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We introduce quanTIseq, a method to quantify the tumor immune contexture, determined by 

the type and density of tumor-infiltrating immune cells. quanTIseq is based on a novel 

deconvolution algorithm for RNA sequencing data that was validated with independent data 

sets. Complementing the deconvolution output with image data from tissue slides enables in 

silico multiplexed immunodetection and provides an efficient method for the 

immunophenotyping of a large number of tumor samples.  

Cancer immunotherapy with antibodies targeting immune checkpoints has shown durable benefit or 

even curative potential in various cancers1,2. As only a fraction of patients are responsive to immune 

checkpoint blockers, efforts are underway to identify predictive markers as well as mechanistic 

rationale for combination therapies with synergistic potential. Thus, comprehensive and quantitative 

immunological characterization of tumors in a large number of clinical samples is of utmost 

importance, but it is currently hampered by the lack of simple and efficient methods. Cutting-edge 

technologies like single-cell RNA sequencing and multi-parametric flow or mass cytometry are 

technically and logistically challenging and cannot be applied to archived samples. Multiplexed 
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immunohistochemistry (IHC)3 or immunofluorescence (IF) assays can be performed only in 

specialized labs and require sophisticated equipment and extensive optimization of protocols for 

specific cancer entities. Computational methods for quantitative immunophenotyping of tumors from 

RNA sequencing (RNA-seq) data hold potential for efficient and low-cost profiling of large number of 

samples, but currently suffer from several limitations. Methods based on enrichment analysis of 

immune gene sets compute only semi-quantitative scores4. Conversely, deconvolution algorithms 

(reviewed in 4–6) can enable a quantitative estimation of the proportions of the cell types of interest 

and, hence, of the immune contexture - defined by the type and density of tumor-infiltrating immune 

cells. The immune contexture has not only major prognostic value in colorectal cancer (CRC)7 and 

other cancer types8, but can also provide information that is relevant for the prediction of treatment 

response. However, currently available deconvolution algorithms have important limitations and are 

not suitable for the quantification of immune contexture of human tumors. For instance, CIBERSORT, 

a method based on support-vector regression for deep-deconvolution of 22 immune-cell phenotypes, 

can only infer cell fractions relative to the total immune-cell population and has been developed and 

validated using microarray data9. TIMER performs deconvolution of six immune cell types, but the 

results cannot be interpreted directly as cell fractions, nor compared across different immune cell 

types and data sets10. EPIC, a deconvolution method recently developed using RNA-seq data, 

estimates relative fractions referred to the whole cell mixture, but does not consider immune cells 

relevant for cancer immunology like regulatory T cells (Treg) cells, dendritic cells, and classically (M1) 

and alternatively (M2) activated macrophages11. Most importantly, these methods have not been 

validated using independent data sets comprising tumor RNA-seq and a gold standard method like 

IHC or IF of the same sample.  

Therefore, we developed quanTIseq, a computational pipeline for the quantification of the Tumor 

Immune contexture using RNA-seq data and images of haematoxylin and eosin (H&E)-stained tissue 

slides (Fig. 1a). As part of quanTIseq, we first developed a deconvolution algorithm based on 

constrained least squares regression12. We then designed a signature matrix from a compendium of 

51 RNA-seq data sets (Supplementary Table 1) from ten different immune cell types: B cells, M1 and 

M2 macrophages, monocytes (Mono), neutrophils (Neu), natural killer (NK) cells, CD4+ and CD8+ T 

cells, Treg cells, and dendritic cells (DC) (Fig. 1b and Supplementary Table 2). Notably, as the 

preprocessing steps, including gene annotation and expression normalization, have a strong impact 
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on the final estimates and can lead to inconsistencies between the mixture and the signature matrix, 

we implemented a full analytical pipeline (available at: http://icbi.i-

med.ac.at/software/quantiseq/doc/index.html), consisting of read pre-processing, quantification of 

gene expression, deconvolution of cell fractions, and computation of cell densities (Fig. 1c).  

