sensory stimuli are strongly
affected by the level of ongoing activity. It also appears as a great tool to unveil
how the spatio-temporal dynamics in the neocortex shape canonical cortical
operations such as normalization (Reynaud et al., 2012).

On the other hand, the literature lacks, to the best of our knowledge, theo-
retical models that provides a detailed account of those phenomena with a clear
relation between the biophysical source of the VSDi signal and network dynamics
at that spatial scale (i.e. at the millimeters or centimeters scale). Detailed model
of a neocortical column (i.e. ∼0.5mm2 scale) have been recently proposed, see
Chemla and Chavane (2010); Chemla and Chavane (2016) for the link with the
VSDi signal or more generally Markram et al. (2015), but their computational cost
impedes the generalization to higher spatial scale. The aim of the present commu-
nication is therefore to design a theoretical model of neocortical dynamics with the
following properties: 1) it should have a correlate in terms of single-cell dynamics
(in particular membrane potential dynamics), so that the model can directly gen-
erate predictions for the signal imaged by the VSDi technique (Berger et al., 2007)
and 2) it should describe both the temporal and spatial scale of optical imaging.
More specifically, as we intend to describe responses to salient sensory stimuli, our
study focuses on network dynamics in activated cortical states(Tan et al., 2014).
The desired model should therefore describe neocortical computation in the
asynchronous regime, where cortical activity is characterized by irregular firing
and strong subthreshold fluctuations at the neuronal level (Steriade et al., 2001;
Destexhe et al., 2003). The strategy behind the present model is to take ad-
vantage of the mean-field descriptions of network dynamics in this regime. Via
self-consistent approaches, those descriptions allow to capture the dynamical
properties of population activity in recurrent networks (Amit and Brunel, 1997;
Brunel and Hakim, 1999; Brunel, 2000; Latham et al., 2000; El Boustani and
Destexhe, 2009). The present model thus relies on the following scheme: 1)
we consider the randomly connected network of 10000 neurons as a unit to
describe few cortical columns and 2) we embedded the analytical description of
this cortical column model into a ring geometry with physiological connectivity
profiles to model spatio-temporal integration on the neocortical sheet.

We first compare the analytical prediction of the model with numerical
simulations in order to evaluate the accuracy and/or weaknesses of our specific
analytical description (adapted from (El Boustani and Destexhe, 2009)). We
next investigate the integrative properties of the model, i.e. the relation between
the network response and the properties of the input. Finally, based on this
mean-field approach, we construct a spatio-temporal model for the dynamics
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of superficial layers in neocortex by arranging mean-field units according to
a one-dimentional ring structure. We then compare this model’s response to
afferent inputs with VSDi recordings in the primary visual cortex (V1) of awake
monkey in response to a visual stimulus.

2 Material and Methods
Here, we describe the equations and parameters used for the neuronal, synaptic
and network modeling. We present our heuristic treatment of the neuronal transfer
functions: the quantity that accounts for the cellular computation in mean-field models
of population activity. Then, we present the specific markovian model of population
activity used in this study and we construct a spatio-temporal model of neocortical
integration by embedding this description into a one-dimensional ring model.

2.1 Single neuron models
The neuronal model used in this study is the adaptative exponential and fire (AdEx)
model (Brette and Gerstner, 2005). The equation for the membrane potential and the
adaptation current therefore reads:

Cm
dV

dt
= gL (EL − V ) + Isyn(V, t) + kae

V−Vthre
ka − Iw

τw
dIw
dt

= −Iw + a · (V − EL) +
∑

ts∈{tspike}

b δ(t− ts)
(1)

where Isyn(V, t) is the current emulating synaptic activity that will create the
fluctuations, Iw accounts for the phenomena of spike-frequency adaptation as well
as subthreshold adaptation(McCormick et al., 1985). The spiking mechanism is the
following: a spike is triggered at ts ∈ {tspike} when V (t) reaches Vthre+5 ka. Afterwards,
the adaptation variable Iw is incremented by b and the membrane potential is then
clamped at EL for a duration τ refrac=5ms. We consider two versions of this model:
a regular spiking neuron for the excitatory cells and a fast spiking neuron for the
inhibitory cells (see Fig. 2). The parameters of those two models can be found on Table
1.

2.2 Synaptic model
The time- and voltage-dependent current that stimulate the neuron is made of the
sum of excitatory and inhibitory currents (indexed by s ∈ {e, i} and having a reversal
potential Es):

Isyn(V, t) =
∑

s∈{e,i}

∑
ts∈{ts}

Qs (Es − V ) e−
t−ts
τs H(t− ts) (2)

where H is the Heaviside function.
This synaptic model is referred to as the conductance-based exponential synapse.

The set of events {te} and {ti} are the set of excitatory and inhibitory events arriving
to the neuron. In numerical simulations of single neurons (performed to determine the
transfer function F of either excitatory or inhibitory neurons), it will be generated by
stationary Poisson processes. On the other hand, in numerical simulations of network
dynamics it will correspond to the set of spike times of the neurons connecting to the
target neurons, both via recurrent and feedforward connectivity.
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Table 1: Model parameters.

Parameters Parameter Name Symbol Value Unit

cellular properties
leak conductance gL 10 nS
leak reversal potential EL -65 mV
membrane capacitance Cm 150 pF
leak reversal potential EL -65 mV
AP threshold Vthre -50 mV
refractory period τrefrec 5 ms
adaptation time constant τw 500 ms

excitatory cell
spike sharpness ka 2 mV
adaptation current increment b 20 pA
adaptation conductance a 4 nS

inhibitory cell
spike sharpness ka 0.5 mV
adaptation current increment b 0 pA
adaptation conductance a 0 nS

synaptic properties
excitatory reversal potential Ee 0 mV
inhibitory reversal potential Ei -80 mV
excitatory quantal conductance Qe 1 nS
inhibitory quantal conductance Qi 5 nS
excitatory decay τe 5 ms
inhibitory decay τi 5 ms

numerical network
cell number Ntot 10000
connectivity probability ε 5%
fraction of inhibitory cells g 20%
external drive νdrivee 4 Hz

ring model
total extent Ltot 40 mm
excitatory connectivity radius lexc 5 mm
inhibitory connectivity radius linh 1 mm
propagation delay vc 300 mm/s

2.3 Numerical network model
All simulations of numerical network were performed with the brian2 simulator (Good-
man and Brette, 2009), see http://brian2.readthedocs.org. For all simulations, the
network was composed of Ntot=10000 neurons, separated in two populations, one
excitatory and one inhibitory with a ratio of g=20% inhibitory cells. Those two local
populations were randomly connected (internally and mutually) with a connectivity
probability ε=5%.

