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Abstract: 

Significant improvements in automated image analysis have been achieved over the recent 

years and tools are now increasingly being used in computer-assisted syndromology. However, 

the recognizability of the facial gestalt might depend on the syndrome and may also be 

confounded by severity of phenotype, size of available training sets, ethnicity, age, and sex. 

Therefore, benchmarking and comparing the performance of deep-learned classification 

processes is inherently difficult.     

For a systematic analysis of these influencing factors we chose the lysosomal storage diseases 

Mucolipidosis as well as Mucopolysaccharidosis type I and II, that are known for their wide 

and overlapping phenotypic spectra. For a dysmorphic comparison we used Smith-Lemli-Opitz 

syndrome as a metabolic disease and Nicolaides-Baraitser syndrome as another disorder that 

is also characterized by coarse facies. A classifier that was trained on these five cohorts, 

comprising 288 patients in total, achieved a mean accuracy of 62%. 

The performance of automated image analysis is not only significantly higher than randomly 

expected but also better than in previous approaches. In part this might be explained by our 
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large training sets. We therefore set up a simulation pipeline that is suited to analyze the effect 

of different potential confounders, such as cohort size, age, sex, or ethnic background on the 

recognizability of phenotypes. We found that the true positive rate increases for all analyzed 

disorders for growing cohorts (n=[10...40]) while ethnicity and sex have no significant 

influence.   

The dynamics of the accuracies strongly suggest that the maximum recognizability is a 

phenotype-specific value, that hasn’t been reached yet for any of the studied disorders. This 

should also be a motivation to further intensify data sharing efforts, as computer-assisted 

syndrome classification can still be improved by enlarging the available training sets. 

  

Availability:   

software for classification: https://app.face2gene.com/research,   
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Introduction  

In syndromology the information content of the facial gestalt is so extraordinarily high that 

several groups have worked on automated image analysis which assists in the diagnostic work-

up. Especially recent advances in computer vision improved pattern recognition on facial 

photos of syndromic patients (1-3). These approaches also have the potential to quantify the 

similarities of patients to any specific syndrome and to decide on a statistical basis whether two 

phenotypes are different (1, 4-7). 

Face2Gene (FDNA Inc., Boston MA, USA) is a set of applications for pattern recognition in 

frontal photographs based on a neural network and crowd sourced medical data. It is available 

online (https://face2gene.com) and is used by a growing number of medical professionals. The 

CLINIC application of Face2Gene suggests differential diagnoses (DDx) for a patient based 

on frontal photos and phenotypic features annotated by the clinician. Whenever a diagnosis has 

been confirmed, the extracted de-identified information of the case is used to update the 

multiclass syndrome models and to improve predictions on similar cases in the future.  

While Face2Gene CLINIC makes the latest classification models available that were trained 

on the entire set of suitable cases, a recently launched application, referred to as RESEARCH, 

that allows working with FDNA technology in a controllable environment. This app can be 

used to learn the facial gestalts of different cohorts that share for example disease-causing 

mutations in the same gene or pathway. The results of an experiment are gestalt models suitable 

for binary and multi-class comparisons. The true positive rates (TPRs) as well as the error rates 

of the multi-class problem are reported in a confusion matrix, whereas the pairwise comparison 

of cohorts are evaluated as receiver operating characteristics (ROC) curves. 

Whenever the accuracies achieved by the gestalt models in the classification of photographs 

are higher than randomly expected, we conclude in this study that there is a recognizable facial 

pattern in a cohort. The possibility of a classifier to distinguish phenotypes is referred to as 

recognizability and if we quantify it, the phenotype of the controls matters as well. Especially 

when phenotypes of the same molecular subgroup, such as lysosomal storage diseases (LSDs), 

are studied, recognizability also means that a clinical entity can be delineated based on the 

facial gestalt. While this delineation of syndromic phenotypes has been reserved to few experts 

in the field, computer-assisted pattern recognition now objectifies this process and makes it 

even quantifiable. 
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However, it is self-explanatory that the extent of recognizability will not only depend on the 

”disease-phenotype“ itself, but also on additional factors in the set-up of the studied cohorts. A 

systematic analysis of these potential confounders is a main aspect of this work.      

