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Abstract1

Early warning signals (EWS) are statistical indicators that a rapid regime shift may be2

forthcoming. Their development has given ecologists hope of predicting rapid regime shifts3

before they occur. Accurate predictions, however, rely on the signals being appropriate to4

the system in question. Most of the EWS commonly applied in ecology have been studied5

in the context of one specific type of regime shift (the type brought on by a saddle-node6

bifurcation, at which one stable equilibrium point collides with an unstable equilibrium and7

disappears) under one particular perturbation scheme (temporally uncorrelated noise that8

perturbs the net population growth rate in a density independent way). Whether and when9

these EWS can be applied to other ecological situations remains relatively unknown, and10

certainly underappreciated. We study a range of models with different types of dynamical11

transitions (including rapid regime shifts) and several perturbation schemes12

(density-dependent uncorrelated or temporally-correlated noise) and test the ability of13

EWS to warn of an approaching transition. We also test the sensitivity of our results to14

the amount of available pre-transition data and various decisions that must be made in the15

analysis (i.e. the rolling window size and smoothing bandwidth used to compute the EWS).16

We find that EWS generally work well to signal an impending saddle-node bifurcation,17

regardless of the autocorrelation or intensity of the noise. However, EWS do not reliably18

appear as expected for other types of transition. EWS were often very sensitive to the19

length of the pre-transition time series analyzed, and usually less sensitive to other20

decisions. We conclude that the EWS perform well for saddle-node bifurcation in a range21

of noise environments, but different methods should be used to predict other types of22

regime shifts. As a consequence, knowledge of the mechanism behind a possible regime23

shift is needed before EWS can be used to predict it.24

Keywords: regime shifts, critical transitions, early warning signals, alternative stable25

states, stochasticity, colored noise26
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Introduction27

Absent any large and sudden perturbations, we do not typically expect ecosystems to28

exhibit large and sudden changes in their state. Exceptions to this rule are the subject of29

major concern because they represent the alarming situation where small external changes30

create dramatic shifts in the composition, configuration, and possibly function of an31

ecosystem (Holling 1973, Scheffer 2009). Such sudden regime shifts can occur in two main32

ways (Shea et al 2004). First, a small perturbation to a parameter, such as a demographic33

rate or interaction term, may cause a system to cross a bifurcation point – a critical point34

beyond which the qualitative dynamics of the system change. Second, a small perturbation35

to the system state may push a system with multiple stable configurations into the basin of36

attraction of a different stable state. In either case, the small external changes that trigger37

the shift are effectively cryptic and recognizing when a particular system is at risk of38

suddenly shifting to a different regime is a formidable challenge.39

A growing body of research on early warning signals (EWS) has recently been40

developed to meet this challenge. EWS are statistics associated with the detection of rapid41

regime shifts before they occur. EWS have been developed for a diverse range of dynamical42

scenarios, e.g. critical transitions in ecosystems (Scheffer et al 2009), onset of neuron43

spiking (Meisel et al 2015), rate-induced tipping in climate system (Ashwin et al 2012,44

Ritchie and Sieber 2016, 2017), and transitions in non-stationary models (Kwasniok 2015)45

and networks (Mheen et al 2013, Kuehn et al 2015). However, EWS in ecology have mostly46

been used to detect a specific type of regime shifts where the current state of a system is47

one of two stable states, and where incremental external changes will soon cause the48

system to cross a bifurcation (specifically a saddle node, also known as a fold, bifurcation)49

where the current state and an unstable equilibrium point merge and disappear. Loss of50

the current stable state will force the system to shift to the other stable state. A stable51

equilibrium is characterized by a positive rate of return following a local perturbation, and52

this rate approaches zero as the system nears a bifurcation at which the equilibrium53
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vanishes or loses stability (Wissel 1984). This phenomenon in which return rates approach54

zero, known as critical slowing down (Strogatz 1994, Van Nes and Scheffer 2007), has55

certain generic effects on dynamics like increased variance and autocorrelation near56

bifurcations; we therefore expect to see these effects when the current state of a system is57

about to cease being stable (Scheffer et al 2009, Held and Kleinen 2004, Brock and58

Carpenter 2006, Carpenter and Brock 2006, Kleinen et al 2003, Guttal and Jayaprakash59

2008, Seekell et al 2011). Although EWS have been successfully applied in some cases60

(Scheffer et al 2009), a thorough understanding of when and how they work reliably is still61

an open area of research (Boettiger and Hastings 2012b, Drake 2013, Boettiger and62

