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ABSTRACT 

Organisms respond to changes in their environment through transcriptional regulatory networks (TRNs). The regulatory hierarchy of 
these networks can be inferred from expression data. Computational approaches to identify TRNs can be applied in any species where 

quality RNA can be acquired, However, ChIP-Seq and similar validation methods are challenging to employ in non-model species. 

Improving the accuracy of computational inference methods can significantly reduce the cost and time of subsequent validation 
experiments.  We have developed ExRANGES, an approach that improves the ability to computationally infer TRN from time series 

expression data.  ExRANGES utilizes both the rate of change in expression and the absolute expression level to identify TRN connections. 
We evaluated ExRANGES in five data sets from different model systems. ExRANGES improved the identification of experimentally 

validated transcription factor targets for all species tested, even in unevenly spaced and sparse data sets.  This improved ability to 
predict known regulator-target relationships enhances the utility of network inference approaches in non-model species where 
experimental validation is challenging. We integrated ExRANGES with two different network construction approaches and it has been 

implemented as an R package available here: http://github.com/DohertyLab/ExRANGES. To install the package 
type: devtools::install_github("DohertyLab/ExRANGES") 
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Introduction 

Transcriptional regulatory networks (TRN) provide a framework for understanding how signals propagate through 

a molecular network and result in transcriptomic changes. These regulatory networks are biological computational 

modules that carry out decision-making processes and, in many cases, determine the ultimate response of an organism to 

a stimulus 1. Understanding these regulatory networks provides access points to modulate these responses through 

breeding or genetic modifications.  The first step in constructing such networks is to identify the primary relationships 

between regulators such as transcription factors (TFs) and the target genes they control. 

Experimental approaches such as Chromatin Immunoprecipitation followed by sequencing (ChIP-Seq) can identify 

direct targets of transcriptional regulators.  However, ChIP-Seq must be optimized to each specific TF and antibodies must 

be developed that recognize either the native TF or a tagged version of the protein.  This can present a technical challenge 

particularly for TFs where the tag interferes with function, for species that are not easily transformable, or for tissues that 

are limited in availability 2. Since global transcript levels are comparatively easy to measure in most species and tissues, 

several approaches have been developed to identify connections between regulators and their targets by examining the 

changes in transcription levels across many samples 3–6. These inferred approaches can provide a first approximation of 

regulatory interactions that can be used to guide experimental approaches. The assumption of these approaches is that 

the regulatory relationship between a regulator TF and its targets can be discerned from a correspondence between the 

RNA levels of the regulator gene and its targets.  If this is true, then given sufficient variation in expression, the targets of a 

given factor can be predicted based on associated changes in expression.  Initial approaches designed to do this focused on 

the correlation between regulators and targets, assuming that activators are positively correlated and repressors are 

negatively correlated with their target expression levels 7. For almost two decades, these approaches successfully 

identified relationships between regulators and targets.  Updates to this simple idea have included pre-clustering of 

transcript data, modifying regression analysis, incorporating training classifier models, and incorporating prior biological 

knowledge or additional experimental data. Each of these has improved the ability to identify connections between 

regulators and targets, even in sparse and noisy data sets 4–6,8–11. For microorganisms, substantial experimental data 

identifying TF binding locations and the transcriptional response to TF deletions is available and has been organized into 

efficient databases 12–14.  This approach has enabled the prediction of TRN from expression data not only in unique 

conditions in the model species where the data was generated, but has also been extended to predict TF-target gene 

relationships in homologous species 15–19.  In 2010, the DREAM5 challenge evaluated the ability of different methods to 

identify TRN from gene expression data sets 10. One of the top performing methods was GENIE3 8. This method uses the 

machine learning capabilities of random forest to identify targets for selected regulators 20,21. Other successfully 

implemented approaches include SVM 22, CLR 6, CSI 23,24, ARACNE 5, Inferelator 4, and DELDBN 9. Common to these methods 

is the use of transcript abundance levels to evaluate the relationship between a regulator and its putative targets. 

Experiments performed in time series can provide additional kinetic information useful for associating regulators and 

targets. Many approaches have been developed that take advantage of the additional information available from time 

series data as reviewed in 25,26. However, the steady-state transcript level as measured by most high-throughput 

transcriptional assays such as RNA-Seq is a measure of both transcriptional activity and mRNA stability.  Therefore, the 

correlation between expression levels alone may not provide a direct assessment of transcriptional regulation as it can be 

confounded by the RNA stability of the target.  Further complicating the identification of regulator relationships is the fact 

that a single gene can be regulated by different transcription factors in response to different stimuli.   

Here we present an approach that extends current approaches to TRN construction by emphasizing the 

relationship between regulator and targets at the time points where there is a significant change in the rate of expression.  

