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Despite being a fundamental dimension of experience, how the1

human brain generates the perception of time remains unknown.2

Predominant models of human time perception propose the exis-3

tence of oscillatory neural processes that continually track phys-4

ical time - so called pacemakers - similar to the system clock of5

a computer1,2,3. However, clear neural evidence for pacemakers6

at psychologically relevant timescales is lacking, raising the ques-7

tion of whether internal pacemakers are necessary for time per-8

ception. Here we show that clock-like pacemaker processes are9

not required for human time perception. We built an artificial10

neural system based on a feed-forward image classification net-11

work4, functionally similar to human visual processing5,6. In this12

system, input videos of natural scenes drive changes in activation13

within an image classification network and accumulation of salient14

changes in activations are used to estimate time. Estimates pro-15

duced by this system match human reports made about the same16

videos, replicating key qualitative aspects such as report vari-17

ability proportional to duration (scalar variability/Weber’s law)18

and response regression to the mean (Vierordt’s law)2. System-19

generated estimates also differentiate by scene type, such as walk-20

ing around a busy city or sitting in a cafe, producing the same pat-21

tern of differences as human reports. Our results show how time22

perception can be derived from the operation of non-temporal per-23

ceptual classification processes, without any neural pacemaker,24

opening new opportunities for investigating the neural founda-25

tions of this central aspect of human experience.26

We recorded video of natural scenes such as walking through a city27

or the countryside, or sitting in an office or cafe (see Supplementary28

Video 1; Fig. 5). These videos were split into trials of one of thirteen29

durations between 1 and 64 seconds. Human participants watched30

these videos and made estimates of the presented video duration using31

a visual analogue scale (Fig. 1) while we recorded their gaze position32

using eye-tracking.33

These same trial videos were used as the basis for input to a pre-34

trained feed-forward image classification network4. To estimate time,35

the system measured whether the Euclidean distance between succes-36

sive activation patterns within a given layer, driven by the video in-37

put, exceeded a dynamic threshold (Fig. 2). For a given layer, when38

the activation difference exceeded the threshold a salient change was39

determined to have occurred, and a unit of time was accumulated.40

We implemented a dynamic threshold for each layer following a de-41

∗Department of Informatics, University of Sussex, United Kingdom
†Sackler Centre for Consciousness Science, University of Sussex, United Kingdom
‡Corresponding author: wjroseboom@gmail.com
§Department of Computing, Imperial College London, United Kingdom
¶DeepMind, London, United Kingdom

Figure 1: Experimental apparatus and procedure. (A) Human par-
ticipants observed videos of natural scenes and reported the apparent
duration while we tracked their gaze direction. (B) Depiction of the
high-level architecture of the system used for simulations (Fig. 2). (C)
Frames from a video used as a stimulus for human participants and
input for simulated experiments. Human participants provided reports
of the duration of a video in seconds using a visual analogue scale.

caying exponential corrupted by Gaussian noise and resetting when- 42

ever a measured difference exceeded it, thus approximating the role 43

of normalisation processes known to occur in biological sensory sys- 44

tems10,11. In order to transform the accumulated, abstract temporal 45

units extracted by the system into a measure of time in standard units 46

(seconds) for comparison with human reports, we trained a Support 47

Vector Machine (SVM) to estimate the duration of the videos based 48

on the accumulated salient changes (see Methods for full details of 49

system design and training). 50

We initially had the system produce estimates under two input sce- 51

narios. In one scenario, the whole video frame was used as input. 52

In the other, input was spatially constrained by biologically relevant 53

filtering - the approximation of human visual spatial attention by a 54

’spotlight’ centered on real human gaze fixation. The extent of this 55

spotlight approximated an area equivalent to human parafoveal vision 56

and was centered on the participants’ fixation measured for each pre- 57

cise time-point in the video. Only the pixels inside this spotlight were 58
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Figure 2: Depiction of the time estimation system. Salient differences in network activation driven by video input are accumulated and
transformed into standard units for comparison with human reports. The left side shows visualisations of archetypal features to which layers
in the classification network are responsive (adapted from7,8,9). The bottom left shows two consecutive frames of video input. The connected
coloured nodes depict network structure and activation patterns in each layer in the classification network for the inputs. L2 gives the Euclidean
distance between network activations to successive inputs for a given network layer (layers conv2, pool5, fc7, output). In the Feature Extraction
stage, the value of L2 for a given network layer is compared to a dynamic threshold (red line). When L2 exceeds the threshold level, a unit
of subjective time is determined to have passed and is accumulated to form the base estimate of time. A regression method (support vector
machine) is applied to convert this abstract time estimate into standard units (seconds).