Because this network did not display self-sustained activity (in contrast to Vogels
and Abbott (2005)), an excitatory population exerted an external drive to bring the
network out of the quiescent state. This population targeted both the excitatory and
inhibitory neurons. Note that the firing rate of this population was linearly increased
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Figure 1: Modeling local cortical dynamics. (A) The complex cellular
assembly corresponding to a single pixel in VSD imaging is reduced to a local
excitatory-inhibitory network. (B) Schematic of the local network architecture.
The network is made of Ne = (1− g)Ntot excitatory and Ni = g Ntot inhibitory
neurons. All excitatory connections (afferent and recurrent) onto a neuron corre-
sponds to Ke = ε (1− g)Ntot synapses of weight Qe. All inhibitory connections
onto a neuron corresponds to Ki = ε g Ntot synapses of weight Qi.

to avoid a too strong initial synchronization (see Fig. 3). Finally, when studying
responses to external inputs, an excitatory population of time varying firing rate was
added to evoke activity transients in the population dynamics. This last stimulation
targeted only the excitatory population. The number of neurons in those two excitatory
populations was taken as identical to the number of excitatory neurons (i.e. (1−g)Ntot)
and created synapses onto the recurrent network with the same probability ε. After
temporal discretization, the firing rates of those afferent populations were converted
into spikes by using the properties of a Poisson process (i.e. eliciting a spike at t with
a probability ν(t) dt). All simulations were performed with a time-step dt=0.1ms.

2.4 Estimating the transfer functions of single neurons
The transfer function F of a single neuron is defined here as the function that maps
the value of the stationary excitatory and inhibitory presynaptic release frequencies to
the output stationary firing rate response, i.e. νout = F(νe, νi). Note the stationary
hypothesis in the definition of the transfer function (see discussion in main text).

Because an analytical solution (of this function F) for the single neuron models
considered in our study is a very challenging mathematical problem, we adopted a
semi-analytical approach. We performed numerical simulations of single cell dynamics
at various excitatory and inhibitory presynaptic frequencies (νe and νi respectively)
(see the output in Fig. 2) on which we fitted the coefficients of an analytical template
to capture the single cell model’s response.

The procedure relied on fitting a phenomenological threshold V effthre that accounts
for the single neuron non-linearities (spiking and reset mechanism, adaptation mech-
anisms) on top of the subthreshold integration effects (Zerlaut et al., 2016). This
phenomenological threshold is then plugged-in into the following formula (analogous to
Amit and Brunel (1997)) to become our firing response estimate:
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Table 2: Fitted coefficients of the transfer functions (see Fig. 2).

Coefficients (mV)
Cell P0 PµV PσV PτV PµG Pµ2

V
Pσ2

V
Pτ2

V
PµV σV PµV τV PσV τV

RS -51.4 6.1e-3 7.4e-3 5.8e-5 -1.5e-4 5.6e-4 2.7e-4 5.3e-4 -6.8e-4 4.9e-4 1.2e-3
FS -54.6 4.6e-3 -1.8e-3 6.6e-4 -3.0e-4 3.9e-4 -5.1e-4 -6.4e-6 -1.4e-3 -4.9e-4 -3.6e-4

νout = F(νe, νi) = 1
2 τV

· Erfc(V
eff
thre − µV√

2σV
) (3)

Where (µV , σV , τV ) are the mean, standard deviation and autocorrelation time
constant of the membrane potential fluctuations. How to calculate those quantities as
a response to a stationary stimulation is the focus of the next section.

The expression for the phenomenological threshold was the following:

V effthre(µV , σV , τ
N
V ) = P0 +

∑
x∈{µV ,σV ,τNV }

Px ·
(
x− x0

δx0

)
+ PµG log(µG

gL
)

+
∑

x,y∈{µV ,σV ,τNV }
2

Pxy ·
(
x− x0

δx0

)(
y − y0

δy0

) (4)

We took a second order polynomial in the three dimensional space (µV , σV , τV )
combined with a term capturing the effect of total conductance on the effective threshold
(Platkiewicz and Brette, 2010). The normalization factors µ0

V=-60mV, δµ0
V=10mV,

σ0
V=4mV, δσ0

V = 6mV, τV=10ms and δτV= 20ms arbitrarily delimits the fluctuation-
driven regime (a mean value x and an extent δx, ∀x ∈ {µV , σV , τNV }). They render the
fitting of the phenomenological threshold easier, as they insure that the coefficients take
similar values. It is kept constant all along the study. The phenomenological threshold
was taken as a second order polynomial and not as a linear threshold, for two reasons:
1) unlike in an experimental study (Zerlaut et al., 2016), we are not limited by the
number of sampling points, the number of fitted coefficients can thus be higher as the
probability of overfitting becomes negligible 2) it gives more flexibility to the template,
indeed the linear threshold was found a good approximation in the fluctuation-driven
regime (Zerlaut et al., 2016), i.e. when the diffusion approximation holds. However, for
low values of the presynaptic frequencies, we can be far from this approximation, the
additional coefficients are used to capture the firing response in those domains. Those
coefficients are listed on Table 2 for the two cell types (RS & FS).

The fitting procedure was identical to Zerlaut et al. (2016), it consisted first in a
linear regression in the phenomenological threshold space of Equation 4, followed by a
non-linear optimization of Equation 3 on the firing rate response. Both fitting were
performed with the leastsq method in the optimize package of SciPy.

2.5 Calculus of the subthreshold membrane potential fluc-
tuations

Here, we detail the analytical calculus that translate the input to the neuron into
the properties of the membrane potential fluctuations. The input is made of two
Poisson shotnoise: one excitatory and one inhibitory that are both convoluted with an
exponential waveform to produce the synaptic conductances time courses.
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2.5.1 Conductances fluctuations
From Campbell’s theorem (Papoulis, 1991), we first get the mean (µGe, µGi) and
standard deviation (σGe, σGi) of the excitatory and inhibitory conductance:

µGe(νe, νi) = νeKe τeQe

σGe(νe, νi) =
√
νeKe τe

2 Qe

µGi(νe, νi) = νiKi τiQi

σGi(νe, νi) =
√
νiKi τi

2 Qi

(5)

The mean conductances will control the input conductance of the neuron µG and
therefore its effective membrane time constant τm:

µG(νe, νi) = µGe + µGi + gL

τm(νe, νi) = Cm
µG

(6)

2.5.2 Mean membrane potential
Following Kuhn et al. (2004), the mean membrane potential is obtained by taking the
stationary solution to static conductances given by the mean synaptic bombardment
(for the passive version of Equation 1, i.e. removing the adaptation and spiking
mechanisms). We obtain:

µV (νe, νi) = µGeEe + µGiEi + gLEL
µG

(7)

We will now approximate the driving force Es − V (t) of synaptic events by the
level resulting from the mean conductance bombardment: Es − µV . This will enable
an analytical solution for the standard deviation σV and the autocorrelation time σV
of the fluctuations.