Hastings 2013, Boettiger et al 2013, Dakos et al 2015, Gsell et al 2016).63

As eloquently mapped out in Boettiger et al (2013), rapid regime shifts may or may64

not involve bifurcations, and bifurcations may occur with or without critical slowing down65

(CSD). Because EWS are generic symptoms of CSD, rather than being indicators of regime66

shifts per se (Van Nes and Scheffer 2007, Kéfi et al 2012), they tend to work well when67

regime shifts and CSD co-occur. This is the situation with some catastrophic bifurcations68

(“catastrophic” meaning those with a large qualitative effect not readily reversed) like the69

saddle node. However, when (a) regime shifts occur without CSD, or (b) CSD occurs70

without an associated regime shift, EWS become more difficult to interpret. Situation (a)71

arises for catastrophic bifurcations that lack CSD (e.g. Hastings and Wysham 2010,72

Schreiber and Rudolf 2008) or when regime shifts are due to stochastic switching between73

coexisting stable states in the absence of any external change that would trigger CSD (e.g.74

Boettiger and Hastings 2012a, Sharma et al 2015). For these transitions, EWS are not75

expected (Hastings and Wysham 2010, Boettiger and Hastings 2013). Situation (b) occurs76

for non-catastrophic transitions like super-critical Hopf, transcritical, and pitchfork77

bifurcations, that have CSD but are characterized by quantitatively similar dynamics78

before and after bifurcation. For example, on one side of a super-critical Hopf bifurcation is79

a stable node and on the other side is a limit cycle, initially very small, that is centered80
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around that node. Although there is a meaningful qualitative change of dynamics at the81

bifurcation (transition from a point equilibrium to a cycle), the actual change in82

population densities or ecosystem state at the bifurcation point is trivial. Larger cycles83

farther past the bifurcation point can certainly be ecologically important, but the key here84

is that at the bifurcation point itself, there is no meaningful regime shift. Nevertheless,85

because these bifurcations occur with CSD, EWS can appear (Kéfi et al 2012).86

In addition to transition type – catastrophic or not, with or without a bifurcation or87

CSD – there are important open questions about how noise type affects the performance of88

EWS (Contamin and Ellison 2009). The “slowing down” of CSD refers to a system’s rate89

of recovery following a perturbation. EWS thus only appear because perturbations are90

present, and these are usually in the form of stochastic noise. The properties of this noise91

are likely to have an effect on statistics like population variance and autocorrelation. For92

instance, positively autocorrelated (red-shifted) noise can have a substantial impact on93

population dynamics (Ripa and Lundberg 1996, and others), and how this effect interacts94

with the changes in population variance and autocorrelation caused by critical slowing95

down is not fully understood. Rudnick and Davis (2003) found that noise color strongly96

influenced the performance of a regime shift indicator in purely stochastic time series, but97

neither Perretti and Munch (2012) nor Boerlijst et al (2013) saw an effect of noise color on98

the performance of EWS in stochastic population models. This led Perretti and Munch99

(2012) to hypothesize that noise color may have a stronger effect on EWS when population100

dynamics are more strongly influenced by noise, but to our knowledge this idea has never101

been tested. Higher noise intensity could cause population dynamics to be more strongly102

influenced by noise, but so too could CSD itself, where a slower recovery from perturbation103

means weaker intrinsic regulation. A clearer understanding of if and when noise color104

affects the performance of EWS is needed (Boettiger and Hastings 2012a), especially given105

the commonness of red-shifted noise in ecological systems (Halley 1996, Vasseur and Yodzis106

2004). Aside from noise color, other properties, like whether perturbations cause variation107
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in parameter values, or to total or per-capita population growth rates, may also affect108

EWS performance (Dakos et al 2012b).109

Finally, when computing EWS from data, researchers must make decisions about110

how much data before a transition to use and over what rolling window with what111

smoothing bandwidth. Examples have shown EWS to be sensitive to time series length112

(Sharma et al 2015), sampling interval (Perretti and Munch 2012), and, in some instances,113

bandwidth and window size (Dakos et al 2012a). However, the extent to which these114

individual results hold across different transition types and with different types of noise has115

not yet been explored.116

In this paper, we follow Kéfi et al (2012) and compute two major early warning117

signals, variance and lag-1 autocorrelation, for a suite of models with different transition118

types. To complement Kéfi et al (2012), who used additive white (uncorrelated) noise in119

their models, we consider multiplicative white and red-shifted (positively autocorrelated)120

noise. Our models span all 5 dynamical categories delineated by Boettiger et al (2013)121