We demonstrate that: 1) Focusing on the rate of change captured previously unrecognized characteristics in the data, 

identifying experimentally validated regulatory relationships not detected by the standard approaches.  2) Combining 

expression level and the rate of change results in an improved identification of experimentally validated regulatory 

relationships.  
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We first evaluate the significance of the rate changes at each consecutive time point on a per-gene basis: RANGES 

(RAte Normalized in a GEne Specific manner).  We then combined the expression level and significance of this rate change 

in ExRANGES (Expression by RANGES) to prioritize the correlation between regulators and targets at time points where 

there is a significant change in gene expression.  ExRANGES improved the ability to identify experimentally validated TF 

targets in microarray and RNA-Seq data sets across multiple experimental designs, and in several different species.  We 

demonstrate that this approach improves the identification of experimentally validated TF targets using GENIE3 8, and 

anticipate that it will offer a similar benefit to when combined with other network inference algorithms.  

Results 

ExRANGES Improves Identification of Circadian TF Targets in a Circadian Data Set 

The assumption behind using correlation in gene expression to identify relationships between TFs and their 
targets is that there is a predictable relationship between the expression of the TF regulator and its corresponding targets.  

For transcriptional activators, the target will accumulate as the TF regulator accumulates. Conversely, targets of repressors 
will decrease in expression as the repressor TF increases. Current approaches evaluate the correspondence in expression 

between the regulator TF and targets across all time points equally (hereinafter referred to as EXPRESSION). We developed 
ExRANGES, a method that adjusts the expression level based on how much that gene changes in expression in the 

following time step. Briefly, for each gene, we calculate the significance of each time step.  The expression level is adjusted 

by this significance factor so that the expression level preceding a major change in expression is emphasized 
(Supplemental Fig. 1).   We tested whether incorporating the rate of change via ExRANGES improves the overall ability to 

identify experimentally validated regulatory relationships. To evaluate the ability of the ExRANGES or standard 
EXPRESSION approaches to correctly identify targets of the TFs, we applied both approaches to the CircaDB data 27 (for 

description, see Supplemental Materials and Methods) using GENIE3.  We compared the results of each approach to the 

targets identified experimentally using ChIP-Seq for five TFs involved in circadian regulation: PER1, CLOCK, NPAS2, NR1d2, 

and ARNTL 28,29.  Targets identified by each computational approach that were also considered significant targets in these 
published ChIP-Seq experiments were scored as true positive results. We calculated the ROC AUC for the five circadian TFs 

to compare the identification of true targets attained with GENIE3 using EXPRESSION values to the combination of 
expression and p-values using ExRANGES.  We observed that for all five TFs, ExRANGES improved the identification of ChIP-
Seq validated targets (Fig. 1A). Incorporation of a delay between regulator expression and target expression has previously 

been shown to improve the ability to identify regulatory networks 30.  A modification of GENIE3 incorporates this approach 
to identify transcriptional changes in the regulator that precedes the effects on the target by a defined time step.  We 

compared ExRANGES to this modified implementation of GENIE3 that includes the time delay step (Supplemental Fig. 2A).  
As previously reported, we observe that the time step delay improved target identification for some TFs, compared to 

Figure 1: ExRANGES outperforms EXPRESSION in identifying targets for select TFs. A) ROC AUC for targets identified with GENIE3 using 
EXPRESSION or ExRANGES on five circadian TFs. The targets identified computationally were validated against ChIP-Seq identified 
targets 28,29. B) ROC AUC for targets computationally identified by GENIE3 analysis using EXPRESSION or ExRANGES for seven TFs not 

known to be components of the circadian clock. Experimentally validated targets for these TFs were identified by ChIP-Seq in 
epithelial cells, a tissue not included in the expression data set 31. 
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Figure 2: Targets Identified by ExRANGES and 
EXPRESSION have Different Variation Across the 

CircaDB Data Set. Box plot showing the coefficient 
of variation (CV) for the expression levels of the top 
1000 targets of each TF (ARNTL, CLOCK, NPAS2, 

NR1D2, PER1, ESR1, POL2A, FOXA1, TFAP2A, CHD4) 
predicted by GENIE3 using EXPRESSION or 

ExRANGES and the experimentally identified targets 

from ChIP-Seq. Targets identified using EXPRESSION 

show a greater expression CV across all samples 

compared to targets predicted with ExRANGES 
values.  Experimentally determined targets showed 

the lowest CV (* p-value < 2.5e-8, ** p-value < 2e-16).  

 

EXPRESSION alone, although in this data set, target identification for CLOCK, PER1, and NR1D2 TFs did not improve.  
However, for all five TFs, ExRANGES outperformed both the EXPRESSION and time-delay approaches in identifying the true 

positive targets of each TF; although for CLOCK, this improvement was minimal.   

ExRANGES Improves Target Identification for TFs That Are Not Components of the Circadian Clock  

To evaluate the performance of ExRANGES on TFs that are not core components of the circadian clock, we 
compared the ability to identify targets of additional TFs validated by ChIP-Seq. We selected seven TFs in our regulator list 

with ChIP-Seq data available from at least two experimental replicates performed in epithelial cells, a tissue not included in 
the CircaDB data set.  The seven TFs are: ESR1, STAT5A, STAT5B, POL2A, FOXA1, TFAP2A, and CHD4 31.  Combining 

expression and rate change information using ExRANGES improved the AUC curve for five of the seven TFs (Fig. 1B, 
Supplemental Fig. 2B).  As we observed above for CLOCK, STAT5A and STAT5B performed equally well but did not show 

significant improvement.  STAT5A and STAT5B are known to be activated post-transcriptionally perhaps indicating why 
evaluating the change in expression of these TFs did not lead to improved target identification 32–36. 