2.5.3 Power spectrum of the membrane potential fluctuations
Obtaining σV and τV is achieved by computing the power spectrum density of the
fluctuations. In the case of Poisson processes, the power spectrum density of the
fluctuations resulting from the sum of events PSPs(t) at frequency Ks νs can be
obtained from shotnoise theory (Daley and Vere-Jones, 2007):

PV (f) =
∑

s∈{e,i}

Ks νs ‖ ˆPSPs(f)‖2 (8)

where ˆPSPs(f) is the Fourier transform of the time-varying function PSP(t). Note
that the relations presented in this paper rely on the following convention for the
Fourier transform: F̂ (f) =

∫
R F (t) e−2iπft dt.

After fixing the driving force to Es−µV , the equation for a post-synaptic membrane
potential event s around µV is:

τm
dPSPs
dt

+ PSPs = UsH(t) e
−t
τs (9)

where Us = Qs
µG

(Es − µV ) and H(t) is the Heaviside function.
Its solution is:
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PSPs(t) = Us
τs

τm − τs
(
e
−t
τm − e

−t
τs

)
H(t) (10)

We take the Fourier transform:

ˆPSPs(f) = Us
τs

τm − τs
( τm

2 i π f τm + 1 −
τs

2 i π f τs + 1
)

(11)

We will need the value of the square modulus at f = 0:

‖ ˆPSP(0)‖2 = (Us · τs)2 (12)
As well as the integral of the square modulus:∫

R
df ‖ ˆPSP(f)‖2 = (Us · τs)2

2 (τ eff
m + τs)

(13)

2.5.4 Standard deviation of the fluctuations
The standard deviation follows:

(σV )2 =
∫
R
df PV (f) (14)

Using Equation 13, we find the final expression for σV :

σV (νe, νi) =
√∑

s

Ks νs
(Us · τs)2

2 (τ eff
m + τs)

(15)

2.5.5 Autocorrelation-time of the fluctuations
We defined the global autocorrelation time as (Zerlaut et al., 2016):

τV = 1
2
(∫

R PV (f) df
PV (0)

)−1 (16)

Using Equations 13 and 12, we find the final expression for τV :

τV (νe, νi) =
( ∑

s

(
Ks νs (Us · τs)2)∑

s

(
Ks νs (Us · τs)2/(τ eff

m + τs)
)) (17)

Therefore the set of Equations 7, 15 and 17 translates the presynaptic frequencies
into membrane fluctuations properties µV , σV , τV .

The previous methodological section allowed to translate the fluctuations proper-
ties µV , σV , τV into a spiking probability thanks to a minimization procedure. The
combination of the present analytical calculus and the previous fitting procedure (on
numerical simulations data) constitute our semi-analytical approach to determine the
transfer function of a single cell model: νout = F(νe, νi).

2.6 Master equation for local population dynamics
As we now benefit from an analytical description of the cellular transfer function, we
can now turn to the theoretical analysis of asynchronous dynamics in sparsely connected
random networks (Amit and Brunel, 1997; Brunel, 2000; Renart et al., 2004).

Because we will investigate relatively slow dynamics (τ>25-50ms) (and because
of the stationary formulation of our transfer function), we will use the Markovian
description developed in El Boustani and Destexhe (2009), it describes network activity
at a time scale T , for which the network dynamics should be Markovian. The choice of
the time-scale T is quite crucial in this formalism, it should be large enough so that
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activity can be considered as memoryless (e.g. it can not be much smaller than the
refractory period, that would introduce memory effects) and small enough so that each
neuron can fire statistically less than once per time interval T . Following El Boustani
and Destexhe (2009), we will arbitrarily take T=5ms all along the study as it offers a
good compromise between those two constraints.

The formalism describes the first and second moments of the population activity
for each populations. We consider here two populations: one excitatory and one
inhibitory, the formalism thus describes the evolution of five quantities: the two means
νe(t) and νi(t) of the excitatory and inhibitory population activity respectively (the
instantaneous population firing rate, i.e. after binning in bins of T=5ms, see discussion
in El Boustani and Destexhe (2009)), the two variances cee(t) and cii(t) of the the
excitatory and inhibitory population activity respectively and the covariance cei(t)
between the excitatory and inhibitory population activities. The set of differential
equations followed by those quantities reads (El Boustani and Destexhe, 2009):

T
∂νµ
∂t

=(Fµ − νµ) + 1
2 cλη

∂2Fµ
∂νλ∂νη

T
∂cλη
∂t

=Aλη + (Fλ − νλ) (Fη − νη)+

cλµ
∂Fµ
∂νλ

+ cµη
∂Fµ
∂νη

− 2cλη

(18)

with:

Aλη =


Fλ (1/T −Fλ)

Nλ
if λ = η

0 otherwise
(19)

Note that, for the concision of the expressions, we used Einstein’s index summation
convention: if an index is repeated in a product, a summation over the whole range
of value is implied (e.g. we sum over λ ∈ {e, i} in the first equation, consequently, λ
does not appear in the left side of the equation). Also the dependency of the firing
rate response to the excitatory and inhibitory activities has been omitted: yielding Fµ
instead of Fµ(νe, νi), ∀µ ∈ {e, i}. We will also use the reduction to first order of this
system (for the ring model). This yields:

T
∂νµ
∂t

= Fµ − νµ (20)

2.7 Afferent stimulation
The afferent input was represented by the following piecewise double Gaussian waveform:

νaffe (t) = A
(
e
−( t−t0√

2τ1
)2

H(t0 − t) + e
−( t−t0√

2τ2
)2

H(t− t0)
)

(21)

In this afferent input, we can independently control: 1) the maximum amplitude A
of the stimulation, its rising time constant τ1 and its decay time constant τ2.