To validate quanTIseq we first used both simulated data and published data. We simulated 1,700 

RNA-seq data sets from human breast tumors by mixing various numbers of reads from tumor and 

immune-cell RNA-seq data, considering different immune compositions and sequencing depths. 

quanTIseq obtained a high correlation between the true and the estimated fractions and accurately 

quantified tumor content (measured by the fraction of “other” cells) (Supplementary Figure 1). We 

then validated quanTIseq using experimental data from a previous study13, in which peripheral blood 

mononuclear cell (PBMC) mixtures were subjected to both, RNA-seq and flow cytometry. A high 

accuracy of quanTIseq estimates was also observed with this data set (Fig. 1d and Supplementary 

Figure 2). Additionally, we successfully validated quanTIseq using two previous published data sets 

(Supplementary Figures 3 and 4).  

As most of the validation data sets available in the literature are based on microarray data or consider 

a limited number of phenotypes, we generated RNA-seq and flow cytometry data from mixtures of 

peripheral-blood immune cells collected from nine healthy donors. Flow cytometry was used to 

quantify all the immune sub-populations considered by quanTIseq signature matrix except 

macrophages, which are not present in blood. Comparison between quanTIseq cell estimates and flow 

cytometry fractions showed a high correlation at a single and multiple cell-type level (Fig. 1e and 

Supplementary Figure 5).  

We then validated quanTIseq using two independent data sets. The first data set was generated from 

samples from 31 melanoma patients (Vanderbilt cohort). We carried out RNA-seq and, wherever 

possible, IHC staining for CD8+, CD4+ or FOXP3+ cells from consecutive whole-tissue slides. To 

quantify specific immune cells from the scanned images, we developed an analysis pipeline (available 

at https://github.com/mui-icbi/IHCount) to perform semi-automatic cell counting. The second data set 

was generated from samples from nine CRC patients (Leiden cohort). RNA-seq data and multiplexed 

IF stainings for CD8+ T, CD4+ T and Treg cells were carried out. As it can be seen, cell fractions 

obtained with quanTIseq correlated with the respective image cell densities for both the Vanderbilt 
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(Fig. 2a) and the Leiden cohort (Fig. 2b). Thus, the results of our extensive validation using simulated 

data, published data, data from blood cell mixtures, and two independent data sets demonstrate that 

quanTIseq can faithfully and quantitatively decompose immune profiles in human tumors using RNA-

seq data. 

To demonstrate the utility of quanTIseq, we then analyzed RNA-seq data from more than 8,000 TCGA 

samples across 20 TCGA solid cancers (Fig. 2c). We obtained high agreement between quanTIseq 

results and the lymphocytic infiltration14 and tumor purity15 estimates reported in two previous studies 

(Supplementary Note 1). The results of the survival analyses using the computed TCGA cell fractions 

(Supplementary Figure 7) show that the prognostic power for single cell types is highly context 

dependent. Moreover, within cancer entities the immune cell compositions were highly variable. As an 

example we present the immune fractions of the CRC patients stratified into four consensus molecular 

subtypes (CMS)16. The results revealed higher infiltration of M1 macrophages and CD8+ T cells in the 

“CMS1 - MSI immune” group (p-values<0.02), which is has a good prognosis, and of B cells and M2 

macrophages in the “CMS4 - mesenchymal” group (p-values<0.03) (Fig. 2d). 

We also show the value of quanTIseq for cancer immunotherapy and present the results of the 

quantification of immune contexture in pre-treatment samples from melanoma patients on anti-PD1 

treatment (subset from the Vanderbilt cohort). We carried out deconvolution using RNA-seq data and 

scaled the fractions using cells densities extracted from images to perform in silico multiplexed 

immunodetection. The cell densities of ten immune cell types showed large heterogeneity across the 

patients and some differences between responders and non-responders, although not statistically 

significant (p>0.09) (Fig. 2e). However, due to the limited number of samples, further studies are 

necessary to determine which immune cell contextures have predictive power.  

Finally, all quanTIseq results from the TCGA, the Vanderbilt cohort, and two additional cohorts of 

melanoma patients treated with immune checkpoint blockers18,19, were deposited in The Cancer 

Immunome Atlas (https://tcia.at)17 to make them available to the scientific community and facilitate the 

generation of testable hypothesis. 