ExRANGES Identified Targets have Less Variation Across the Time Series 

The targets identified by ExRANGES or EXPRESSION approaches show moderate overlap in the ranked score of 

predicted targets (r2= 0.53); however, each network identifies different targets (Fig. 1 and Supplemental Fig. 3).  To 
understand the difference in targets identified by EXPRESSION and ExRANGES we examined the variance in the expression 

levels for the top 1000 predicted targets of the 12 TFs identified by EXPRESSION or by ExRANGES across all 288 samples in 
the CircaDB data set. The targets identified by ExRANGES showed an overall lower coefficient of variation (CV) across all 

samples compared to targets identified by EXPRESSION (Fig. 2). The experimentally identified targets from ChIP-Seq 

showed low CV. The ability of ExRANGES to identify targets with lower CV than EXPRESSION may account for some of the 

improved identification of such the True Positive 
Targets.  

  ExRANGES combines rate change and expression.  To evaluate the contribution of the rate change component in 
the target identification, we generated a rate-based network using only the p-values of the rate change at each time step 

as our network feature. Using only rate change did not improve the overall identification of true positive targets 
(Supplemental Fig. 4). However, the targets identified in the rate-based network had lower overall variation in expression 
compared to the EXPRESSION identified targets. The CircaDB data consists of individual time series experiments from 

different tissues. Using rate change alone may enhance the identification of targets that have within tissue variation driven 
by changes across time compared to the larger overall variation between tissues observed in this data set. In contrast, 

EXPRESSION identified targets may favor those with large changes in expression between tissues.  To evaluate how 
EXPRESSION and rate identified targets compared in variation within each time series in a single tissue versus between 

tissues, we compared the between tissue and within tissue standard deviation for the top 1000 targets identified by using 
EXPRESSION or rate change. The targets identified by EXPRESSION showed more variation between tissue types 

(Supplemental Fig. 5A).  In contrast, the targets identified by rate change alone showed increased variation within each 
tissue time series compared to the EXPRESSION identified targets (Supplemental Fig. 5B).  
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Figure 3: ExRANGES Improves Identification of Targets for most TFs from Unevenly Spaced Time Series Data. A) Box plot of 
ROC AUC for the GENIE3 analysis for all 83 TFs using either EXPRESSION or ExRANGES compared to ChIP-Seq identified targets.  

B) The difference between the ROC AUC of ExRANGES and EXPRESSION predicted targets is plotted individually for each of the 
83 TFs tested, in ascending order.  TFs are colored by TF family. 

We also compared the mean intensity level of the top 1000 predicted targets of the rate change and EXPRESSION 
approaches.  We observed that the top 1000 targets of PER1 identified by EXPRESSION had higher intensity levels 

compared to the distribution of expression of all transcripts on the microarray (Supplemental Fig. 6A).  In contrast, the top 
1000 predicted targets of PER1 identified by rate change resembled the background distribution of intensity for all the 

transcripts on the array (Supplemental Fig. S6B).  Likewise, the hybridization intensity of the genes identified as the top 

1000 targets identified by EXPRESSION of all 1690 TFs considered as regulators was shifted higher compared to the 
background distribution levels (Supplemental Fig. 6C).  The top 1000 targets of all 1690 TFs identified by rate change 

reflected the background distribution of hybridization intensity (Supplemental Fig. 6D). While hybridization intensity 
cannot directly be translated into expression levels, these observations suggest that there are features of the targets 

identified by rate change that are distinct from those identified by EXPRESSION. 

ExRANGES Improves Identification of TF Targets in Unevenly Spaced Time Series Data 

Circadian and diel time series experiments are a rich resource providing temporal variance, which can be used to 

identify regulatory relationships.  However, most available experimental data is not collected with this design.  Often 
sample collection cannot be controlled precisely to attain evenly spaced time points. To evaluate the ability of ExRANGES 

to identify true targets of TFs across unevenly spaced and heterogeneous genotypes, we analyzed expression studies of 

viral infections in various individuals (“Respiratory Viral DREAM Challenge - Synapse ID syn5647810”; Liu et al. 2016) using 
both ExRANGES and EXPRESSION approaches.  This data set consists of seven studies of blood samples from human 

patients.  Multiple samples from an individual were taken over a seven to nine day period, depending on the specific study.  
Sampling was not evenly spaced between time points. In total 2372 samples were used, providing a background of 2231 

consecutive time steps.  Overall, the variance between samples was lower for this study than the circadian study examined 
above (Supplemental Fig. 7). The significance of a change in expression for each gene at each time step was compared to a 

background distribution of change in expression across all patients and time steps (2231 total slope changes).  The targets 

identified using either EXPRESSION or ExRANGES were compared to ChIP-Seq identified targets of 83 TFs with available 

ChIP-Seq data from blood tissue 31,39. We observed an overall improvement in the detection of ChIP-Seq identified targets 
for the 83 TFs with ExRANGES (Fig. 3A and B).  