2.8 Ring model
To model VSDi experiments (See Fig. 1A), we embed the mean-field description of
population dynamics in a ring geometry to model spatio-temporal integration on
the neocortical sheet. The ring geometry corresponds to a one dimensional spatial
description with an invariance by translation, i.e. for all quantities f , f(x) = f(x+ L),
also termed one dimensional periodic boundary conditions, where L is the length of the
ring model. For simplicity, we consider here only the first moments of the second-order
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description: i.e. the means of the excitatory and inhibitory population activities: νe(t)
and νi(t) respectively.

We use a Gaussian connectivity profile (see Fig. 7) to define the connectivity across
cortical columns (i.e. local networks described in the previous section):

Ne(x) = 1√
2πlexc

e
−( x√

2lexc
)2

; Ni(x) = 1√
2πlinh

e
−( x√

2linh
)2

(22)

where lexc and linh are the excitatory and inhibitory extent of the connectivity profiles
respectively.

We also introduce the effect of a finite axonal conduction speed vc, this will
introduce delays for the propagation of activity across cortical columns: for a network
at a distance x, the afferent activity will arrive delayed by x/vc.

Finally, the equations that govern the activity in space and time are given by:

νinpute (x, t) =νdrivee +
∫
R
dyNe(x− y) νe(y, t− ‖y − x‖/vc)

νinputi (x, t) =
∫
R
dyNi(x− y) νi(y, t− ‖y − x‖/vc)

T
∂νe(x, t)

∂t
=− νe(x, t)+

Fe(νaffe (x, t) + νinpute (x, t), νinputi (x, t))

T
∂νi(x, t)

∂t
=− νi(x, t) + Fi(νinpute (x, t), νinputi (x, t))

(23)

where νdrivee is the external drive and νaffe (x, t) is the afferent (thalamic) stimulation.
The local correlate in terms of mean membrane potential µV (x, t) is given by

Equation 7. Because VSDi provides a variation with respect to the fluorescence
baseline (Berger et al., 2007) (i.e. the relative membrane potential deflection of a
population with respect to mean the membrane potential at the level of spontaneous
network activity), we also present the variations of a normalized membrane potential
quantity:

δVN (x, t) =
µV (x, t)− V rest,

V rest,

(24)

where V rest, is the mean membrane potential during spontaneous activity in the model
(see Fig. 3).

2.9 Visually-evoked patterns of cortical activity in awake
monkey recorded through Voltage-Sensitive Dye imag-
ing

The experimental procedure was described elsewhere (Reynaud et al., 2012; Muller et
al., 2014), briefly summarized below

Surgical preparations: Experiments were conducted on two male rhesus monkeys
(macaca mulatta, aged 14 and 11 years old respectively for monkey WA and monkey
BR). The monkeys were chronically implanted with a head-holder and a recording
chamber located above the cortical areas V1 and V2 of the right hemisphere. The
dura was surgically removed over a surface corresponding to the recording aperture (18
mm diameter) and a silicon-made artificial dura was inserted under aseptic conditions
(Arieli et al., 2002). Before each recording session, the cortex was stained with the
voltage-sensitive dye RH-1691 (Optical Imaging), prepared in artificial cerebrospinal
fluid (aCSF) at a concentration of 0.2 mg/ml and filtered through a 0.2 µm filter.
During the recordings, the cortex was illuminated at 630 nm to excite the dye for 700
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ms. Experimental protocols have been approved by the Marseille Ethical Committee
in Neuroscience (approval A10/01/13, official national registration French Ministry
of Research). All procedures complied with the French and European regulations for
animal research, as well as the guidelines from the Society for Neuroscience.

VSD imaging protocol. Experimental controls and online eye position monitoring
were performed by a PC running the REX software (NEI-NIH) with the QNX operating
system. Eye position was monitored with an ISCAN at 1kHz (ETL-200 Eye Tracking
System). Optical signals were recorded with a Dalstar camera (512 x 512 pixels, 110
Hz frame rate) driven by the Imager 3001 system (Optical Imaging). Both online
behavioural control and image acquisition were heartbeat regulated. Heartbeat was
detected with a pulse oximeter (Nonin 8600V). The visual stimuli were computed online
using VSG2/5 libraries and were displayed on a 22 inch CRT monitor at a resolution
of 1,024 x 768 pixels. Refresh rate was set to 100 Hz. Viewing distance was 57 cm.
Luminance values were linearized by means of a look-up table.

Visual stimuli. During a single trial, the monkey had to fixate on a central red
dot for 1–2 s. The animal’s gaze was constrained in a window of 2°x 2°. Stimuli were
presented during fixation, and a reward (water or applesauce drop) was given after the
trial if the monkey maintained fixation during the acquisition period. Each trial ran
for 700 ms: 100-200ms delay, 20–100ms stimulation period, 300-580ms post-stimulus
period. Stimuli were local Gaussian blobs with a s.d. of 0.5° in space. Stimuli were
presented at 0.5° on the left of the vertical meridian and 3° below the horizontal, except
where noted. Three different durations were used: 20, 50, 100 ms.

Data analysis. Stacks of images were stored on hard-drives for offline analysis
with MATLAB R2014a (MathWorks), using the Optimization, Statistics, and Signal
Processing Toolboxes. The evoked response to each stimulus was computed in four
successive basic steps. First, the recorded value at each pixel was divided by the
average value before stimulus onset (“frames 0 division”) to remove slow stimulus-
independent fluctuations in illumination and background fluorescence levels. Second,
this value was subsequently subtracted by the value obtained for the blank condition
(“blank subtraction”) to eliminate most of the noise due to heartbeat and respiration
(Shoham et al., 1999). Third, a linear detrending of the time series was applied to
remove residual slow drifts induced by dye bleaching (Chen et al., 2008; Meirovithz et
al., 2009).

2.10 Optimizing model parameters with respect to single-
session VSDi recordings

We describe here the optimization procedure used to estimate a set of model parameters
for each of the 12 VSDi recording sessions described above. We optimized the following
parameters of the ring model: the speed of lateral propagation vc, the spatial extent of
the excitatory connectivity lexc, the spatial extent of the inhibitory connectivity linh,
the spatial extent of the stimulus lstim, the onset time constant of the stimulus τ1 and
the decay time constant of the stimulus tau2. The three first parameters (vc, lexc and
linh) are spatial parameters of the dynamics (i.e. they enter into Equation 26), whereas
the three last parameters (lstim, τ1 and τ2) are the spatial and temporal parameters of
the afferent input (i.e. they enter into Equations 22 and 23). Parameter scans were
performed on a grid of parameters with the following boundaries: vc ∈ [50, 600]mm/s,
lexc ∈ [1, 7]mm, linh ∈ [1, 7]mm, τ1 ∈ [5, 50]ms,τ2 ∈ [50, 200]ms. We scanned 5 points
per dimension, i.e. we simulated and analyzed 15625 configurations.