(redrawn in figure 1a): (I) the “charted territory” of the saddle node bifurcation, with CSD122

and a regime shift; and the “uncharted territories” of (II) regime shifts through123

bifurcations that lack CSD; (III) non-catastrophic bifurcations with CSD; (IV) CSD124

without a bifurcation; and (V) regime shifts due to stochastic switching, absent a125

bifurcation and CSD. We also computed EWS for a model undergoing a smooth and126

gradual state change, with no regime shift, bifurcation, or CSD, as a null case. For each127

model, we considered a range of time series lengths, rolling window sizes, and bandwidths128

in our calculations, to determine the effect of these choices on EWS performance. As129

expected, we find that EWS are more sensitive to time series length in comparison with130

window size or bandwidth within the ranges we tested. Although EWS work as expected131

(provided a sufficiently long time series) in the case of the saddle node bifurcation, we find132

both surprising positive and surprising negative results for other transition types. Because133

Kéfi et al (2012) did not see similar surprises when examining many of the same transitions134
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using additive white noise, we conclude that EWS performance is highly sensitive to noise135

type. Together, our results reemphasize the need for the mechanisms underlying a possible136

regime shift to be understood first, before EWS can be applied and properly interpreted137

(Boettiger et al 2013).138

Methods139

Simulations140

We begin by reanalyzing the models studied by Kéfi et al (2012) for a different noise type141

(multiplicative noise, as described below). These models include a well-known example of a142

saddle node bifurcation (Noy-Meir 1975, May 1977, Ludwig et al 1978) (table 1 model [1],143

figure 1b) and a well-known model with a super-critical Hopf bifurcation (Rosenzweig144

1971) (table 1 model [3], figure 1d), as well as modified versions of model [1] that instead145

have a transcritical (table 1 [2], figure 1c) or pitchfork (table 1 [4], figure 1e) bifurcation.146

Also following Kéfi et al (2012), we consider model [1] with two alternative parameter147

settings: one in which the model lacks a transition altogether (the null case: table 1 [6],148

figure 1g) and one that produces an eigenvalue peak (and thus relative slowing of recovery149

from perturbations) but no bifurcation (table 1 [7], figure 1h). To this list, we add a model150

that exhibits a bifurcation and regime shift without CSD (Schreiber and Rudolf 2008)151

(table 1 [5], figure 1f).152

To each of these models, we incorporated multiplicative, red-shifted Gaussian noise153

representing autocorrelated environmental stochasticity. The stochastic models each have154

the general form,155

dN

dt
= f(N) + Nε(t), (1)

where N is population density (for one-dimensional models) or a vector of population156

densities, f(N) is the deterministic skeleton of the model as shown in table 1, and ε(t) is a157

random variable representing the colored noise. We refer to this formulation158

“multiplicative noise” because ε(t) is multiplied by a function (here, simply N) of159
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population density. Kéfi et al (2012) used a common alternative, so-called “additive noise,”160

in which the random variable is added to the deterministic skeleton: dN
dt

= f(N) + ε(t).161

Additive noise represents random perturbations whose impact is independent of population162

size; random density-independent immigration and emigration are examples. Multiplicative163

noise represents perturbations with a per-capita effect, such as random fluctuations in164

survivorship or fecundity.165

We write ε(t) in Eq. (1) as an Ornstein-Uhlenbeck process with derivative,166

dε(t)

dt
= −ε(t)

τ
+

1

τ

σ√
2
ξ(t), (2)

where ξ is the Gaussian white noise with zero mean and unit variance, σ is the noise167

intensity, and τ is the correlation time of the Ornstein-Uhlenbeck process. The168

autocorrelation function for ε is,169

〈ε(t), ε(t′)〉 =
σ2τ

2
exp

(
−|t− t

′|
τ

)
. (3)

Although we focus on red-shifted noise (τ > 0) in this article, we briefly also consider the170

case of white noise, which occurs when τ → 0.171

All of these models (except for the null case, model [6]) exhibit a transition of some172

sort as one “control parameter” is changed within the range shown in table 1. For models173

[1]-[5], these transitions are different kinds of bifurcations, and for model [7] the transition174

is a sharp but continuous change in the state variable (figure 1f). As the control parameter175

is changed, regime shifts will occur for catastrophic bifurcations ([1] and [5]) and in model176

[7], where the transitions involve a meaningful quantitative change in state, but not for the177

non-catastrophic bifurcations ([2]-[4], where the transition is only qualitative) nor for [6].178

