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Abstract:  

The current deluge of newly identified RNA transcripts presents a singular opportunity for 
improved assessment of coding potential, a cornerstone of genome annotation, and for machine-
driven discovery of biological knowledge. While traditional, feature-based methods for RNA 
classification are limited by current scientific knowledge, deep learning methods can 
independently discover complex biological rules in the data de novo. We trained a gated 
recurrent neural network (RNN) on human messenger RNA (mRNA) and long noncoding RNA 
(lncRNA) sequences. Our model, mRNA RNN (mRNN), surpasses state-of-the-art methods at 
predicting protein-coding potential. To understand what mRNN learned, we probed the network 
and uncovered several context-sensitive codons highly predictive of coding potential. Our results 
suggest that gated RNNs can learn complex and long-range patterns in full-length human 
transcripts, making them ideal for performing a wide range of difficult classification tasks and, 
most importantly, for harvesting new biological insights from the rising flood of sequencing 
data.  
 
 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2017. ; https://doi.org/10.1101/200758doi: bioRxiv preprint 

https://doi.org/10.1101/200758
http://creativecommons.org/licenses/by/4.0/


	 2	

Introduction 

Deep sequencing technology has yielded a torrent of new transcript annotations, creating a 

need for fresh approaches to unlock the full information potential of these vast datasets. Existing 

state-of-the-art methods for classification of long RNAs as protein-coding RNAs (mRNAs) or 

long noncoding RNAs (lncRNAs) rely on human-engineered features, such as the coverage and 

length of a predicted open reading frame (ORF). These features predispose such models to 

misclassification of mRNAs encoding small proteins and of lncRNAs with long, un-translated 

ORFs. Nucleotide hexamer frequency is another commonly used feature, but while it can capture 

the frequency of codon pairs, it does not benefit from the larger sequence context. These 

limitations and the annotation challenges ahead demand new approaches to biological sequence 

classification that are capable of detecting complex, variable-length patterns. 

In contrast to conventional machine learning methods, “deep learning”–the application of 

multi-layered artificial neural networks to learning tasks–can discover useful features 

independently, avoiding biases introduced by human-engineered features(1). Deep learning 

methods have repeatedly outperformed state-of-the-art “shallow” machine learning algorithms, 

such as support vector machines (SVM) and logistic regression, as approaches to biological 

problems in recent years. Multiple bioinformatics applications of deep convolutional neural 

networks (CNNs) have been published(2-4); however, while CNNs adeptly learn spatial 

information, recurrent neural networks (RNNs) are better suited for learning sequential patterns 

because of their serialized structure and ability to handle variable-length inputs(1). Following the 

success of RNN-based approaches in the fields of natural language and music(5), researchers 

have only recently begun to apply RNNs to biological problems(6-10). While basic RNNs are 

challenged by most biologically-relevant input sequence lengths due to the “vanishing gradient 

problem,” a difficulty encountered during training due to the multiplication of many small terms 

when computing the gradient of an error function by the chain rule (11), several recent 

adaptations addressed this issue. Among the most popular of these modified RNNs are long-

short-term-memory (LSTM) RNNs (12) and gated recurrent unit (GRU) RNNs (13), which 

manage memory to improve the learning of long-range dependencies. Recent studies 

demonstrated superior performance of GRUs compared to LSTMs for bioinformatics tasks(7,14). 

We report the successful implementation of a GRU network to accurately predict protein-coding 

potential of complete, variable-length transcripts (Fig. 1). Our method, “mRNA RNN” (mRNN), 
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not only outperforms existing state-of-the-art classifiers, but also learns complex biological rules 

in the process.  