For a given session (see examples in Fig. 9B), the optimal parameters of the
model were taken as those minimizing the square residual of the difference between
spatio-temporal pattern. To obtain the residual of the difference between the model
and VSDi data, one needs to have a common sampling of the pattern. We thus
subsampled the model data over time to reach the sampling rate of the VSDi data
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(i.e. fsmpl=110Hz). Data were aligned with respect to the local maximum over space
and time (tcenter, xcenter). The temporal window was taken as a 400ms window, with
100ms before tcenter and 300ms after tcenter. The spatial sampling of the model was
reduced to the field of view of the VSDi recording (that varies over session, see the
different xcenter locations in Fig. 9B). VSDi data were normalized per session with
respect to their maximum, resulting in the signal SNV SDi(x, t) with values below 1. The
model data were all normalized to a common factor δµV=7% (i.e. implementing a
physiological constraint: average evoked depolarizations should reach the 55mV range
to match VSDi data normalization), resulting in the signal δµNV (x, t). On Fig. 9B, one
can see examples of the SNV SDi(x, t) and δµNV (x, t) signals corresponding to a single
session. Given this normalization rules and the common spatio-temporal sampling, the
residual was simply given by:

ξ =
∑
{t,x}

(
δµV ˆN(x, t)− SV SDiˆN(x, t)

)2
(25)

3 Results
The results are organized as follows. We construct the analytical model that
describes the dynamics of a population of RS and FS cells. We start by describing
the semi-analytical workflow that enables the derivation of the cellular transfer
function: the core of this population model. Next, we investigate whether the
analytical description accurately describe population dynamics by comparing
its prediction to numerical simulations. We also investigate the response of the
network model subject to an external input. Finally, we build a 1-dimensional
ring model made of interconnected RS-FS mean-field units and investigate if
this model can reproduce the visually-evoked patterns of activity seen in VSDi
of awake monkey visual cortex.

3.1 Modeling a local cortical population
We adopt a simplistic description of a local cortical population (see Fig. 1). The
complex cellular assembly is reduced to a two population network model: one
excitatory and one inhibitory comprising 8000 and 2000 neurons respectively. All
neurons within the two population synaptically interconnect randomly to each
other with a connectivity probability of 5%. The excitatory and inhibitory cells
have the same passive properties. We nonetheless include an asymmetry between
the excitatory and inhibitory populations: because the inhibitory population
includes Fast-Spiking cells that can exhibit very high firing frequencies (Markram
et al., 2004), we set its spiking mechanism sharper (more precisely its sodium
activation activation curve is steeper, see Methods) than that of excitatory cells,
additionally we add a strong spike-frequency adaptation current in excitatory
cells that is absent in inhibitory cells. Those two effects render the inhibitory
neurons more excitable (see the different responses to the same current step in
Fig. 2). All parameters of the cortical column can be found in Table 1.

3.2 A Markovian model to describe population dynamics
We now want to have an analytical description of the collective dynamics
of this local network. We adopted the formalism presented in El Boustani
and Destexhe (2009). Two reasons motivated this choice: 1) because 10000
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Figure 2: Single cell models of the excitatory and inhibitory popula-
tions. Top: response to a current step of 200pA lasting 300ms. Bottom: transfer
function of the single cell, i.e. output firing rate as a function of the excita-
tory (x-axis) and inhibitory (color-coded) presynaptic release frequencies. Note
that the range of the excitatory and frequencies assumes numbers of synapses
Ke = ε (1 − g)Ntot and Ki = ε g Ntot for the excitation and inhibition respec-
tively). (A) Excitatory cells. Note the presence of spike-frequency adaptation
and subthreshold adaptation. (B) Inhibitory cells. Note the very narrow spike
initiation dynamics. Also, note the steepest relation to excitation (with respect
to the excitatory cell) at various inhibitory levels as a result of the increased
excitability of the inhibitory cell (with respect to the excitatory cell).
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neurons is still far from the large network limit, finite-size effects could have a
significant impact on the dynamics and 2) because of the relative complexity of
the cellular models, an analytic treatment of the type Amit and Brunel (1997)
is, to our knowledge, not accessible and would be extremely challenging to
derive. The Markovian framework proposed in El Boustani and Destexhe (2009)
positively respond to those two constraints: it is a second-order description of
population activity that describes fluctuations emerging from finite-size effects
and it is applicable to any neuron model as long as its transfer function can
be characterized. In a companion study (Zerlaut et al., 2016), we developed
a semi-analytical approach to characterize those transfer functions (see next
section), we will therefore incorporate this description into the formalism.

Nonetheless, the study of El Boustani and Destexhe (2009) only investigated
the ability of the formalism to describe 1) the stationary point of the network
activity and 2) in a situation where the neuronal models models had an analytic
estimate for the transfer function (current-based integrate-and-fire model). As
a prerequisite, investigating whether this description generalizes to transient
dynamics and transfer functions estimated with a semi-analytical approach is
investigated in the next sections.

3.3 Transfer functions of excitatory and inhibitory cells
We briefly describe here the semi-analytical approach used to characterize the
transfer function (see details in the Methods). The transfer function F of a single
neuron is defined here as the function that maps the value of the stationary
excitatory and inhibitory presynaptic release frequencies to the output stationary
firing rate response, i.e. νout = F(νe, νi). This kind of input-output functions
lie at the core of mean-field models of population dynamics (reviewed in Renart
et al. (2004)) and is consequently the main ingredient of the formalism adopted
here (El Boustani and Destexhe, 2009). Note here that the formulation of the
transfer function imply a stationary hypothesis: both for the input (stationary
Poisson processes) and the output firing (a stationary firing rate). We will study
in the following what are the limitations introduced by this stationary hypothesis
in the description of the temporal dynamics of network activity.

In a previous communication (Zerlaut et al., 2016), we found that the firing
rate response of several models (including the adaptative exponential integrate
and fire considered in this study) would be captured by a fluctuations-dependent
threshold in a simple approximation of the firing probability (see Methods).

The semi-analytical approach thus consisted in making numerical simulations
of single-cell dynamics for various presynaptic activity levels (i.e. scanning
various νe, νi configurations) and measuring the output firing rate νout. All those
configurations corresponded to analytical estimates of (µV , σV , τV ), we then
fitted the fluctuations-dependent threshold that bring the analytical estimate to
the measured firing response. This procedure resulted in the analytical estimates
shown in Fig. 2 and compared with the results of numerical simulations.