Patients and Methods 

We analyzed the accuracy of gestalt models of the FDNA technology for a subset of disorders 

that have high phenotypic variability on the one hand and show a considerable phenotypic 

overlap on the other hand. We therefore selected Mucopolysaccharidoses (MPS I and II), which 

are inherited LSDs, resulting from mutations in enzymes catalyzing the breakdown of GAGs 

(8). Hardly any symptoms are present at birth, but appear usually during early childhood and 

progress in severity during adolescence (9). Most frequent features are abnormal bone 

size/shape including disproportionate short stature, contractures, intellectual disability and 

hearing loss (10). A coarse facial appearance, caused by progressive GAG deposition in the 

soft tissue, is of particular value for the establishment of the correct diagnosis (11). Important 

for our analysis was also that many cases of MPS have been published, due to its relatively 

high prevalence, and that the clinical diagnosis is easily confirmed by measuring enzyme 

activity or gene testing (12). MPS I, which is caused by mutations in alpha-L-iduronidase 

(IDUA), is clinically divided according to the severity of the symptoms into three subtypes: 

Hurler, Scheie, and Hurler-Scheie. MPS II, which is also referred to as Hunter syndrome, is 

caused by pathogenic mutations in the X-linked iduronate 2-sulfatase (I2S) and has high 

phenotypic similarity with MPS I. Both gene products are involved in similar processes in 

lysosomes where they catalyze the degradation of heparan sulfate and dermatan sulfate (11, 

13). MPS I and II are still life-threatening diseases leading to a premature death and high 

morbidity (14, 15). However, for a few years enzyme replacement therapies are now available 

that have also been shown to attenuate the phenotypic features (16-19).  

Another group of disease entities belonging to the lysosomal storage disorders are the different 

types of mucolipidosis (ML).  In this work we focused on patients with pathogenic mutations 

in the alpha and beta subunits of N-acetyl-glucosamine-1-phosphotranseferase gene 

(GNPTAB). These subunits are part of a heterohexameric complex that catalyzes the first step 

of the synthesis of mannose-6-phosphat-recognition markers in the Golgi apparatus, which is 

a crucial step for correct trafficking of lysosomal enzymes (8). 
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Hurler-like face 

ML and MPS share common features, such as a coarsening of the face, organomegaly, skeletal 

malformations, and developmental delay, making them mutual DDx. Especially the facial 

gestalt of MPS and ML may be so similar that it is hard to tell the diseases apart without 

enzymatic or genetic testing, making them challenging choices for binary classification via 

computer vision.  

We also added patients with Smith-Lemli-Opitz syndrome (SLOS) as another metabolic 

disorder and Nicolaides-Baraitser syndrome (NCBRS) as another disease phenotype that is also 

characterized by coarse facial features, in order to make the diagnostic workup more realistic. 

From a classification point of view, we are now dealing with a five-class problem. 

The original sample set of 289 clinically diagnosed patients with MPS I, II, ML, SLOS, or 

NCBRS is based on case reports from the literature (for references see supplemental material). 

We conducted a literature search on PUBMED with the disease names and “case report” as 

search terms and looked for patient examples in textbooks. In addition to the patients’ photos, 

that were the basis for the automatized image analysis, we annotated the age, when the photo 

was taken and the presumed the ethnic background. For the analysis of the influence of ethnic 

background we also included the Down syndrome (DS) cases studied by Lumaka et al. If 

available, the disease-causing mutations were recorded in HGVS nomenclature and the 

phenotypic features were annotated in HPO terminology. A summary of the analyzed samples 

is shown in Figure 1. The entire case-based data collection is part of a larger knowledge base, 

called deep phenotyping for deep learning, DPDL, that can be accessed upon request and that 

serves as a set for benchmarking of computer-assisted image analysis.  