ExRANGES Improves Functional Cohesion of Identified Targets  

The true targets of a TF are likely to be involved in the same functional pathways, therefore functional enrichment 
can also be used to validate computationally identified TF targets 40. We compared the functional enrichment of the top 

1000 targets predicted by either EXPRESSION or ExRANGES of the 930 TFs on the HGU133 microarray 51.   The targets 
identified by ExRANGES for the majority of the TFs (590) showed improved functional enrichment compared to the targets 
identified by EXPRESSION (Fig. 4A and B).  Likewise, when focusing on the 83 TFs with available ChIP-Seq data from blood, 

the majority of TF targets predicted by ExRANGES were more functionally cohesive compared to EXPRESSION targets as 
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Figure 4: ExRANGES improves Functional Cohesion of Identified Targets. Gene Ontology term enrichment was calculated for 

the top 1000 predicted targets of 930 TFs using GENIE3 with either ExRANGES or EXPRESSION. Enrichment score is the sum of 

the –log10 of the p-value of each GO category.  A) Summary of the enrichment scores for the top 1000 targets of all TFs on the 

microarray.  B) The distribution of enrichments scores from EXPRESSION identified targets (red) and ExRANGES identified 
targets (blue).  C) The difference in the enrichment score for the 83 TFs with available ChIP-Seq data (Fig 3).  Positive values 
indicate TF targets with a higher enrichment score in ExRANGES compared to EXPRESSION. 

 

evaluated by GO slim (Fig. 4C).  We observed that the improvement in the ranking of ExRANGES over EXPRESSION varies 
between the two validation approaches.  For example, targets of the TF JUND identified by ExRANGES show no 

improvement over EXPRESSION when validated by ChIP-Seq identified targets, yet showed improved functional cohesion 
(Table ST1). 

ExRANGES Improves TF Target Identification from RNA-Seq Data and Validated by Experimental Methods Other Than 

ChIP-Seq  

 To evaluate the performance of ExRANGES compared to EXPRESSION for RNA-Seq data we applied each approach 
to an RNA-Seq data set from Saccharomyces cerevisiae 41.  This data set consisted of samples from six genotypes collected 
every fifteen minutes for six hours after transfer to media lacking phosphate.  The slope background was calculated from 
144 time steps.  To evaluate the performance of ExRANGES compared to EXPRESSION approaches we calculated the AUC 

for the identified targets using GENIE3 for each of the 52 TFs using the TF targets identified by protein binding microarray 

analysis as the gold standard 42.  For most TFs, the AUC was improved using ExRANGES (Fig. 5A).  
We next evaluated the performance of EXPRESSION and ExRANGES on a set of data from Arabidopsis consisting of 

144 samples collected every four hours for two days in 12 different growth conditions 43–47.  Even though fewer ChIP-Seq 

data sets are available to validate the predicted targets in Arabidopsis, we were able to evaluate the performance of the 
algorithms for five TFs with available ChIP-Seq or ChIP-Chip identified targets performed in at least two replicates 48–52.  We 

observed that for all five TFs, ExRANGES showed improved identification of the ChIP-based true positive TF targets (Fig. 

5B).  To evaluate a larger range of targets we compared our predicted targets by EXPRESSION or ExRANGES to 307 TFs 

targets identified by DAP-Seq 53.  We observed that ExRANGES also showed an improved ability to identify targets as 
validated by DAP-Seq compared to EXPRESSION (Fig. 5C).    

To evaluate the performance of ExRANGES compared to EXPRESSION, we constructed two networks of the 
Arabidopsis circadian clock; a TF-TF network of only the core clock components (Supplemental Fig. 8) and a TRN of the 

output from the Evening Complex (Fig. 5D and E) using GENIE3 with either ExRANGES or EXPRESSION as input. We limited 
our network of the core circadian clock to only genes previously established as associated with the circadian clock. The 

cyclic nature of circadian regulation makes modeling these interactions a challenge. ExRANGES correctly identifies more of 

the complex interactions within the morning loop that are supported by experimental data as reviewed in Greenham and 

McClung 54 compared to EXPRESSION (Supplemental Fig. 8). For example, ExRANGES correctly identifies interactions 
between CCA1/LHY and PRR9,7,5 that are not detected using EXPRESSION alone. The Evening Complex of the circadian 
clock controls the transcriptional regulation of many genes related to growth and light signaling responses 55. To evaluate 

the output of the circadian clock, we compared the targets of the Evening Complex proteins, ELF3, ELF4, and LUX, as 
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Figure 5: ExRANGES improves identification of TF targets validated by different methods. A) Box plots of the ROC AUC for targets 

identified for 52 yeast TFs by EXPRESSION or ExRANGES validated against experimentally identified targets from protein binding 
microarray data 42. B) ROC AUC for targets identified using GENIE3 with either EXPRESSION or ExRANGES for five Arabidopsis TFs 

validated against ChIP-Seq data. C). Box plot of AUC for targets identified for 307 Arabidopsis TFs by EXPRESSION and ExRANGES 
validated against DAP-Seq identified targets 53 D) Network of Arabidopsis Evening Complex Component (dark blue) regulated targets 

predicted with GENIE3 using either EXPRESSION or ExRANGES. Dashed edges are predicted targets that exist in both EXPRESSION and 

ExRANGES networks; solid edges are unique to the either EXPRESSION (left network) or ExRANGES (right network).  The evening 
complex targets are colored by function: growth (green), photosynthesis (yellow), circadian (light blue), temperature-responsive genes 

(red), and light signaling (orange). * indicates the probeset corresponding to this gene can bind transcripts from more than one unique 
locus. E) Table of the prediction rate of evening complex targets of ExRANGES and EXPRESSION compared to those identified by ChIP-

Seq 56.  