used as input to the system (see Supplementary Video 2).59

As time estimates generated by the system were made on the same60

videos as the reports made by humans, we could directly compare hu-61

man and system estimates. Fig. 3 shows duration estimates produced62

by human participants and our system under the different input sce-63

narios. Reports produced by our participants (Fig. 3A) demonstrated64

qualities typically found for human estimates of time: overestimation65

of short durations and underestimation of long durations (regression66

of responses to the mean/Vierordt’s law), and variance of reports pro-67

portional to the reported duration (scalar variability/Weber’s law).68

System estimates produced when the full video frame was input69

(Fig. 3B; Full-frame model) revealed qualitative properties similar to70

human reports, though the degree of over and underestimation was71

exaggerated. This result demonstrates that the basic method of our72

system, accumulation of salient differences in network activation, can73

produce estimates of time - the slope of estimation is non-zero and74

short durations are discriminated from long durations by our system.75

However, while clearly able to produce temporal estimates and repli-76

cate qualitative aspects of human reports, the overall performance of77

the system in this case doesn’t closely follow that of our human par-78

ticipants (Fig. 3E, F).79

When the video input to the system was constrained to approximate80

human visual spatial attention by taking into account gaze position81

(“Gaze” model), system-produced estimates closely approximated re-82

ports made by human participants (Fig. 3B, E, F). This result was83

not simply due to the spatial reduction of input caused by the gaze-84

contingent spatial filtering, nor the movement of the input frame itself.85

When the gaze-contingent filtering was applied to videos other than86

the one from which gaze was recorded (i.e. gaze recorded while view-87

ing one video then applied to a different video; “Shuffled” model),88

system estimates were poorer (Fig. 3D). These results indicate that89

the contents of where humans look in a scene play a key role in time90

perception.91

To further test the idea that the contents of viewing play a funda-92

mental role in time perception, and that our system reproduces this93

quality, we examined how system estimates differed by scene type. 94

In our test videos, three different scenes could be broadly identified: 95

scenes filmed moving around a city, moving around a leafy univer- 96

sity campus and surrounding countryside, or from relatively station- 97

ary viewpoints inside a cafe or office (Fig. 5). Based on the idea that 98

a more varied input should lead to more varied activation within the 99

network layers, and therefore greater accumulation of salient changes, 100

we looked at how many salient changes were accumulated by the sys- 101

tem when given each scene type as input. As shown in (Fig. 4A), 102

when the system was shown city scenes, which we would expect to be 103

more visually dynamic and contain more changes in input over time, 104

the system accumulated the greatest number of salient changes. This 105

was true for each layer of the network that we examined. When the 106

system was shown videos of scenes from moving around the campus 107

or countryside, fewer salient changes were accumulated than the city, 108

but more than the relatively stationary scenes of a cafe or office. 109

When we examined human estimates of duration for the different 110

scene types, we found the same pattern of differences as for the sys- 111

tem; human participants reported city scenes as longer in duration than 112

campus/countryside and cafe/office scenes (Fig. 4B) (overall, human 113

participants underestimated the duration of all scenes, but underesti- 114

mated the duration of city scenes the least, indicating that city scenes 115

were perceived as longer in duration). This scene dependency of time 116

shows that the basic information from which our system estimates time 117

is qualitatively similar to human participants - even without the final 118

step of transforming accumulated salient changes into standard units 119

of physical time. Both the location in the scene where information re- 120

lated to time can be found (gaze-contingency of time perception), and 121

the broad temporal properties of different scenes appear to be key fea- 122

tures for humans and our system when estimating time. These findings 123

demonstrate that human-like time perception can be accomplished in 124

the absence of processes that explicitly track physical time, as required 125

by pacemaker-based proposals. 126

A potential criticism of our work would be that we haven’t elim- 127

inated the need for a pacemaker, but simply found a proxy for its 128

2

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 24, 2017. ; https://doi.org/10.1101/172387doi: bioRxiv preprint 