In conclusion, we developed quanTIseq, a computational pipeline for the analysis of raw RNA-seq and 

tissue imaging data that quantifies the fractions and densities of ten different immune cell types 

relevant for cancer immunology. Unlike previous approaches, quanTIseq is specifically designed for 
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RNA-seq, which is the current reference technology for high-throughput quantification of gene 

expression20 and was extensively validated (Supplementary Table 2). Moreover, in order to avoid 

inconsistencies between the mixture and the signature matrix, we assembled and provide a complete 

analytical pipeline. As bulk RNA-seq is now widely applied to profile fresh-frozen and archived tumor 

specimens, quanTIseq can be applied to effectively mine these data4. Specifically, quanTIseq can be 

used to quantify the immune contexture in a large number of archived samples in order to identify 

immunogenic effects of conventional and targeted drugs and hereby gain mechanistic rationale for the 

design of combination therapies. Thus, quanTIseq represents an important enhancement to the 

computational toolbox for dissecting tumor-immune cell interactions, and can further be applied to 

autoimmune, inflammatory, or infectious diseases. 
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Figures 

Figure 1: quanTIseq method and validation based on blood-cell mixtures. (a) quanTIseq 

characterizes the immune contexture of human tumors from expression and image data. Cell fractions 

are estimated from expression data and then scaled to cell densities (cells/mm2) using total cell 

densities extracted from imaging data. (b) Heatmap of quanTIseq signature matrix, with z-scores 

computed from log2(TPM+1) expression values of the signature genes. (c) The quanTIseq pipeline 

consists of three modules that perform: (1) pre-processing of paired- or single-end RNA-seq reads in 

FASTQ format; (2) quantification of gene expression in transcripts-per-millions (TPM) and gene 

counts; (3) deconvolution of cell fractions and scaling to cell densities considering total cells per mm2 

derived from imaging data from H&E-stained slides. The analysis can be initiated at any step (e.g. pre-

processed expression data can be analyzed starting from step 3). Optional files are shown in grey.  

Validation of quanTIseq with RNA-seq data from blood-derived immune-cell mixtures generated in 13 

(d) and in this study (e). Deconvolution performance was assessed with Pearson’s correlation (r) and 

root-mean-square error (RMSE) using flow cytometry estimates as ground truth. The line represents 

the linear fit. B: B cells; CD4: CD4+ T cells; CD8: CD8+ T cells; DC: dendritic cells; M1: classically 

activated macrophages; M2: alternatively activated macrophages; Mono: monocytes; Neu: neutrophils; 

NK: natural killer cells; T: T cells; Treg: regulatory T cells. H&E: haematoxylin and eosin. 

Figure 2: Deconvolution of tumor RNA-seq data with quanTIseq. Comparison of the cell fractions 

inferred for Vanderbilt melanoma patients (a) and Leiden colorectal cancer patients (b) with cells per 

mm2 computed with immunofluorescence and immunohistochemistry, respectively. Deconvolution 

performance was assessed with Pearson’s correlation (r) and root-mean-square error (RMSE). The 

line represents the linear fit. (c) Median cell fractions per cancer type across 8,243 TCGA samples, 

sorted according to the mutational load. The range and mean of the mutational loads, computed as 

the number of non-synonymous mutation per mega base (on log10 scale), are shown for each cancer 

type. (d) Immune cell fractions of TCGA colorectal cancer patients stratified according to consensus 

molecular subtypes (CMS). (e) Immune cell fractions from Vanderbilt melanoma patients stratified as 

responders (R) and non-responders (NR). B: B cells; CD4: CD4+ T cells (including also CD4+ 

regulatory T cells); CD8: CD8+ T cells; DC: dendritic cells; M1: classically activated macrophages; M2: 

alternatively activated macrophages; Mono: monocytes; Neu: neutrophils; NK: natural killer cells; Treg: 

regulatory T cells; Other: other uncharacterized cells. 
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