3.4 Accuracy of the description of the spontaneous activ-
ity state

We now compare the numerical simulation of the network model (Fig. 3) to the
prediction of the Markovian description in terms of stationary dynamics. First,
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Figure 3: Numerical simulations of the dynamics of a recurrent network
of 10000 neurons (see parameters in Table 1). Note that all plots have
the same x-axis: time. (A) Sample of the spiking activity of 500 neurons (green,
400 excitatory and red, 100 inhibitory). (B) Population activity (i.e. spiking
activity sampled in 5ms time bins across the population) of the excitatory (green)
and inhibitory (red) sub-populations. We also show the applied external drive
(νdrivee (t), black line), note the slow linear increase to reach νdrivee =4Hz in order
to reduce the initial synchronization that would result from an abrupt onset. (C)
Membrane potential (top) and conductances (bottom, excitatory in green and
inhibitory in red) time courses of three randomly chosen inhibitory neurons. (D)
Membrane potential and conductances time courses of three randomly chosen
excitatory neurons.

we see that there is a transient period of ∼ 400ms resulting from the onset of the
external drive (see Fig. 3B-D), we will therefore evaluate stationary properties
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Figure 4: Mean field prediction of the stationary activity. Those quan-
tities are evaluated after discarding the initial 500ms transient. (A) Gaussian
predictions of the population activities (filled curve) compared to those observed
in numerical simulations (empty bars). (B) Mean of the membrane potential
and conductances time courses. Evaluated over 3 cells for the numerical simula-
tions (empty bars, mean and standard deviation). (C) Standard deviation of
membrane potential and conductances time courses.

after discarding the first 500ms of the simulation. After this initial transient,
the population activities (νe and νi) fluctuates around the stationary levels (see
Fig. 3). The Markovian description predicts this phenomena as it contains the
impact of finite size effects (the network comprises 10000 neurons). In Fig. 4A,
we can see that the distributions of the excitatory and inhibitory population
activities are rather well predicted by the formalism: it slightly overestimates
the means of the population activities, but it reproduces well the difference of
firing between RS and FS cells in the network activity.

We also investigated whether the average neuronal and synaptic quantities
were well predicted by the Markovian formalism. Indeed, we found a very
good match for all quantities (see Fig. 4B,C, mean and variance of membrane
potential and synaptic conductances). Only the standard deviation of the
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membrane potential fluctuations was underestimated (Fig. 4C). This discrepancy
does not appear detrimental to the formalism as the Vm standard deviation is a
key quantity of the transfer function and the formalism still shows a good match.
Indeed, this discrepancy might only be due to the presence of threshold-and-reset
mechanism or to the low amount of residual synchrony in such finite networks.

3.5 Description of the response to time-varying input
We now examine whether the formalism captures the response to time-varying
input. Here again, we set the input and examine the response after 500ms of
initial simulation to discard transient effects.

We first choose an afferent input of relatively low frequency content (∼
[5-20]Hz, τ1=60ms and τ2=100ms in Equation 21). The afferent input waveform,
formulated in terms of firing rate, was translated into individual afferent spikes
targeting the excitatory population. The response of the network to this input is
shown in Fig. 5 in comparison with the prediction of the Markovian formalism.
The excitatory population activity raises and immediately entrains an increase of
the inhibitory population activity. The analytical description captures well the
order of magnitude of the deflection, it only slightly underestimates the peak value
(Fig. 5B). But the numerical simulations also show a marked hyperpolarization
after the stimulation, the return to the baseline level happens only ∼ 200-300
ms after the end of the stimulus, and not immediately as predicted by the
Markovian framework. Here this strong hyperpolarization is the result of the
strong spike-frequency adaptation current in excitatory cells that persists as a
repercussion of the high activity evoked by the stimulus. In the Markovian there
is no memory of the previous activity and therefore this phenomena can not be
accounted for. This typically illustrates a limitation of the analytical description
provided here.

To study more precisely the temporal validity of the formalism, we modulated
the network activity by sinusoidal input and compared the response predicted
by the analytical description. First, the hyperpolarization phenomena discussed
above has a correlate in terms of frequency-dependency. Network activity is
overestimated by the mean-field prediction and one can see a discrepancy with
respect to numerical simulations at very low frequencies (visible in the [0.01,1]Hz
range , see inset in Fig. 6A). Additionally, the numerical simulations showed a
marked resonance at ∼50Hz. Given the relatively high strength (compared to
the external input) of the excitatory-inhibitory loop, the network is close to a
bifurcation toward oscillations that are typically in the gamma range (Brunel
and Wang, 2003). A sinusoidal input therefore amplifies those frequencies
(Ledoux and Brunel, 2011). Because the individual excitatory and inhibitory
post-synaptic currents approximately match each other, the theoretical study of
Brunel and Wang (2003) would predict oscillations at 50-60Hz (the bifurcation
would be achieved by reducing τe), thus compatible with the present observation.
An important insight of this analysis is to show that the network can track
very fast temporal variations in the input, even at time scales smaller than the
integration time constant of the single neurons (van Vreeswijk and Sompolinsky,
1996). Recurrent neural networks globally behave as low-pass filters (though
see Ledoux and Brunel (2011) for a detailed treatment of the appearance of
resonances), but with a high cutoff frequency compared to the frequency content
of thalamic input for classical artificial stimuli (e.g. in the visual system: drifting
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Figure 5: Network response to a time-varying input and associated
prediction of the Markovian formalism. For all plots, the x-axis corre-
sponds to time. Shown after 500ms of initial stimulation. (A) Sample of the
spiking activity of 500 neurons (green, 400 excitatory and red, 100 inhibitory).
(B) Population activity (in 5ms bins) of the excitatory (green) and inhibitory
(red) sub-populations. Superimposed is the mean and standard deviation over
time predicted by the Markovian formalism. We also show the applied external
stimulation (νaffe (t), dotted line). (C) Membrane potential time courses of three
excitatory cells (green, top) and three inhibitory cells (red, bottom) with the
prediction of the mean and standard deviation in time. (D) Conductance time
courses of the six cells in C with the predictions of the fluctuations superimposed.

gratings, supra-10ms flashes, etc. . . ). Again, in vivo experiments in awake mice
suggested that V1 cortical networks had a high cut-off frequency (∼100Hz in
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Figure 6: Limitations of the Markovian description in the frequency
domain. Response of the network (numerical simulation and analytical descrip-
tion) to sinusoidal stimulation of the form νaffe = 5Hz

(
1− cos(2πf(t− t0))

)
/2.