https://doi.org/10.1101/172387
http://creativecommons.org/licenses/by-nc/4.0/


Human reports

10
0

10
1

10
0

10
1

Full-frame model

10
0

10
1

10
0

10
1

10
0

10
1

10
0

10
1

"Gaze" model

E
s
ti

m
a
ti

o
n
 (

s
e
c
)

F
u
ll
-f

r.
 *

G
a
z
e
 *

S
h
u

. 
*

10

11

12

R
M
S
E

A

C

B

E

D

10
0

10
1

10
0

10
1

10
0

10
1

"Shu ed" model

Real duration (sec)

F

10
0

10
1

0.0

1.0

0.5

* vs humans

R
M
S
E

Real duration (sec)

Figure 3: The mean duration estimates for 4290 trials for both human
(A) and system (B,C,D) for the range of presented durations (1-64s).
Shaded areas show ±1 standard deviation of the mean. Human reports
(A) show typical qualities of human temporal estimation with overes-
timation of short and underestimation of long durations. (B) System
estimates when input the full video frame replicate similar qualitative
properties, but temporal estimation is poorer than humans. (C) Sys-
tem estimates when the input was constrained to approximate human
attention based on human gaze data very closely approximated hu-
man reports made on the same videos, though when we “Shuffle” the
gaze contingency such that the spotlight is applied to a different video
than it was obtained on (D), performance decreases. (E) Comparison
of mean absolute error between different estimations across presented
durations. (F) Comparison of the root mean squared error of the sys-
tem estimates compared to the human data. The “Gaze” model is most
closely matched.