. 

 

identified by ChIP-Seq 56. The TRN constructed using ExRANGES identifies more of the evening complex targets than the 
TRN constructed using EXPRESSION as the input. In the top 10% of predicted interactions, more than 50% of the EC targets 

were called by ExRANGES and less than 40% was called by EXPRESSION (Fig. 5E). Indicating that the output of the Evening 
Complex is more reliably predicted using ExRANGES as an input to GENIE3. 

 
Application of ExRANGES to Smaller Data Sets with Limited Validation Resources 

Time series data offers several advantages; however, it also increases the experimental costs.  We have shown 
that using ExRANGES improves the performance of GENIE3 on large data sets as validated by ChIP-Seq (228 samples in 
mouse, 2372 in human, and 144 in arabidopsis) (Fig. 6). Since our interest is to develop a tool that can assist with the 
identification of regulatory networks in non-model species, we wanted to determine if ExRANGES could also improve 

identification of TF targets in sparsely sampled data sets where there is limited validation data available. 

To determine the effectiveness of the ExRANGES approach for experiments with limited time steps, we evaluated 

the targets identified by ExRANGES and EXPRESSION for a single time series consisting of 32 samples from eight unevenly 
sampled time points of field-grown rice panicles. ChIP-Seq with replicates has only been performed for one transcription 

factor in rice, OsMADS1 57.  Therefore, we compared the ability of ExRANGES and EXPRESSION to identify the OsMADS1 
targets identified by L. Khanday et al. Of the 3112 OsMADS1 targets identified by ChIP-Seq, ExRANGES showed an 
improved ability to identify these targets (Fig. 7) compared to EXPRESSION alone. 

 

Discussion 
Computational approaches that identify TRN can advance research.  Most current approaches to elucidate TRN 

from transcriptional data use expression levels alone.  We demonstrate that combining the expression levels and rate of 

change improves the ability to predict true targets of TFs across a range of species and experimental designs. The 

improvement is observed across many different collections of time series data including experiments with replicates and 

without, evenly and unevenly sampled time points, and even for time series with a limited number of samples.  ExRANGES 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/093807doi: bioRxiv preprint 

https://doi.org/10.1101/093807
http://creativecommons.org/licenses/by-nc/4.0/


improves TF target identification over EXPRESSION values alone for time series performed with both microarray and RNA-

Seq measurements of expression. 

In many species the majority of transcripts show variation in expression levels throughout the day 27,47,58, 

therefore circadian and diel data sets provide a snapshot of the potential ranges in expression that a regulator can attain. 

Mining this daily variation can identify regulatory relationships, including those that are enhanced in response to 

environmental perturbations such as stress.  However, one challenge with analysis of daily expression changes is that when 

combining multiple data sets, the daily variation in expression may be dwarfed by the large variation in expression 

between tissues.  TRN inference approaches, such as ExRANGES that can detect the small changes in daily expression 

amidst the large variations between tissues are needed to fully mine this data.  Here, we show that using ExRANGES, data 

sets that combine circadian time series in multiple tissues can be a powerful resource for identifying regulatory 

relationships between TFs and their targets not just for circadian regulators, but also for regulators that are not 

components of the circadian clock. Using EXPRESSION as the feature focused on identifying TF targets with a large variance 

between tissues, while targets identified using rate change showed larger variance within each time series (Fig. 2, and 

Supplemental Fig. 5).  ExRANGES takes advantage of both sources of variation and improves the identification of TF targets 

for most regulators tested, including for TF-target relationships in tissues not included in the transcriptional analysis.   

  As implemented, ExRANGES improves the ability to identify regulator targets, however, there are many aspects 

that could be further optimized.  For example, we tested ExRANGES with the network inference algorithms GENIE3 

observed improved performance with this algorithm. ExRANGES can be applied to most other network inference 

algorithms. For example, we also compared the performance of Inferelator 4. We observe an improvement when using 

ExRANGES as an input with Inferelator over using EXPRESSION values alone for the viral, arabidopsis, and rice data sets 

(Supplemental Fig. 9 and Fig. 7B). We anticipate that ExRANGES can be integrated into other machine learning applications 

such as Bayesian networks, mutual information networks, or even supervised machine learning tools. Conceptually, our 

method increases the value of the time point before a major change in expression level.  ExRANGES could be further 

modified to adjust where that weight is placed, a step or more in advance, depending on the time series data. Such 

incorporation of a time delay optimization into the ExRANGES approach could lead to further improvement for 

identification of some TF targets, although it would increase the computational cost.  