CSD occurs when eigenvalues approach 0, which happens when a local bifurcation is179

approached ([1]-[4]) or when the eigenvalue peaks sharply just below 0 ([7]; figure 1h).180

For a fixed value of the control parameter, rapid regime shifts can also occur due to181
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stochastic switching when multiple stable equilibria are present. This happens in models182

[1] and [4], where 2 stable point equilibria coexist for some values of the control parameter,183

and in [5] where the upper point equilibrium coexists with a lower limit cycle (Schreiber184

and Rudolf 2008) (figure 1b,e,f).185

For each model, we performed stochastic simulations in MATLAB (R2011a) using186

the Euler-Maruyama method (Higham 2001) with standard integration step size of 0.001.187

We chose to study these models via simulation, both to mimic the way time series data are188

analyzed and to allow consistent treatment of the 1-dimensional models (for which one189

could study the dynamics by deriving and solving the master equation (Hänggi and Jung190

1995)) and models with higher dimension. Where our suite of models overlaps with Kéfi191

et al (2012), we used the same parameter values as they did to facilitate comparison. To192

examine transitions due to changes in the control parameter, we fixed all other parameters193

at the values shown in table 1 and simulated the model while gradually changing the194

control parameter across the range shown over 1000 time units. To examine stochastic195

switching, we fixed the control parameter at the value given in parentheses in table 1.196

We simulated all models across a range of red-shifted noise environments by using197

various combinations of σ and τ , as given in the “Ranges” columns of table 2. We then198

followed up with one specific σ − τ combination for each model (“Fixed values” in table 2)199

for an in-depth comparison of the different window sizes, time series lengths, and200

bandwidths.201

Finally, because our results under multiplicative red-shifted noise differ notably202

from those of Kéfi et al (2012) under additive white noise, we repeated our analysis using203

multiplicative white noise (i.e. equation (1) with temporally uncorrelated ε(t), τ → 0).204

This allows us to assess the effect of red-shifted noise independently from our use of205

multiplicative perturbations.206
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Table 1. Deterministic base models, parameters descriptions, and values used. For each model, the control
parameter is shown with a range of values. To move the system across the bifurcation or other transition
point, we gradually varied the control parameter across this range. To explore stochastic switching, we fixed
all parameters including the control parameter; the fixed value used for the control parameter is shown in
parentheses.

Deterministic skeleton Parameters Values

[1] Saddle node (fold)
bifurcation:
dN
dt

= rN
(
1− N

K

)
− cN2

b2+N2

K - carrying capacity 10
r - maximum growth rate 1
c - maximum grazing rate 1−3 (2)
b - half saturation constant 1

[2] Transcritical bifurcation:
dN
dt

= rN
(
1− N

K

)
− cN

K - carrying capacity 10
r - maximum growth rate 1
c - maximum grazing rate 0−2

[3] Super-critical Hopf
bifurcation:
dN
dt

= rN
(
1− N

K

)
− aNP

b+N
dP
dt

= eaNP
b+N

− dP

K - carrying capacity of resource 0.1−4
r - maximum growth rate of resource 0.5
a - maximum grazing rate 0.4
b - half saturation constant 0.6
e - assimilation efficiency of grazer 0.6
d - mortality rate of grazer 0.15

[4] Pitchfork bifurcation:
dN
dt

= rN
(
1− N

K

)
(N −Nc)− cN + I

K - carrying capacity 10
r - maximum growth rate 0.1−1 (0.4)
c - maximum grazing rate 0.8
Nc - Allee threshold 5
I - immigration rate 4

[5] Bifurcation without CSD:
dRi

dt
= rRi

(
1− Ri

Ki

)
− aiRiCi (i=J,A)

dCJ

dt
= eaARACA − dCJ − eaJRJCJ

dCA

dt
= eaJRJCJ − dCA

r - intrinsic growth rate 1
d - mortality rate 0.1
aJ - juvenile attack rate 0.01
aA - adult attack rate 0.01
e - energy conversion efficiency 0.4
KJ - juvenile carrying capacity 110
KA - adult carrying capacity 50−200 (156)

[6] No transition:
dN
dt

= rN
(
1− N

K

)
− cN2

b2+N2

K - carrying capacity 1.9
r - maximum growth rate 1
c - maximum grazing rate 1−3
b - half saturation constant 1