 

Results 

The best resulting mRNN model after training selected by accuracy on the validation set is 

referred to hereafter as “mRNN”. We also implemented an ensemble testing method called 

“mRNN ensemble,” which uses the weighted average of the five best mRNN models. For 

comparison, we used the same test set to assess performance of two non-comparative classifiers 

considered to be state-of-the-art in speed and performance: CPAT(15) and FEELnc(16). While 

mRNN matched or outperformed CPAT and FEELnc on the test set, the mRNN ensemble 

method showed significant improvements in performance over these methods in accuracy, 

specificity, and other metrics (Fig. 2A). We also compared the classifiers using a set of more 

challenging transcripts, including 500 mRNAs with short ORFs (≤ 50 codons), and 500 lncRNAs 

with long (untranslated) ORFs (≥ 50 codons) (Fig. 2B). Both mRNN and mRNN ensemble 

methods significantly outperformed CPAT and FEELnc in all metrics on this challenge set. 

Notably, CPAT and FEELnc showed low sensitivity (62.2% and 67.8% respectively), indicating 

a bias against classification of mRNAs with short ORFs as protein-coding, while mRNN 

ensemble achieved a sensitivity of 78.6%, demonstrating its superior predictive power for these 

atypical transcripts. 

We next evaluated all models on a randomly selected test set from mouse GENCODE 

transcripts consisting of 500 mRNAs and 500 lncRNAs. For each method, we trained on the 

same human training set, and tested on mouse. The mRNN ensemble and mRNN classifiers had 

the highest accuracy and specificity, showing that they can be used for classification of long 

RNAs in a new transcriptome (Fig. 2C).  

To begin deducing what mRNN learned, we conducted sequence perturbation analyses 

(Supplementary Methods). Score changes for sequences with shuffled coding sequence (CDS) 

regions compared to those with shuffled 3’ or 5’ untranslated regions (UTRs) demonstrate that 

mRNN primarily utilizes organized sequence information in the CDS (Fig. S6). We next 

conducted a point-mutation analysis to evaluate changes in score resulting from every possible 

single-nucleotide substitution for all GENCODE mRNA transcripts under 2,000 nt in length 

(Fig. 3). The annotated start codon marked a clear boundary, with low score changes preceding it 
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and strong changes following it, indicating that sequence perturbations early in the CDS erase 

more predictive information than perturbations in the 5’ UTR. In contrast, score changes around 

non-start AUGs in the 5’ UTR were more symmetric before and after the AUG, and significantly 

lower on average. Strikingly, the pattern of average score changes in the true CDS exhibited 

three-nucleotide periodicity with a persistent aversion to mutations that made codons more 

similar to in-frame stop codons. This pattern was not observed upstream of the annotated start 

codon (5’ UTR), nor in the regions flanking either AUGs in the 5’ UTR or control CUGs (Fig. 

S7). An aversion to stop codon-like trinucleotides was also observed preceding, but not 

following, annotated stop codons, suggesting that mRNN recognizes the end of the CDS. This 

pattern was not observed in regions preceding UGA/UAA/UAG trinucleotides in the 3’ UTR. 

Notably, mutation of the annotated stop codon significantly increased the coding potential score, 

showing that mRNN displays a preference for longer ORFs. 

 To evaluate whether mRNN learned relationships between distinct features, we 

performed pairwise-mutations of the transcript SPANXB1, a cancer/testis-specific antigen. This 

transcript is relatively short (under 500 nt) and has both 5’ and 3’ UTRs. The coding score for 

this transcript starts an upward trajectory within the CDS (Fig. 4A). We examined this transcript 

by altering every possible combination of two nucleotides within the sequence. We define 

Δ𝑆#$%(𝑖, 𝑗) as the minimum of the difference between the coding score change resulting from 

mutations at two positions 𝑖 and 𝑗 and the sum of score changes associated with the individual 

mutations. Therefore, Δ𝑆#$%(𝑖, 𝑗) quantifies the “score change synergy” of the pair of mutations, 

and is strongly negative for highly related positions. We identified several pairs of synergistic 

mutations, including a point mutation that changed an AAC codon to AAA and another that 

changed an AAG codon to UAG, which, when combined, resulted in a score change 6.8 times 

the sum of the individual score changes (Fig. 4B). In other examples, we identified 

compensatory changes, such as a decrease in score from a nonsense mutation that was 

significantly diminished when another mutation changed a UGU codon to UAU (Fig. 4C). In 

both cases described, the two mutated positions are located within the coding score spike, despite 

being separated by 18 and 29 bases, respectively. The fact that some mutations can exacerbate or 

compensate for the effect of ORF-truncating mutations on mRNN’s output demonstrates that 

mRNN learned complex and long-range sequence information dependencies. 
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To visualize mRNN’s decision-making process, we defined a coding trajectory 𝑆+,-%.(𝑖) as 

the score of the truncated sequence from 1 to 𝑖 for transcripts in the human test set (Fig. 5A). 