Cohorts for the phenotypic comparison were based on the clinical or molecular diagnosis and 

all experiments were run in Face2Gene’s RESEARCH application (version 17.6.2), which is 

accessible to its registered users.  

The performance on subsets was evaluated by random down-sampling. A customized 

framework including the python requests library v2.18.4 was used to automatize the repetition 

of experiments and the TPRs of the resulting confusion matrices were averaged over 5 

iterations for each setting. The scripts for the simulations are available on request and can be 

used to reproduce the results. 

The potential cofounders of the technology that we choose to analyze in this work were cohort 

size, ethnic background and sex. The influence of the cohort size was analyzed by incrementing 

evenly sized subsets from 10 to 40. The change of the performance was fitted to a linear model 
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and analyzed for significance using linregress of the SciPy library. The other potential 

cofounders ethnic background and sex were analyzed by excluding cohort size as a covariate. 

For these experiments, we sampled each cohort down to the greatest common size for each 

potential confounder. The greatest common size for the potential confounder male sex would 

e.g. be 20, because  there are only 20 male patients with MPS I in our original sample set (see 

Figure 1). By this means cohort size has no influence on the performance and allowed an 

analysis of the potential confounders sex and ethnicity. Matthews correlation coefficient 

(MCC) is a measure of the quality of a two-class classification. Therefore, we reduced the 

multiclass confusion matrix to a two-class matrix for every diagnosis. Then we calculated the 

mean MCC for all iterations of the same experiment. If the difference of the MCCs of the 

potential confounder and control experiments was within the range of two standard deviations 

of the MCCs of the control experiments, we regarded the variable as not having a significant 

effect on the analyzed disease. 

 

Figure 1. Overview of the original sample set with sex ratios (male/female/sex not 
mentioned) and ethnic backgrounds of European (left) vs. Non-European (right). 

Results  

Classification of the original sample set in Face2Gene CLINIC and 

RESEARCH

In Face2Gene CLINIC 30 possible differential diagnoses (DDx) are listed by default per case. 

If only a frontal facial photograph is uploaded and no further clinical features are annotated, 
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these DDx represent syndromes that achieved the highest gestalt scores in the image analysis. 

Figure 2 shows the frequency of the five diagnoses in the study cohort among these 30 

suggested diagnoses at the time of this study. MPS I and MPS II were combined in Face2Gene 

CLINIC under the phenotypic series of MPS. The right diagnosis was detected in most of the 

cases in all cohorts. As expected from the clinical description of the diseases, MPS and ML are 

both listed as possible differential diagnoses in more than half of the cases. SLOS and NCBRS 

occur in at least 13% of the cases as DDx among the 30 top-ranked diagnoses, which is also 

more than randomly expected given the fact that there are several hundreds of syndromes to 

choose from. 

 

 
Figure 2. Frequency of occurence of the five disorders as differential diagnoses in the top 30 
ranks in Face2Gene CLINIC, based on gestalt scores. MPS and ML often appear both as 
DDx, whereas they show up less frequently in SLOS and NCBRS. 
While the patient data that was used for modeling the different phenotypes in Face2Gene 

CLINIC, is not directly accessible, Face2Gene RESEARCH allows in silico experiments with 

user defined cohorts. The resulting confusion matrix for the original sample set is shown in 

Figure 3 as a heat map. The stronger the field is colored, the higher is the TPR or FPR. The 

TPRs are higher than the FPRs for all cohorts, even  for ML, MPS I and MPS II that are more 

frequently called as mutual false positives than as false positives of NCBRS or SLOS. Based 

on the similarity of the values in the columns, we calculated a dendrogram. The three lysosomal 

storage disorders MPS I, MPS II, and ML are more difficult to distinguish, as indicated by 

higher error rates in this cluster.  Notably, the clustering of the five tested syndromes fits with 

their traditional clinical classification. 
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Figure 3. The performance of the gestalt-model in the multi-class problem in Face2Gene 