[7] Sharp transition
without bifurcation:
dN
dt

= rN
(
1− N

K

)
− cN2

b2+N2

K - carrying capacity 5.2
r - maximum growth rate 1
c - maximum grazing rate 1−3
b - half saturation constant 1
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Figure 1 caption: (a) Venn diagram, redrawn and slightly modified from Boettiger et al (2013), showing207

possible combinations of critical slowing down, rapid regime shifts, and bifurcations. Roman numerals label208

the 5 distinct combinations, as laid out in Boettiger et al (2013); we modified region IV slightly to include209

any case of critical slowing down that occurs in the absence of a bifurcation (regardless of whether or not a210

rapid regime shift also occurs; this allows us to place the sharp transition in (h) cleanly into region IV211

without debating whether the transition truly qualifies as a rapid regime shift). Numbers in square212

brackets correspond to the model numbers used in table 1 and throughout, showing where each model fits213

within this classification scheme. (b-h) Bifurcation diagrams and dominant eigenvalues (real part) for each214

model and parameter set shown in table 1. Stable equilibria (upper graph in each pair) and their dominant215

eigenvalues (lower graph) are plotted in black; unstable equilibria and their dominant eigenvalues are216

plotted in gray. Transitions are labeled using the roman numerals from (a). Beyond the super-critical Hopf217

bifurcation in model [3] (panel (d)), we show the amplitude of limit cycles in blue. Bifurcations occur in218

panels (b)-(f) where eigenvalues intersect 0. Critical slowing down occurs as the bifurcation is219

approached in (b)-(e), and when the eigenvalue peaks sharply just below 0 in (h). Rapid regime shifts220

are possible due to changes in the control parameter in (b), (f), and (h), where the state before and after221

transition is quite different. Rapid regime shifts can also occur due to stochastic switching in (b) and (e)222

where 2 stable point equilibria coexist for a given value of the control parameter, and in (f) where the223

upper point equilibrium coexists with a limit cycle around the lowest unstable equilibrium (Schreiber and224

Rudolf 2008).225

———226

Table 2. Values of τ and σ used. ∆Param refers to simulations where the control parameter was changed
to drive transitions and Stoch refers to simulations of stochastic switching. We ran each model under
approximately 400 combinations of σ and τ chosen to span the range of behaviors observed in the parameter
ranges given; these results are reported in aggregate as histograms. Specific examples we studied use the
fixed values given in the last 2 columns.

Cause of Ranges Fixed values

Model transition σ τ σ τ

[1] ∆Param [3, 5]×10−5 [0.01, 0.03] 3× 10−5 0.01

[1] Stoch [5, 9]×10−4 [0.01, 0.03] 5× 10−5 0.01

[2] ∆Param (0, 8]×10−4 [0.1, 1.9] 4× 10−4 1

[3] ∆Param [1, 9]×10−4 [0.1, 0.3] 5× 10−4 0.1

[4] ∆Param [4, 8]×10−5 [0.1, 0.3] 6× 10−5 0.1

[4] Stoch [1.4, 1.6]×10−4 [0.1, 0.3] 1.5× 10−4 0.1

[5] ∆Param [3, 5]×10−3 [0.1, 0.3] 4.2× 10−3 0.1

[5] Stoch [6, 8]×10−3 [0.01, 0.03] 7× 10−3 0.01

[6] ∆Param [2, 4]×10−5 [0.01, 0.03] 3× 10−5 0.01

[7] ∆Param [0.1, 1]×10−3 [0.1, 0.3] 1× 10−4 0.1
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Measuring EWS of catastrophic and non-catastrophic transitions227

We used the Early Warning Signal toolbox (http://www.early-warning-signals.org/) to228

calculate two EWS, variance and lag-1 autocorrelation, from our simulated time series. For229

each time series, we assessed whether the EWS rose in advance of the transition using230

Kendall’s-τ , which measures the rank correlation between EWS values and time (as in231

Dakos et al 2012a). We rejected the null hypothesis of no EWS rise if the computed232

Kendall’s-τ statistic for a particular simulated time series had a p-value ≤ 0.05. EWS233

should be interpreted as signaling an impending transition if both variance and234

autocorrelation rise (Ditlevsen and Johnsen 2010). For model [6], there is no transition235

and thus no natural point in the time series for us to check for a rise in EWS. For this236

model, we checked for EWS rise before an arbitrarily chosen time point midway through237

the simulated time series.238

The variance and autocorrelation are calculated within a rolling window, and we239

repeated the EWS calculation for 3 different window sizes with lengths equal to 30%, 50%,240