Figure 6: Summary of ExRANGES improvement across three data sets from different species.  ROC and Precision-recall (PR) curves for 
targets of all ChIP-Seq validated TFs as identified using GENIE3 with either EXPRESSION (solid) or ExRANGES (dotted) for A) CircaDB data 

set from mouse tissues B) Human viral data set C) Arabidopsis circadian data set across different environmental variables. 
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We compared ExRANGES based features to EXPRESSION based features by validating against TF targets identified 

by ChIP-Seq and ChIP-Chip.  While these experimental approaches identify potential TF targets in a genome-wide manner, 

systemic bias in ChIP could bias the comparisons59.  For example, we observed that ChIP-seq identified targets in the 

CircaDB data set showed lower variation in expression than computationally identified targets (Fig. 2). The use of 

ExRANGES as a network input also outperformed the use of EXPRESSION alone when validated against DAP-Seq, and 

protein binding microarray. Even though ChIP-Seq is the gold-standard for benchmarking computational approaches to 

identifying TF targets, high-quality ChIP-Seq data is not available in most organisms for more than a handful of TFs. This 

lack of experimentally identified targets is a severe hindrance to advancing research in these species.  New experimental 

approaches such as DAP-Seq may provide alternatives for TF target identification in species recalcitrant to ChIP-Seq 

analysis 53.  Additionally, O’Malley et al. improved their recall of ChIP-Seq identified targets by selecting targets that were 

also supported by DNase-Seq sensitivity assays 60,61.  Likewise, distinguishing between direct and indirect targets predicted 

computationally could be enhanced by incorporation of DNase-Seq or motif occurrence information for the targets.  

Incorporation of such a priori information on regions of open chromatin and occurrence of cis-regulatory elements leads to 

improved network reconstruction 11,62.  Combining these integrated approaches with ExRANGES could lead to further 

improvements in TRN identification.  Although approaches such as DAP-Seq are more global in analyses than individual 

ChIP-Seq assays, these genome-wide approaches require a significant investment from the community in the development 

of an expressed TF library collection.  Integrating community-acquired experimental data with network inference approaches 

has been successfully applied to the Corynebacterium genus and pathogenic Escherichia coli 12–14. In these microorganisms, a 

database of community provided regulatory content has enabled genome-wide predictions of regulatory interactions in novel 

conditions.  Tools to apply these resources closely related non-model species have been effective at extending the impact of the 

research in these model organisms 15–19. For non-model systems, without such resources, computational identification of TF 

targets can provide an economical first pass that can be followed up by experimental analysis of predicted targets, 

accepting the fact that there will be false positives in the validation pipeline.  In this strategy, a small improvement in the 

ability to identify true targets of a given TF can translate into a reduced number of candidates to test and fewer 

experiments that must be performed.  While experimental detection of the direct targets of a given TF provides the best 

evidence for a TRN, we hope that the improvements provided by the ExRANGES approach can facilitate research in species 

where experimental identification of TF targets is experimentally challenging. ExRANGES demonstrates that consideration 

of how expression data is incorporated can contribute to the success of TRN reconstruction. We hope that this analysis will 

stimulate evaluation of new approaches that use alternative methods to incorporate time signals into regulatory network 

Figure 7:  ExRANGES Retains Performance Improvement over EXPRESSION on Small Data Sets.  A) ROC AUC for the top 1000 targets 
of OsMADS1 identified by GENIE3 using EXPRESSION or ExRANGES and validated against the OsMADS1 ChIP-Seq data 57. B) 

Comparison of targets identified by EXPRESSION and ExRANGES using INFERELATOR. ExRANGES scores higher in the ratio of True 
Positive (TP) to False Positives (FP).  C) Interactions predicted by ExRANGES of OsMADS1 (center, green) with other MADS TFs. Orange 

arrows indicate ExRANGES predicted targets of OsMADS1. ExRANGES predicts that OsMADS15 (red) regulates OsMADS1 (green 
arrow).  Interactions between other MADS TFs predicted by ExRANGES are indicated by black arrows.  
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analysis. We anticipate that further optimization and methods for integrating expression information will lead to 

improvements in TRN reconstruction that will ultimately accelerate biological discovery. 

 

Methods 
Identifying consecutive time points with significant changes in expression 
Overview: We first determine the significance of the change in expression between two consecutive time points on a per 
gene basis. For each genei, the background variance is derived from the change in expression of genei at all consecutive 
time steps in all samples across from a given data set. The change in expression between two consecutive time points is 
evaluated against this background and the significance is calculated (Supplemental Fig. 1). For example, the mammalian 
circadian data set available from CircaDB 27 consists of time series experiments from 12 different tissues, sampled every 2 h 
for 48 h (288 samples). The change in expression levels for genei between time t and time t+1 was determined for each 
consecutive time point.  Since this data is cyclical, the interval between the last time point and the first time point is also 
included. For the CircaDB data set, the background of each consecutive time interval across the entire time series consists 
of 288 slopes (12 tissues x 2 h for 48).  At each time step, t the slope between t and t+1 was compared to a bootstrapped 
version of this background generated by sampling 10,000 times with replacement.  For each gene, the resulting p-value 
was calculated by using an empirical cumulative distribution function from the R stats package. This p-value was 
transformed to the –log10 and the sign of the change in slope was preserved (R script provided).  This significance of the 
change at each time interval is the rate change or “RANGES” value.  
 