Remarkably, we found several examples of mRNAs with long 5’ UTRs that mRNN classified as 

coding only after observing the CDS more than 4,000 nt from the transcript start (Fig. S8A-D). 

Thus, mRNN remains sensitive to information toward the end of transcripts longer than 

sequences previously used in any bioinformatics RNN applications that we are aware of, despite 

being trained only on sequences shorter than 1,000 nucleotides long. 

To identify regions of the sequence that most strongly impact mRNN’s decision, we 

performed unweighted sliding-average smoothing of the coding potential trajectories, then 

computed the change in score D𝑆+,-%. 𝑖  across the sequence for a window 𝑤 of 50 nucleotides 

(Fig. 5B). Statistically significant spikes (Fig. S9) were identified in 412 of the 500 test mRNAs, 

and in only 47 of the 500 lncRNAs. The distribution of the spike positions for mRNAs peaked 

within the CDS, shortly after the start codon (Fig. 5C, Fig. S10, and S11A-B).  

To identify the sequence elements associated with significant spikes in coding potential 

score, we compared the frequency of in-frame codons in a 50-nt window centered at the spike to 

codon frequencies in the 50-nt window preceding the spike. We found 11 significantly enriched 

codons using a t-test and an FDR of 0.05 (Fig. 5D, Table S1); we named these translation-

indicating codons (TICs). 9 of the 11 TICs were also significantly enriched in spike regions of an 

independent set of mRNAs with long 5’ UTRs (Fig. S11C). Notably, two codons in the 

synergistic and compensatory pairwise mutation examples above (AAC and UAU) are TICs.  

To assess the predictive power of TICs, we defined a TIC-score as the maximum number of 

TICs occurring within 1000 nt downstream of an in-frame AUG, and preceding the first in-frame 

stop codon. This TIC-score was able to accurately predict coding potential in the test set with an 

AUROC of 0.942, just below that of CPAT at 0.957 (Fig. 5E). The same rule distinguished 

mRNAs from lncRNAs in the full GENCODE datasets with an AUROC of 0.931 for human and 

0.935 for mouse. We next computed the reduction in the spike magnitude—the change in 

D𝑆+,-%. 𝑖 —resulting from the mutation of a given TIC codon in silico. Mutation of TICs 

resulted in spike height decreases 94.7% of the time, while mutations to the least enriched 

codons in the spike regions decreased spike height only 59.9% of the time (Fig. 5F, S12), 

demonstrating that TICs are an important part of mRNN’s classification process. Of note, we 

also identified a frame-biased, 12-mer motif enriched in spike regions, but it possessed lower 
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predictive power than the TICs (Fig. S13, Table S2-3). Strikingly, the TICs are among the 

codons most enriched in GENCODE CDSs relative to UTRs and out-of-frame triplets, 

demonstrating that mRNN learned the complex sequence context that gives these codons 

predictive power (Fig. S14).  

 

Discussion 

In this study, we have shown that GRU networks can successfully model full-length human 

transcripts. Previous bioinformatics applications of RNNs restricted input sequence length to 

2,000 nt or fewer by one of three strategies: filtering the dataset on a length threshold(17), 

dividing input sequences into segments of a fixed size(18,19), or truncating input sequences(20). 

However, one important advantage that deep RNNs have over other deep learning methods is the 

ability to interpret context and long-range information dependencies. In order to exploit the full 

power of our GRU network, we did not truncate or segment our training sequences, and we did 

not constrain our test set inputs by sequence length in any way. Our test inputs included 222 

mRNAs longer than 2,000 nucleotides, and our model showed no impairment in classifying even 

the longest sequences, which exceeded 100,000 nucleotides.  