70% the size of the available time series. We also considered 3 different time series lengths:241

the longest possible interval before a transition, and intervals equal to one half and one242

quarter that length. The Early Warning Signals toolbox uses Gaussian kernel smoothing to243

detrend the time series, and we adjusted the degree of smoothing by considering 3 different244

bandwidths (5, 30, and 60). For all analyses, we used time series that consisted of 1245

observation per time unit (t = 0, 1, 2, 3, . . .).246

Results247

EWS for models with colored noise (τ > 0)248

When transitions were due to changes in the control parameters, our models varied greatly249

in their propensity to show EWS before a shift. Variance and autocorrelation both rose250

consistently in advance of the saddle node bifurcation (model [1]), the bifurcation that251

lacked CSD (model [5]), and often, but not always, the sharp transition without a252
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bifurcation (model [7]) (figure 2). Autocorrelation, but not variance, consistently rose in253

model [2], with the transcritical bifurcation, and the opposite was true of model [3]254

(super-critical Hopf). In all other cases, EWS rose in half or less of the simulated σ, τ255

combinations. As expected, this includes our null case (model [6]) and all cases of256

stochastic switching (figure 2).257

The method of calculating EWS had some impact on our results (figures 3-4, table258

3). In particular, we found that EWS generally rose more reliably in advance of a259

transition when we used a longer time series leading up to that transition (figure 3c-d).260

Rolling window size (figure 4a) and smoothing bandwidth (figure 4b) had less effect on the261

EWS (table 3) in comparison with the time series length, across the ranges we considered.262

Examples (based on parameter values shown in tables 1-2) of the simulated time263

series and the behavior of the EWS are shown in figures 3-5 and summarized in table 3.264

These examples again show clear rises in both EWS for models [1] and [5], and mixed265

results for the other models (including, for this set of σ and τ values, model [7]).266 multiplicative colored noise

multiplicative white noise
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Figure 2. Histograms showing the percentage of colored noise simulations that showed a rise in variance
or autocorrelation before a transition. Each model was simulated using the parameter values shown in table
1 across many combinations of τ and σ, as explained in the text. EWS were calculated using the longest
possible pre-transition time series, a rolling window size of 50% the time series length, and a smoothing
bandwidth of 40.
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Figure 3. EWS for model [1]. The left column (a,c) considers transitions that are driven by change in
the control parameter, and the right column (b,d) considers stochastic switching. (a-b): Simulated time
series (black lines) plotted with stable (solid blue lines) and unstable (dashed blue lines) equilibria. The
gray shaded area marks the longest time series that is available for analysis preceding a shift. (c-d): EWS
calculated from 3 different time series lengths, equal to the last 25%, 50%, or 100% of the gray shaded time
series (spans marked, respectively, with green, orange, and red bars in (a-b)). All model parameters are as
shown in tables 1-2; (c-d) use a window size of 50% the time series length and bandwidth 5.
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Figure 4. Sensitivity of EWS to window size and smoothing bandwidth for model [1] with a change in the
control parameter (time series shown in figure 3a). (a) EWS calculated with 3 different rolling window sizes,
of lengths equal to 30%, 50%, and 70% the length of the time series being analyzed. (b) EWS calculated
using 3 different bandwidths: 5, 30, and 60. All model parameters are as shown in tables 1-2. The longest
time series available (entire shaded region in figure 3a) was used; (a) uses bandwidth 5 and (b) uses a window
size of 50% the time series length.
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Figure 5. EWS for models [2]-[7] in cases where transitions are driven by changes in the control parameters.
The gray shaded area shows the time series analyzed, and all results shown here used a rolling window of
50% the time series length and a bandwidth of 5. All model parameters are as shown in tables 1-2.
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Table 3. Summary of results under fixed values of σ and τ (right columns of table 2). Model equations
can be found in Table 1. For each model, there are up to 2 possible causes for transitions: a change in
parameter values (∆Param) or stochastic switching (Stoch). For each transition, we list the classification
according to figure 1a and specify which phenomena are present (Bif = bifurcation; RRS = rapid regime
shifts; CSD = critical slowing down). We state whether the early warning signals (EWS: variance (Var.) and
lag-1 autocorrelation (AC)) consistently rises in advance of the transition, based on analysis of the longest
possible pre-shift time series, a rolling window of 50% the time series length, and a bandwidth of 5. Lastly,
we report whether these are sensitive to window size (window), time series length (length), or bandwidth
(bandw). Other abbreviations: transcr = transcritical, pitch = pitchfork.