Combining EXPRESSION and Rate Change using ExRANGES 
ExRANGES adjusts the expression level at each time point by multiplying the Expression level at time t with the significance 
of the change in expression, or RANGES value, from time t to t+1 (Supplemental Fig. 1B). This ExRANGES value was used in 
lieu of the expression level to generate a TRN using GENIE3 or INFERELATOR as described below 4,8. 

 
 
LS is a (gene x time) matrix representing a time series experiment with genes 𝑔 and time points 𝑇(𝑡=1..𝑁): 

(1)  𝐿𝑆 = {𝑿1, 𝑿𝟐, … 𝑿𝐺}, where 𝑿𝒈 ∈  ℝ𝑇𝑡 , 𝑔 = 1, … , 𝐺, 𝑡 = 1, … , 𝑁 

𝑿𝑔 is a vector of real numbers representing the expression of gene 𝑔 from time points 𝑇1 to 𝑇𝑁: 

 

(2) 𝑿𝑔 = {𝑋𝑔
𝑇1 , 𝑋𝑔

𝑇2 , … 𝑋𝑔
𝑇𝑁} 

Therefore 𝑋𝑔
𝑇𝑡 represents the expression of gene 𝑔 at time point 𝑇𝑡. To calculate the rate of change for RANGES values, we 

start with 𝑪𝑔, which represents the changes between all consecutive time points for gene 𝑔: 

 

(3) 𝑪𝑔 = ∑
{𝑋𝑔

𝑇(𝑡−1)
− 𝑋𝑔

𝑇𝑡}

{𝑇(𝑡−1)−𝑇𝑡}

(𝑁−1)
𝑡=1   

If the data are cyclical, we assume time point 1 can be used as time point N+1: 
 

(4) 𝐶𝑔
𝑇𝑁 =

{𝑋𝑔
𝑇1− 𝑋𝑔

𝑇𝑁}

{𝑇1−𝑇𝑁}
  

Else, disregard 𝐶𝑔
𝑇𝑁 

The sign of each change is recorded for use in the final RANGES value: 

 

(5) 𝑆𝑔
𝑇𝑡 = 𝑠𝑖𝑔𝑛(𝐶𝑔

𝑇𝑡) 

A bootstrapped version of 𝑪𝑔 is calculated for each gene by sampling 10,000 times with replacement. We call this 𝑪𝑔
∗ .  A 

cumulative distribution function is found for each 𝑪𝑔
∗ : 
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(6) 𝐹𝑪𝑔
∗ () = 𝑐𝑑𝑓(𝑪𝑔

∗ ) 

P-values are determined for each 𝐶𝑔
𝑇𝑡using the corresponding cumulative distribution function for each gene: 

 

(7) 𝑃(𝐶𝑔
𝑇𝑡) =  𝐹𝑪𝑔

∗ (𝐶𝑔
𝑇𝑡)   Left tail 

  𝐼𝑓 (𝑃(𝐶𝑔
𝑇𝑡) < 0.5)   𝑡ℎ𝑒𝑛  𝑃(𝐶𝑔

𝑇𝑡) =  1 − 𝑃(𝐶𝑔
𝑇𝑡)   Right tail 

 

The RANGES value is calculated by taking the -log10 of the p-value and multiplying by the sign of the corresponding change: 
 

(8) 𝑅𝑔
𝑇𝑡 = − log10 (𝑃(𝐶𝑔

𝑇𝑡)) ∙ 𝑆𝑔
𝑇𝑡  

Finally, the ExRANGES value for each data point is calculated by multiplying the RANGES value by the original expression 

value: 

(9) 𝐸𝑔
𝑇𝑡 = 𝑅𝑔

𝑇𝑡 ∙  𝑋𝑔
𝑇𝑡 

 
 
 
Network Inference using GENIE3 
To predict regulatory interaction between the transcription factor and the target gene, GENIE3 
(http://www.montefiore.ulg.ac.be/~huynh-thu/software.html on June 14, 2016 8) was modified for use with parLapply 
from the R parallel package63. The EXPRESSION network was built by providing the expression values across all samples for 
both TFs and targets. The ExRANGES network used the ExRANGES value for both TFs and targets.  For example, for the 
CircaDB data, we considered 1690 murine TFs as the regulators 64. For both approaches, all TFs were also included in the 
target list to identify regulatory connections between TFs. To implement GENIE3, we used 2000 trees for random forest for 
all data sets except the viral data set.  Due to the size of the data set, we limited the viral data set to 100 trees.  The 
importance measure from the random forest was calculated using the mean decrease in accuracy upon random 
permutation of individual features. This measure is used as the prediction score for TF-target relationships. 

 
Network Inference using INFERELATOR 
For INFERELATOR the TF and targets labels are identical to those used in GENIE3.  Time information in the form of the time 
step between each sample was added to satisfy time course conditions as a parameter, default values were used for all 
other parameters. Only confidence scores of TF-target interactions greater than 0 were evaluated against ChIP-Seq 
standards. The confidence scores were used as the prediction score for TF-target relationships.  