operation. However, such criticisms miss the point of our approach.129

Pacemaker-based models necessitate that time is estimated from an130

internal operation that attempts to match physical time - analogous131

to a computer system clock. Our approach moves away from the re-132

quirement that subjective time be tightly related to physical time in133

this way. For our system, accumulated temporal units don’t represent134

the passage of physical time as in pacemaker-based systems, they are135

subjective time. Consequently, our model can easily account for many136

context-based distortions in subjective time, such as the scene-wise137

differences in time estimation seen in Fig. 4. By contrast, pacemaker-138

based approaches require a change in internal pacemaker operation,139

such as spontaneous changes in pacemaker rates (e.g.12) to produce140

such cases.141

One might still worry that we do retain an underlying physical pace-142

maker because calculation of salient network activation changes oc-143

curs at some frequency. In the reported model, the video was input144

and activation difference calculated at 30 Hz. However, it is easy to145

demonstrate that the update rate is not the predominant feature in de- 146

termining time estimates. If it were, duration estimates for the “Gaze” 147

versus “Shuffled” models would be highly similar, as they contain the 148

same input rate (30 Hz) and temporal features induced by movement 149

of the gaze spotlight. However, this is clearly not the case (Fig. 3C) 150

and (Fig. 3D). To thoroughly reject the idea that system update rate 151

was the main determinant of time estimation in our system, we com- 152

pared the salient changes accumulated by the system when inputing 153

the ‘normal’ videos at 30 Hz, with accumulated changes under three 154

conditions: videos in which the frame rate was halved (skipped every 155

second frame), videos in which some frames were skipped psuedo- 156

randomly with a frequency of 20%, or videos input at 30Hz, but with 157

the video frames presented in a shuffled order. We found that the 158

manipulations of frame rate (skipping every second frame or 20% 159

of frames) produced only small differences in accumulated changes 160

over time compared to the normal input videos (Fig. 6). However, 161

when the input rate was kept at 30 Hz, but the presentation order of 162

the frames was shuffled, thereby disrupting the flow of content in the 163

video, the number of accumulated changes was very different (around 164

40 times more different from standard than either the halved or ran- 165

domly skipped frame cases; see Fig. 6). These results underline that 166

our system was producing temporal estimates based predominantly on 167

the content of the scene, not the update rate of the system. 168

While the update rate is not critical in our system, how a biological 169

system such as the human brain produces a comparison of successive 170

activation states in sensory networks is an interesting question. Pre- 171

vious work has implicated sub-cortical areas such as the basal ganglia 172

and the striatum in time perception1,2. Responses of medium-spiny 173

projection neurons (MSN), the most prevalent type of neuron in the 174

striatum, have been shown to encode time intervals with a bell-shaped 175

distribution of errors that expands over time proportionally, like hu- 176

man reports1. MSN are known to have a many-to-one input config- 177

uration13, are highly connected with cortical sensory areas14,13, have 178

uncommonly low membrane excitability and dynamic firing thresh- 179

olds1,13. In previous pacemaker-based models, such as the striatal- 180

beat-frequency model (SBF1,2) striatal neurons, due to their connec- 181

tivity, are thought to act as integrators and fire when neural pacemaker 182

oscillations occur synchronously. Alternatively, we propose that stri- 183

atal neurons may be firing in response to the difference between suc- 184

cessive states of sensory networks, acting as the difference calculator 185

depicted in (Fig. 2). Striatal lateral inhibition15 and short-term intrin- 186

sic depression of striatal afferents13 have the potential to ensure that 187

a new sensory state would be accumulated only once. In addition, 188

short-term potentiation of striatal connections to other basal ganglia 189

nuclei (globus pallidus16 and substantia nigra17) could encode the ac- 190

cumulated features (i.e. subjective units of time). Outputs from striatal 191

MSNs would communicate the accumulation of time to the remainder 192

of basal ganglia circuitry. This view of the role of the basal ganglia in 193

time perception is intriguing as it facilitates integration of the extant 194

literature of time perception-related neural regions with our finding 195

that no pacemaker-like processes are required for a sensory system to 196

estimate time. 197

The core feature that allows our model to produce human-like time 198

perception is the identification and accumulation of salient changes in 199

network activation (salient perceptual events). In the current model, 200

accumulation is accomplished by memory dedicated only to tracking 201

the occurrence of these events. However, our ongoing work seeks to 202

link identification of salient events with content-based memory for 203

these events (i.e., episodic-like memory). In this way, our approach 204

may accommodate data consistent with both prospective (online time 205

estimation, e.g. waiting for an event to happen)18,19 and retrospective 206

time estimation (based on memory of past events)18,19, as the basic 207
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Figure 4: System salient change accumulation and human reports by
scene type. (A) The number of accumulated salient changes over time
in the different network layers (lowest to highest: conv2, pool5, fc7,
output), depending on input scene type. (B) The normalised bias in
human participants’ duration reports relative to physical duration. The
less the underestimation (closer to zero), the longer the reported dura-
tion for that scene.

process of identifying changes in sensory network activation would208

underlie both.209

Our results demonstrate that internal pacemaker operations are not210

necessary for modeling the quantitative properties of human time per-211

ception. System-produced time estimates replicated well-known fea-212

tures of human reports of time that differed based on biologically rel-213

evant cues, such as where in a scene sensory input is coming from,214

as well as the general content of a scene. That our system produces215

human-like time estimates based on only natural video inputs is a ma-216

jor achievement in building artificial systems with human-like tempo-217

ral cognition, and presents a fresh opportunity to understand human218

perception and experience of time.219
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Methods316