Cause of EWS rise? EWS sensitive to:
Model transition Bif? RRS? CSD? Var. AC window length bandw

[1]
∆Param(I) Yes–fold Yes Yes Yes Yes No Yes No
Stoch(V) No Yes No No No Yes Yes No

[2] ∆Param(III) Yes–transcr No Yes No Yes No No No

[3]
∆Param(III) Yes–Hopf No Yes Yes No No No No

[4]
∆Param(III) Yes–pitch No Yes No No No No No
Stoch(V) No Yes No No No No Yes No

[5]
∆Param(II) Yes Yes No Yes Yes No Yes No
Stoch(V) No Yes No No No No No No

[6] ∆Param No No Yes No No No Yes No

[7] ∆Param(VI) No Yes Yes No Yes Yes Yes Yes
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EWS for models with white noise (τ → 0)267

When we simulated each model with multiplicative white noise (equations (1)-(2) with268

τ → 0), both variance and autocorrelation usually rose in advance of a transition caused by269

a parameter change (figure 6). This was true regardless of whether CSD was present (in270

which case we expect both signals to rise; models [1]-[4], [7]) or not (model [5]). Our null271

model [6] showed a rise in both signals, and especially variance, in a surprisingly large272

number of cases, give that this model has no transition. EWS again typically did not rise273

before stochastic switching (figure 6). Figure 7 provides a comparison of our results (for274

multiplicative red and multiplicative white noise) and those of Kéfi et al (2012) (for275

additive white noise).276
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Figure 6. Histograms showing the percentage of simulations that showed a rise in variance or autocorrela-
tion before a transition when models were simulated under multiplicative white noise. Parameter values as
in figure 2.
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Figure 7. Graphical summary of all results, using the same Venn diagram as in figure 1a. (a) Our results
using multiplicative colored noise; (b) our results using multiplicative white noise; (c) results reported for
additive white noise in Kéfi et al (2012). For the purposes of summarizing our results, we say “EWS observed”
if both variance and autocorrelation rose in ≥ 40% of σ, τ combinations (panel a) or σ values (panel b) that
we examined. Numbers in square brackets refer to model numbers. Models numbers inside dots behaved as
expected: both EWS consistently rose in advance of a transition with CSD (“EWS expected”) or failed to
rise in advance of a transition without CSD (“EWS not expected”). Models inside X-shaped symbols did
not behave as expected. Gray shapes mark all cases where a rise in both variance and autocorrelation was
observed, and black shapes mark cases where one or both signals did not consistently rise. If the EWS only
behaved as expected, the CSD circle would contain only gray dots, and all shapes outside this circle would be
black dots. Note that Kéfi et al (2012) did not consider our model [5] nor any cases of stochastic switching,
so those points are not depicted in (c). Note also that while Kéfi et al (2012) did report EWS in model
[6], they observed the EWS rise outside the range of the control parameter that we used here; therefore, we
mark [6] as “EWS not observed” in (c) for a proper comparison against our results.

Discussion277

Our analyses showed both surprising positive and surprising negative results. With278

multiplicative red-shifted noise, the early warning signals appeared in advance of a279

transition without critical slowing down (model [5]) and failed to appear in advance of280

several transitions with CSD (models [2], [3] and [4]) (figure 7a). When we instead281

modeled multiplicative white noise, the EWS rose as expected before all transitions with282
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CSD, but still frequently also rose before a non-CSD transition (again model [5]) and283

before an arbitrarily-chose time point in the model that lacked a transition ([6]) (figure284

7b). Our results for using multiplicative white noise are in close agreement with Kéfi et al’s285

(2012) results with additive white noise (figure 7c). Agreement between EWS in the286

presence of additive and multiplicative noise was also reported by Kuehn (2013). It287

therefore appears that the performance of EWS is more sensitive to noise color (temporal288

autorcorrelation) than to the exact way stochasticity enters into the model.289

Encouragingly, we found that EWS are robust indicators of an impending290

saddle-node (fold) bifurcation regardless of the type of noise we used. In some sense, this is291

unsurprising: saddle-node bifurcations fit within region I (figure 1a), which Boettiger et al292

(2013) referred to as the “charted territory” because the vast majority of EWS research in293

ecology has been conducted on models in this region. Nevertheless, even in region I, there294

is a general paucity of ecological studies with non-additive noise (Hastings and Wysham295

2010), and past reports on the effect of noise color on EWS have been mixed (Rudnick and296