RESEARCH is shown as a color-coded confusion matrix, where deep red corresponds to a high 

value. True positive rates (TPR)are on the diagonal and false negatives and positives rates 

aside. The whole classification process achieves an accuracy of 62 %, which is significantly 

better than randomly expected (28 %). Photos on top show the average appearance of the 

disorder (mask) based on all cases of the respective cohort. The dendrogram is the result of 

the clustering analysis and visualizes the similarity of the disorders.  
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Influence of growing cohort size on TPR 

To analyze the influence of cohort size on the performance of the classification process, we 

increased the number of individuals per group stepwise from 10 to 40. TPRs with cohorts of 

only ten individuals were already higher than randomly expected and increased for all 

phenotypes with a growing cohort size, while the standard deviation decreased (Figure 4). The 

dynamics of the TPRs were fitted to a linear function and indicate that the full potential of 

computer-assisted classification hasn’t been reached yet with the available image data. 

However, we hypothesize that the number of images needed to reach the maximum 

recognizability could be different for each syndrome and might depend on the clinical 

variability of the phenotype. The TPRs of NCBRS and SLOS are the highest in comparison 

with the other cohorts. The lysosomal storage diseases are more frequently misclassified among 

each other than as SLOS or NCBRS. Notably, the MPS I-TPR nearly equals the fraction of 

MPS I cases falsely classified as MPS II., It is noteworthy, that ML is falsely classified to 

SLOS in around 14% and vice versa. 

 

 
Figure 4: (A) Confusion matrix with TPRs and FPRs with a cohort size of n=40. (B) Course of 

TPRs with increasing cohort size with linear regression. The performance of the classification 

process was evaluated for equally sized cohorts from n=10 to n=40. The true positive rates for 

the prediction of the disorder improve with increasing cohort size and seem to approach 

different limits, indicating a difference in relative recognizability. Especially the prediction of 
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SLOS and NCBRS benefit, when the classifier is trained on more cases. The inference of the 

correct lipid storage disorder increases less for larger cohort sizes. 

 

Effect of ethnic background or sex on performance 
We hypothesized, that a bias in the set up of the cohorts with respect to the ethnic background 

or the sex, might affect the performance. In general, the performance should drop, if a true 

confounder is removed. If the performance increases instead after splitting up cohorts, this in 

an indicator that there is some characteristic feature, that can be more efficiently learned in a 

more homogeneous group of patients.  

Lumaka et al. discussed in their study that certain features of Down syndrome, such as a deep 

nasal bridge and thick upper lips are less prominent in individuals of African descent. We 

adjusted for the same cohort size (n=19) and computed the MCCs that could be achieved in the 

classification of DS patients from Sub-Saharan Africa or Central Europe (table 1). 

Interestingly, we observed a substantially better performance for the DS model that was trained 

on the same ethnic background compared to a mixed setup of the cohorts (∆MCC/STD for 

AFR vs. Mixed: 3.75 and ∆MCC/STD for CEU vs. Mixed: 2.70). This finding supports the 

hypothesis of a slightly different facial appearance of DS in Europeans and Africans.   

In contrast to DS, we did not observe such marked differences in the MCCs for MPS I, MPS 

II, ML, SLOS, and NCBRS, when running the experiments for n=22 cohorts that consisted 

only of European patients. An analysis for another background in these disorders was not 

possible due to a lack of sufficient patients.   