Despite mRNN’s featureless architecture, which precluded it from integrating human 

knowledge of mRNA structure into its learning process, mRNN was able to learn true defining 

features of mRNAs, including trinucleotide patterns and depletion of in-frame stop codons after 

the start of an open-reading frame. Furthermore, the recurrent nature of mRNN enabled it to 

leverage long-range information dependencies for classification, as evidenced by pairwise 

mutation analysis. In addition to surpassing state-of-the-art accuracy in assessment of transcript 

coding potential, we demonstrate that the “black-box” GRU network can be harnessed for 

identifying specific biological attributes, such as the translation-indicating codons (TICs), that 

distinguish sequence classes. We anticipate that GRU-based approaches will be highly useful for 

future bioinformatics classification tasks, as well as for unlocking hidden biological insights in 

the vast amounts of available sequencing data.  

 

Materials and Methods 
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For training, we provided mRNN with a dataset containing full-length human transcript 

sequences labeled as mRNAs or lncRNAs. All training and test sets were selected from 

GENCODE Release 25(21). We evaluated mRNN’s performance using a test set—an unbiased 

random sample of human transcripts composed of 500 mRNAs and 500 lncRNAs selected from 

the full GENCODE annotation. Similarly, we selected a validation set for hyper-parameter 

tuning and model selection (Fig. S1-3) equal in size to the test set. No length limit or other filter 

was imposed on sequences in the test or validation sets.  

To reduce computation time and to prevent the learning of transcript length as a feature, we 

imposed constraints on the training set sequence length for mRNN. After selecting the test and 

validation set transcripts, we selected 16,000 mRNAs and 16,000 lncRNAs from the remaining 

sequences between 200 and 1000 nt long as our training set. We used a combination of “data 

augmentation,” in which we pre-train models on mutated copies of the training set, and “early 

stopping,” which exits training if loss on the training set decreases while validation loss does not; 

both of these strategies help prevent over-fitting during training. Model parameters were selected 

based on validation loss during hyper-parameter tuning. We used embedding vectors to represent 

each nucleotide because this yielded higher validation accuracy than did one-hot encoding when 

using ensemble testing for the RNN library, Passage. We also used dropout, which randomly sets 

network inputs to zero in Passage’s GRU implementation, because it improved validation 

accuracy with embedding. No length restrictions were imposed on sequences in the training set 

for CPAT and FEELnc, giving these classifiers substantially more training data than mRNN. For 

detailed methods see Supplementary Methods. 

 