The stimulation was set on at t0=500ms. The response was fitted by a function of
the form ν(t) = A

(
1− cos(2πf(t− t0)−φ)

)
/2. (A) Amplitude of the sinusoidal

response (A in the fitted response) for various frequencies. In the inset, we show
the [0.01, 1]Hz range. (B) Phase shift of the sinusoidal response (φ in the fitted
response) for various frequencies.

Reinhold et al. (2015)).
Thus, by comparing numerical simulations of network dynamics and the

Markovian formalism, we highlighted the accuracies and discrepancies of this
analytical framework to describe both the spontaneous activity and the response
of a sparsely connected recurrent network of distinct excitatory and inhibitory
cells. We conclude that, given the frequency content of visually evoked network
responses in V1 (Muller et al., 2014) (5-20Hz), those limitations would seem to
poorly affect the description of such phenomena.

3.6 One-dimensional ring model to model VSD imaging
We now embed this local population dynamics description into a spatial model to
investigate the emergence of spatio-temporal patterns of activity. The ring model
(see e.g. (Hansel and Sompolinsky, 1996)) offers a simple framework to implement
such interactions. The local balanced network units are interconnected to each
other via two Gaussian connectivity profiles (see Fig. 7 and Methods) according
to anatomical connectivity estimates (Buzás et al., 2006). Importantly, we
integrate distance-dependent propagation delays due to the finite velocity of
axonal conduction of action potentials (see Methods), we took here an axonal
conduction velocity of 0.3m/s. Previous theoretical work investigated how
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Figure 7: Modeling mesoscopic cortical dynamics. A mesoscopic model of
the spatial organization of neocortical populations (A) is constructed by inter-
connecting the local networks with continuous connectivity profiles of excitatory
and inhibitory interactions (B). The lateral connectivity follows two Gaussian
profiles of extent lexc=5mm and linh=1mm for the excitation and inhibition
respectively.

the topology of such networks may affect the "macroscopic" quantities of the
spiking activity (ensemble correlations and mean firing rates). It was shown
that, provided the excitatory-inhibitory balance is the same, those macroscopic
properties were globally invariant with respect to the different connectivity
patterns (Yger et al., 2011). As the global balance of the ring model is identical
to that of the local model (see Methods), those results imply that the mean-field
analysis of the macroscopic quantities performed in the previous sections provides
a good approximation for the dynamics of the topological network considered
here. We therefore study the dynamics of the ring model through its mean-field
description (Equation 23).

We stimulated this large-scale model with an external input mimicking
thalamic stimulation. We took a separable spatio-temporal waveform as an
input. In space, the profile was a Gaussian curve of extent lstim , in time, it was
a piecewise double Gaussian function. This corresponds to the following input:

νaffe (x, t)) = Ae
−( x−x0√

2lstim
)2 (

e
−( t−t0√

2τ1
)2

H(t0 − t) + e
−( t−t0√

2τ2
)2

H(t− t0)
)

(26)

Despite its various amplitude over space (its attenuation from the local
maximum), it should be emphasized that this input does not propagate: its
maximum is achieved at all position at the same time. To highlight this feature,
we implemented a simple analysis of propagation: we normalize the responses
with respect to their local amplitude and we look for a specific crossing of the
normalized amplitude. To focus on early responses, we highlight the first crossing
of the level corresponding to 20% of the maximum amplitude, we will refer to
this quantity as the early response line (drawn with a white dashed-line, see
Fig. 8). In Fig. 8A(i), the horizontal early response line indeed shows that the
input does not propagate, the fourth of the maximum of the normalized response
is achieved everywhere at the same time.
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The response of the model in terms of population dynamics showed a marked
propagation (see the V-shape of the early response line in Fig. 8A(ii)). This
is naturally the result of the local connectivity profiles implemented in the
model (see Fig. 1 and Table 1), the excitation has a broad spatial extent, it
can depolarizes neighboring locations and evoke spiking (both of excitatory and
inhibitory populations). This propagated activity nonetheless exhibits a very
strong attenuation over space, this is due to the strong non-linear relationship
between depolarizations and firing response. Confirming this picture, the normal-
ized membrane potential responses indeed exhibits the same propagation profile
but with a much weaker attenuation over space. Naturally, the propagation
dynamics in the model is led by the conduction velocity, see its representation
(white dotted line) in Fig. 8A(ii,iii). As expected (Bringuier et al., 1999), the
model predicts that the detectability of responses in multiunit recordings have a
lower spatial extent than for VSDi responses (see the lower range of the early
response line that stops when the maximum local response is below 1% of the
maximum response).

Fig. 8 also compares visually-evoked propagating waves between the model
and VSDi experimnents in the primary visual cortex of awake monkey. A recent
phase-based analysis applied at single-trial level (Muller et al., 2014) showed
that such propagating waves appear either in spontaneous activity or following
visual stimulation. Using a 2-dim space-time representation applied similarly in
the data(Fig. 8B(iii)) and in the model (Fig. 8A(iii)) shows that the ring model
can reproduce the qualitative features of the propagating wave.

3.7 Inferring model parameters from VSDi recordings
In Fig. 9A, we show how the input parameters (the spatial and temporal
parameters of the afferent drive: lstim, τ1 and τ2) and architecture parameters
of the model (lateral propagation speed vc and extent of lateral connectivity lexc
and linh) shape the response profile in terms of mean Vm depolarization. Given
the previously described qualitative similarity between model and experiments in
terms of evoked spatio-temporal patterns, we try to infer the model parameters
from the VSDi recordings. To this purpose, we developed an optimization
procedure based on a least-square criteria over the spatio-temporal patterns of
evoked activity. We examples of the various spatio-temporal patterns recorded
in different sessions of VSDi imaging (Fig. 9B, top), we also show how the model
was aligned to VDSi recordings and normalized for quantitative comparison of
the patterns of evoked activity (Fig. 9B, bottom).