Davis 2003, Dakos et al 2012b, Perretti and Munch 2012, Boerlijst et al 2013). EWS can297

fail to predict an approaching fold in some instances of anisotropic perturbations (i.e. noise298

that affects some components of the system more strongly than others; Boerlijst et al299

2013). We are not, therefore, suggesting that EWS will universally warn of fold300

bifurcations. Still, we find it encouraging and interesting that they worked so well under301

multiplicative red and white noise. While red-shifted noise obviously affects population302

autocorrelation, it does not appear to interfere with the trend in autocorrelation that303

signals an approaching transition due to a fold bifurcation.304

In contrast, these EWS appear unreliable in the context of other kinds of305

transitions. We expected the EWS to rise in advance of any transition with CSD but for306

models [2]-[4], we only saw this rise for white noise. Red-shifted noise did appear to307

interfere with the use of autocorrelation as an EWS for models [3] and [4] (see “change in308

control parameter” bars, figure 2 (red noise) versus figure 6 (white noise)). However, for309
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model [2], and to a lesser extent [4], it was variance that failed to rise under red noise.310

When CSD was absent, and so EWS were not expected to rise, they still consistently rose311

for some transitions. There are two important lessons in these observations. First, EWS312

can rise before some transitions (or arbitrary moments, for our null model without a313

transition) that lack CSD. This highlights the plain fact that properties like variance and314

autocorrelation have many causes unrelated to critical slowing down, and that their315

patterns are not always driven by critical points. Second, EWS do not appear to be robust316

indicators of CSD in the uncharted territories of III and IV (where, of course, even if CSD317

is detected, it will not (III) or may not (IV) be associated with a rapid regime shift at the318

bifurcation point). We therefore strongly second Boettiger et al’s (2013) remark that319

“establishing the saddle-node mechanism is a necessary condition of using [the EWS of]320

CSD as a warning signal.” Developing strategies for identifying impending dynamical321

changes other than the saddle-node bifurcation is an exciting open challenge.322

We placed stochastic switching into category V (figure 1a), as an example of a rapid323

regime shift that is not accompanied by a bifurcation nor CSD. Boettiger et al (2013) also324

used this classification, but there has been some debate about whether slowing down325

should be expected in some cases of stochastic switching (Boettiger and Hastings 2013,326

Drake 2013). Drake (2013) argued that when there is a shift between stable states327

separated by an unstable equilibrium, CSD should be observed as the system traverses the328

unstable point (at which the eigenvalue equals zero). However, we found no EWS before a329

stochastic switch, regardless of whether that switch crossed an intervening unstable point330

(models [1] and [4]) or not (model [5]). We instead found support for the idea that331

unstable states are traversed sufficiently quickly that no CSD appears, in agreement with332

theory (Boettiger and Hastings 2013, Freidlin and Wentzell 2012).333

We found, like Dakos et al (2012a), that variance and autocorrelation are typically334

robust to the rolling window size and smoothing bandwidth used to compute them (table335

3). Both indicators were much more sensitive to the length of the pre-transition time series336
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analyzed. In most cases, using a longer time series improved EWS performance (i.e. made337

them more likely to rise or not as expected). However, for model [5]’s transition due to338

changing the control parameter, the unexpected rise in variance and autocorrelation was339

only observed in the longest time series. Thus, for model [5] the EWS would have behaved340

as expected if we had used less pre-transition data. The null model [6] behaved as341

expected for the longest and shortest time series considered, but not when we used an342

intermediate length. Together, these results suggest that having more data does not343

invariably reduce the unexpected behaviors of EWS. Even – and in some cases, especially –344

with long datasets, calculating EWS without first knowing that a saddle-node bifurcation345

exists in the system can lead to faulty conclusions.346

We conclude that EWS performance is robust to differences in noise type in the case347

of the saddle-node bifurcation, for the models and (isotropic) noise types we considered.348

For other transitions, though, EWS did not necessarily accompany CSD, and their349

behavior was highly sensitive to noise type. Continued research on the development and350

refinement of early warning signals has rightly garnered much attention (Scheffer et al351

2009, Dakos et al 2012a,b); the prospect of being able to predict a catastrophic shift before352

it occurs is truly exciting. At the same time, any early warning signal will have bounds on353

its applicability (Kéfi et al 2012, Boettiger and Hastings 2012b, Dakos et al 2015, Gsell354

et al 2016). Research the helps us define and understand these boundaries improves our355

ability to properly recognize warning signals and points the way toward open areas in need356

of new EWS development.357
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