 
ROC Calculation 
ROC values were determined by the ROCR package in R65. The computationally determined prediction score and the 
targets from the respective experimental validation (ChIP-Seq, protein binding array, or DAP-Seq) were used as the metric 
to evaluate the performance function. The area under the ROC curve (AUC) is presented to summarize the accuracy.  
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Figure Legends 

Figure 1: ExRANGES Outperforms EXPRESSION in Identifying Targets for Select TFs. A) ROC AUC for 

targets identified with GENIE3 using EXPRESSION or ExRANGES on five circadian TFs. The targets 

identified computationally were validated against ChIP-Seq identified targets 28,29. B) ROC AUC for 

targets computationally identified by GENIE3 analysis using EXPRESSION or ExRANGES for seven TFs 

not known to be components of the circadian clock. Experimentally validated targets for these TFs 
were identified by ChIP-Seq in epithelial cells, a tissue not included in the expression data set 31. 

 

Figure 2: Targets Identified by ExRANGES and EXPRESSION have Different Variation across the 

CircaDB Data Set. Box plot showing the coefficient of variation (CV) for the expression levels of the top 

1000 targets of each TF (ARNTL, CLOCK, NPAS2, NR1D2, PER1, ESR1, POL2A, FOXA1, TFAP2A, CHD4) 

predicted by GENIE3 using EXPRESSION or ExRANGES and the experimentally identified targets from 

ChIP-Seq. Targets identified using EXPRESSION show a greater expression CV across all samples 

compared to targets predicted with ExRANGES values.  Experimentally determined targets showed the 

lowest CV (* p-value < 2.5e-8, ** p-value < 2e-16).  

Figure 3: ExRANGES Improves Identification of Targets for most TFs from Unevenly Spaced Time 

Series Data. A) Box plot of ROC AUC for the GENIE3 analysis for all 83 TFs using either EXPRESSION or 

ExRANGES compared to ChIP-Seq identified targets.  B) The difference between the ROC AUC of 

ExRANGES and EXPRESSION predicted targets is plotted individually for each of the 83 TFs tested, in 

ascending order.  TFs are colored by TF family. 

Figure 4: ExRANGES improves Functional Cohesion of Identified Targets. Gene Ontology term 

enrichment was calculated for the top 1000 predicted targets of 930 TFs using GENIE3 with either 
ExRANGES or EXPRESSION. Enrichment score is the sum of the –log10 of the p-value of each GO 

category.  A) Summary of the enrichment scores for the top 1000 targets of all TFs on the microarray.  

B) The distribution of enrichments scores from EXPRESSION identified targets (red) and ExRANGES 

identified targets (blue).  C) The difference in the enrichment score for the 83 TFs with available ChIP-

Seq data (Fig 3).  Positive values indicate TF targets with a higher enrichment score in ExRANGES 
compared to EXPRESSION. 

Figure 5: ExRANGES improves identification of TF targets validated by different methods. A) Box 
plots of the ROC AUC for targets identified for 52 yeast TFs by EXPRESSION or ExRANGES validated 

against experimentally identified targets from protein binding microarray data 42. B) ROC AUC for 

targets identified using GENIE3 with either EXPRESSION or ExRANGES for five Arabidopsis TFs 
validated against ChIP-Seq data. C). Box plot of AUC for targets identified for 307 Arabidopsis TFs by 

EXPRESSION and ExRANGES validated against DAP-Seq identified targets 53 D) Network of Arabidopsis 
Evening Complex Component (dark blue) regulated targets predicted with GENIE3 using either 

EXPRESSION or ExRANGES. Dashed edges are predicted targets that exist in both EXPRESSION and 

ExRANGES networks; solid edges are unique to the either EXPRESSION (left network) or ExRANGES 

(right network).  The evening complex targets are colored by function: growth (green), photosynthesis 
(yellow), circadian (light blue), temperature-responsive genes (red), and light signaling (orange). * 

indicates the probeset corresponding to this gene can bind transcripts from more than one unique 
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locus. E) Table of the prediction rate of evening complex targets of ExRANGES and EXPRESSION 
compared to those identified by ChIP-Seq 56.  

Figure 6: Summary of ExRANGES Improvement across Three Data Sets from Different Species.  ROC 

and Precision-recall (PR) curves for targets of all ChIP-Seq validated TFs as identified using GENIE3 with 

either EXPRESSION (solid) or ExRANGES (dotted) for A) CircaDB data set from mouse tissues B) Human 

viral data set C) Arabidopsis circadian data set across different environmental variables. 

Figure 7:  ExRANGES Retains Performance Improvement over EXPRESSION on Small Data Sets.  A) 

ROC AUC for the top 1000 targets of OsMADS1 identified by GENIE3 using EXPRESSION or ExRANGES 

and validated against the OsMADS1 ChIP-Seq data 57. B) Comparison of targets identified by 

EXPRESSION and ExRANGES using INFERELATOR. ExRANGES scores higher in the ratio of True Positive 

(TP) to False Positives (FP).  C) Interactions predicted by ExRANGES of OsMADS1 (center, green) with 

other MADS TFs. Orange arrows indicate ExRANGES predicted targets of OsMADS1. ExRANGES 

predicts that OsMADS15 (red) regulates OsMADS1 (green arrow).  Interactions between other MADS 

TFs predicted by ExRANGES are indicated by black arrows.  
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