Overall, we found that the best parameters of the model pointed toward
physiologically-realistic values, see Fig. 9C. The optimal speed of lateral prop-
agation was found to be 251 ± 139 mm/s, i.e. close to the ∼ 300mm/s value
measured experimentally (Waxman and Bennett, 1972). Interestingly, the model
predicted one of the key feature of neocortical architecture, the higher lateral
extent of the excitatory connectivity (Buzás et al., 2006): we indeed found a
significant assymetry between the excitatory and inhibitory extent of lateral
connectivity (n=13, p=2e-3, two-sided t-test). Note however that the optimal
connectivity values, lexc = 6.1± 1.1mm/s and linh = 3.7± 2.6mm/s systemati-
cally overestimated physiological estimates lexc = 5mm/s and linh ∼ 1mm/s in
Buzás et al. (2006). The stimulus extent onto the cortical network was found to
be 0.8± 0.5 mm here underestimating the typical "center response area" (∼2mm,
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Figure 8: Comparison of evoked activity patterns (A) in the model
as a response to an input waveform and (B) observed in awake mon-
key under voltage-sensitive dye experiments as a response to a visual
stimulus . (A) (i) Afferent stimulation: an input of the form Equation 26
with the parameters A=15Hz, τ1=50ms, τ2=150ms and lexc=0.8mm. An early
response line (white dashed line, see main text) indicates whether the signal ex-
hibits propagation over space (vertical meaning no propagation). Model response
in terms of population activity (ii) and (iii) normalized membrane potential
(see Methods). (B) (i) A gaussian of luminance with angular extent 0.125o
is presented in the visual space at 1o (left) and 2o (bottom) from the fixation
point. (ii) A one-dimensional region of interest (ROI) is selected surrounding
the cortical receptive-field (RF). (iii) VDS imaging response following the visual
stimulation. To illustrate the propagation around the center of the evoked
response, we arbitrarily splitted the space in three regions (bottom-center-top)
and performed a linear fitting over space of the temporal crossing of the 25%
level of the local maximum. Note the difference in spatial scale between the
model and experiments, the model has here a lower scale to show the spread
over the entire ring model.
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Figure 9: Inferring the model parameters from VSDi recordings. (A)
Mean depolarization δVN for different parameters of the model. See parameters
values on the figures. From (i) to (ii) we decreased the conduction velocity vc,
from (i) to (iii) we decreased the rise τ1 and decay τ2 time constants of the
stimulus, from (i) to (iv) we enlarged the stimulus extent lstim and decreased
the excitatory lateral conectivity lexc. (B) Comparison between data (top) and
model (bottom) for the parameters filling the least-square criteria. Shown for
three representative recording sessions. Note the common normalization and
spatio-temporal sampling that allow to compute the difference between model
and experiments (see Methods). (C) Estimated model parameters over the
whole dataset (n=6 sessions in monkey WA, n=6 sessions in monkey BR): (i)
lateral propagation speed vc, (ii) spatial extent of the excitatory (green, lexc) and
inhibitory (green, lexc) connectivity profiles, (iii) spatial extent of the stimulus
lstim, (iv) onset time constant of the stimulus τ1 and (v) decay time constant
of the stimulus τ2. We show the domain D over which the optimization was
performed (see Methods).

see Fig. 8Aiii). Those two last discrepancies (overestimating lateral connectivity
while underestimating stimulus spatial extent) can be explained by the fact that
disambiguating between a narrow stimulus with wide lateral propagations and a
wide stimulus of narrow lateral propagation is not straightforward (see difference
between (i) and (iv) in Fig. 9A). The onset dynamics (captured by the constant
τ1), was found invariant with respect to the length of stimulus presentation
(c=0.1, p>0.1, pearson correlation). On the other hand, the decay dynamics
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was found correlated with the duration of stimulus presentation (c=0.8, p=2e-3,
pearson correlation), consistent with the more sustained thalamic activations for
longer stimuli presentations as a consequence of the relative linearity of thalamic
responses with respect to visual stimulus features (Gawne et al., 1991).

4 Discussion
In the present study, we investigated a mean-field model of networks with
different electrophysiological properties, described using the AdEx model with
conductance-based synapses. We found that the Markovian formalism proposed
in El Boustani and Destexhe (2009) was able to describe the steady-state and
temporal dynamics of such networks. Though this formalism was shown to
be a relatively accurate description of the response simulated in numerical
networks, we also showed the limits of this formalism. The relative complexity
of the theoretical problem should be stressed: our model includes non-linear
phenomena such as spike-frequency adaptation or a voltage-dependent activation
curve for spike emission. The proposed semi-analytical approach thus offers a
convenient description for theoretical models where an exact analytical treatment
would not be achievable.

Unlike previous studies (Brunel, 2000; Vogels and Abbott, 2005; Kumar et
al., 2008; El Boustani and Destexhe, 2009), we considered networks of non-
linear integrate-and-fire neurons with asymmetric electrophysiological properties
between excitatory and inhibitory cells. This type of network is more realistic
because it includes the adaptation properties of excitatory cells, and the fact that
inhibitory cells are more excitable and fire at higher rates. We could demonstrate
the relative accuracy of the Markovian formalism (with the semi-analytical
approach) in a situation including this increased complexity. The mean-field
model obtained was able to predict the level of spontaneous activity of the
network, as well as its response to external time-varying inputs.

This versatile theoretical description of the local cortical network could be
improved. For example the strong hyperpolarization of population activity
after a transient rise (see Fig. 5B) was shown to be missed by the mean-field
formalism. Indeed, this version does not have a memory of the previous activity
levels and thus can not account for the effect of the long-lasting spike-frequency
adaptation mechanism that has been strongly activated by the activity evoked by
the stimulus. One could design another version of the Markovian formalism to
capture such adaptation-mediated effects. Instead of accounting for adaptation
within the transfer function (i.e. accounting only for its stationary effects),
one can introduce a new variable with a dependency on time and activity: a
“population adaptation current”, that can directly be derived from the equation
of the AdExp model. Additionally, recent semi-analytical work (Augustin et al.,
2016) in current-based networks yielded very accurate descriptions of network
activity both at low and high frequency content, translating those results to
conductance-based networks could overcome the limitations of our description.
Investigating such formalisms and their accuracy should be the focus of future
work.

We further showed that the present mean-field approach can be used to
model VSDi data. Not only the present mean-field framework gives access
to the mean voltage and its time evolution, but it can easily be extended to
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model VSDi signals. The present model represents a local population of cortical
excitatory and inhibitory neurons, and thus can be thought to represent a “pixel”
of the VSDi. The full VSDi model was obtained by embedding the present local
population description within a spatial model, under the form of a ring-like
arrangement of RS-FS mean-field units (see Fig. 8). In this simple model, a
localized input led to propagating-wave activity, very similar to experiments (see
Fig. 8). This demonstrates that the present mean-field approach can be used
to model VSDi experiments. This study thus constitutes a "proof of concept"
validated on the spatio-temporal pattern of neocortical activity evoked by a
single stimulus. Investigating whether the present theoretical model yield deeper
insight into neocortical computation is the focus of current work.
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