Another potential confounder in the five-class problem of MPS I, MPS II, ML, SLOS, and 

NCBRS that we analyzed is sex. All but two of the MPS II patients were male, whereas the sex 

ratios for the other disorders were close to 1. To exclude cohort size as a covariate, we sampled 

down to n=20 in these experiments. Interestingly, the MCC for the MPS II classification did 

not decrease, when also all other cohorts consisted of male patients only. This indicates that a 

bias in the sex ratios does not affect the performance of the classification process substantially 

for the tested syndromes.  
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  pt. 
confounder DS pt. 

confounder ML MPS I MPS II SLOS NCBRS 

∆ΜCC 
STD 

CEU vs 
mixed: 2.7 CEU vs 

mixed: -0.7 1.53 -0.29 0.31 0.77 

AFR vs 
mixed: 3.75 male vs 

mixed: 0.14 0.13 1.17 1.84 1.12 

 Table 1: The classification of DS is more accurate on only European or African patients. These 
marked differences cannot be observed for ML, MPS I, MPS II, SLOS, and NCBRS. Also the 
restriction to only male patients has only a minor effect on the performance. The difference of 
MCCs for the binary classification of every disease was normalized by the standard deviations 
of MCCs that were computed in the mixed controls.  
 

Discussion  

General Recognizability 

The TPRs that were achieved for all disorders in the five-class problems were higher than 

expected by random chance. Thus, our results show that the FDNA technology is capable of 

delineating gestalt differences even clinically similar phenotypes. This finding is especially 

remarkable for the phenotypes of MPS and ML and is also supported by high AUROC values 

in binary classifications (suppl. Fig. 1).   

The difference in TPRs for the syndromes could be interpreted as different recognizabilities. 

Notably, SLOS and NCBRS are more recognizable than MPS I, MPS II, and ML. This 

corresponds to the results from the CLINIC app, where ML shows better ranks as a differential 

diagnosis for MPS and vice versa. These findings are in agreement with geneticist expert 

opinion, who label ML as highly similar to MPS.  

The high TPRs found in our analyses corresponds to the results of two other studies on 

phenotypes of molecular pathway disorders. For Noonan syndrome as well as for GPI-anchor 

deficiencies, significant phenotypic substructures could be detected. This argues in favor of a 

more fine-grained phenotype modelling that might also be included in the CLINIC app 

prospectively.   

 

Ethnicity 

MPS I could be more effectively differentiated from MPS II when cohorts were restricted to 

the same ethnic background. A possible explanation for this slight increase in performance 
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might be, that there are certain features that are restricted or more prominent in European 

patients and that might therefore be learned more effectively if more cases are used for training 

the model. This issue has already been discussed for other disorders such as Fragile-X 

syndrome and Down syndrome were ethnic specific differences in the feature presentation are 

known (7, 20). Although we could replicate these effects for DS, we did not see a prominent 

change in the performance in the other phenotypes, which indicates that that ethnic background 

is not a strong confounder in the classification process. 

 

Sex  

The human face shows a sexual dimorphism, possibly even at an early age, making sex a 

potential confounder in any facial image analysis process (21). The classification accuracies in 

our experiments that were based on data sets adjusted to individuals of the same sex, did not 

significantly differ, suggesting that the classification method is robust to sex as a confounder. 

Also the mean MCCs showed no significant change when training the classifier on only male 

individuals as compared to a training cohort consisting of both sexes. Our interpretation is that 

sex does not confound the classification of MPS I, MPS II, ML, SLOS, and NCBRS.  

 

Benchmarking 

We are just beginning to understand the potential of computer assisted image analysis in the 

field of syndromology. In this work we have presented a general approach to study the 

recognizability of a phenotype and to test the confounding effect of variables such as ethnicity 

or sex. We have applied this framework to a selection of metabolic disorders, however, it is 

applicable to any other disorders. 

It would be most interesting to compare the performance of the FDNA technology to the 

accuracies of other, previously published approaches of an automated image analysis of 

syndromic patients. Comparative evaluation, however, is impeded by the lack of a publicly 

available data set for benchmarking. Earlier benchmarking approaches merely relied on the 

comparison to a human classification performance. To achieve an objective evaluation 

computer vision, we strongly advocate to build a resource for image data of molecularly 

confirmed syndromic cases.   
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