Software availability  
 
Source code implementing data preprocessing, training, and downstream analysis is available in 
the package mRNN from http://github.com/hendrixlab/mRNN.  
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Figure 1. mRNN Output and Model Schematic 
Coding probability and coding potential score is shown at nucleotide-level resolution for the 
transcript ENST00000371732.9, which encodes caspase recruitment domain family member 9. 
Values at position 𝑖 correspond to the mRNN coding probability or 𝑆+,-%.(𝑖), the mRNN output 
for the truncated sequence from 1 to 𝑖. Vertical dashed lines demarcate the annotated start and 
end of the CDS. A schematic of the gated recurrent neural network is shown below. Equilateral 
triangles signify reset gates, and the height of the grey fill represents the proportional 
contribution of the previous hidden state (ℎ+12) to the new candidate hidden state (ℎ+). The 
update gate is shown as two circles representing the proportional contributions of the previous 
hidden state (ℎ+12) and the new candidate hidden state (ℎ+) to the new hidden state (ℎ+). Arrows 
represent matrix products. The embedding layer maps nucleotides to 128-dimnensional vectors. 
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Figure 2. Comparison of Classifier Performance 
(A-C) Performance of four classifiers trained with human transcript sequences. Error bars are 
95% confidence intervals computed from 100,000 bootstrap trials. Asterisks above mRNN or 
ensemble mRNN indicate the method’s improvement over both CPAT and FEELnc with an 
empirical p-value less than 0.05 computed from the bootstrap trials. (A) Performance on human 
test set transcripts, consisting of 500 mRNAs and 500 lncRNAs. (B) Performance on human 
challenge set transcripts, including 500 mRNAs with ORFs < 50 codons and 500 lncRNAs with 
ORFs > 50 codons. (C) Performance on a test set of mouse transcripts, including 500 mRNAs 
and 500 lncRNAs, using models trained with human data.  
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Figure 3. Transcript Point Mutation Maps. 
Heat maps representing the average change in score for point mutations at positions relative to 
the following elements (from top to bottom): annotated start codons, AUGs in 5’ UTRs, 
annotated stop codons, and UGA/UAA/UAGs in 3’ UTRs. Sequence logos present the 
nucleotide composition of the sequences analyzed around the same windows. Asterisks represent 
cells that are statistically significant at an FDR of 0.0001 using a two-tailed t-test comparing 
score changes from mutations at a given position to all score changes from mutations of the same 
base in the corresponding background region. Background regions are 5’ UTRs for the start 
codons and AUGs, or 3’ UTRs for the stop codons and UGA/UAA/UAGs.  
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Figure 4. Pair-wise mutation analysis. 
(A) The mRNN coding trajectory (as in Fig. 1), for ENST00000449283.1, a transcript encoding 
SPANX1. (B) Pair-wise mutation heat map of synergistic score changes for the same transcript. 
Values are the score change synergy for a pair of mutated bases at positions 𝑖 and 𝑗, where 𝑖 < 𝑗. 
Score change synergy is the minimum difference between the resulting change in score when the 
pair of bases is mutated and the sum of the score changes from individual mutations of each base 
in the pair. (C) Pair-wise mutation heat map of compensatory score changes for the same 
transcript. Values are the compensatory score change for a pair of mutated bases at positions 𝑖 
and 𝑗, where 𝑖 < 𝑗. Compensatory score change is the maximum difference between the resulting 
change in score when the pair of bases is mutated and the sum of the score changes from 
individual mutations of each base in the pair. (B-C) Bottom-right of each heat map shows a 
zoomed-in view of a position pair with a highly compensatory or synergistic score change. Each 
line spanning three nucleotides represents a codon. 
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Figure 5. Model Interrogation for Feature Discovery. 
(A) mRNN coding score trajectories without smoothing for each transcript in the test set. Blue, 
protein-coding; red, noncoding. Bold lines represent average coding probability when 5 or more 
transcripts had lengths at of least 𝑖 nt. (B) Coding score trajectory for transcript 
ENST00000458629.1, which encodes C-X-C motif chemokine receptor 6. Vertical dashed lines 
mark CDS boundaries. (C) Histogram of significant spike locations in test set mRNAs relative to 
true CDS start positions. (D) Scatterplot showing codons enriched in the spike regions (+/- 25 nt 
around most significant spike position) compared to 50-nt regions upstream of the spikes. The x-
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axis is the frequency of each codon in the full set of GENCODE annotated coding regions. The 
y-axis represents the frequency of the codon in the indicated region. Each pair of points 
represents a codon. Large, labeled points are translation-indicating codons (TICs)—codons 
statistically enriched (FDR 0.05) in spike regions compared to the regions upstream of spikes. 
The dashed line corresponds to global codon frequency, and the blue band is the range of 
standard error computed from a binomial model.  
(E) Receiver operator characteristic analysis for five prediction methods including our mRNN 
ensemble, the best single mRNN model, FEELnc, CPAT, and TIC frequency. TIC frequency is 
the number of occurrences of TICs within 1000 nt of, and in-frame with, an upstream AUG, but 
not after an in-frame UGA/UAA/UAG. AUROC values for each method are presented in the 
legend. (F) mRNN coding score changes resulting from in silico TIC mutations. While the 
majority of mutations to TICs lead to a decrease in coding score, mutations to control codons 
(the codons least enriched in the spike regions) result in smaller score changes on average. 
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