Participants Participants were 55 adults (21.2 years, 40 female) re-317

cruited from the University of Sussex, participating for course credit318

or £5 per hour. Participants typically completed 80 trials in the 1 hour319

experimental session, though due to time or other constraints some320

participants only completed as few as 20 trials (see Supplemental Data321

for specific trial completion details). This experiment was approved by322

the University of Sussex ethics committee.323

Apparatus Experiments were programmed using Psychtoolbox324

320,21,22 in MATLAB 2012b (MathWorks Inc., Natick, US-MA) and325

the Eyelink Toolbox (Cornelissen et al., 2002), and displayed on a La-326

Cie Electron 22 BLUE II 22” with screen resolution of 1280 x 1024327

pixels and refresh rate of 60 Hz. Eye tracking was performed with328

Eyelink 1000 Plus (SR Research, Mississauga, Ontario, Canada) at a329

sampling rate of 1000 Hz, using a desktop camera mount. Head posi-330

tion was stabilized at 57 cm from the screen with a chin and forehead331

rest.332

Stimuli Experimental stimuli were based on videos collected333

throughout the City of Brighton in the UK, the University of Sussex334

campus, and the local surrounding area. They were recorded using335

a GoPro Hero 4 at 60 Hz and 1920 x 1080 pixels, from face height.336

These videos were processed into candidate stimulus videos 165 min-337

utes in total duration, at 30 Hz and 1280 x 720 pixels. To create indi-338

vidual trial videos, a psuedo-random list of 4290 trials was generated339

- 330 repetitions of each of 13 durations (1, 1.5, 2, 3, 4, 6, 8, 12, 16,340

24, 32, 48, 64s). The duration of each trial was psuedo-randomly as-341

signed to the equivalent number of frames in the 165 minutes of video.342

There was no attempt to restrict overlap of frames between different343

trials. The complete trial list and associated videos are available in the344

Supplemental Data.345

For computational experiments when we refer to the ’full frame’346

we used the center 720 x 720 pixel patch from the video (56 percent347

of pixels; approximately equivalent to 18 degrees of visual angle (dva)348

for human observers). When computational experiments used human349

gaze data, a 400 x 400 pixel patch was centered on the gaze position350

measured from human participants on that specific trial (about 17 per-351

cent of the image; approximately 10 dva for human observers).352

Computational model architecture The computational model is353

made up of four parts: 1) A classification deep neural network, 2)354

an threshold mechanism, 3) a set of accumulators and 4) a regression355

scheme. We used the convolutional deep neural network AlexNet4
356

available through the python library caffe23. AlexNet has been pre-357

trained to classify high-resolution images in the LSVRC-2010 Ima-358

geNet training set24 into 1000 different classes, with state-of-the-art359

performance. It consists of five convolutional layers, some of which360

are followed by normalisation and max-pooling layers, and two fully361

connected layers before the final 1000 class probability output. It has362

been argued that convolutional networks’ connectivity and function-363

ality resemble the connectivity and processing taking place in human364

visual processing5 and thus we use this network as the main visual365

processing system for our computational model. At each time-step366

(30 Hz), a video frame is fed into the input layer of the network and367

the subsequent higher layers are activated. For each frame, we ex-368

tract the activations of all neurons from layers conv2, pool5, fc7 and369

the output probabilities. For each layer, we calculate the Euclidean370

distance between successive states. If the activations are similar, the371

Euclidean distance will be low, while the distance between neural ac-372

tivations corresponding to frames which include different objects will 373

be high. 374

A ’temporal attention’ mechanism is implemented to dynamically 375

calibrate the detection of changes between neural activations (thresh- 376

old) resulting from successive frames. Each of the four layers has an 377

initial threshold value for the distance in neural space. This threshold 378

decays with some stochasticity (Eq. 1) over time to replicate normal- 379

isation of neural responses to stimulation over time. A new salient 380

feature for each layer is registered once the Euclidean distance be- 381

tween activations for two successive frames exceeds this threshold, 382

the counter in each of the layers’ accumulators is incremented by one 383

and the threshold of that layer is reset to its maximum value. The pur- 384

pose of a decaying function is to accommodate time perception across 385

various environments with too few or too many features. Implemen- 386

tation details for each layer can be found in the table below, and the 387

threshold was calculated as: 388

T k
t+1 = T k

t −
(

T k
max −T k

min
τk

)
e−

(
D
τk

)

+N
(

0,
T k

max −T k
min

α

)
(1)

where T k
t is the threshold value of kth layer at timestep t and D in- 389

dicates the number of timesteps since the last time the threshold value 390

was reset. T k
max, T k

min and τk are the maximum threshold value, mini- 391

mum threshold value and decay timeconstant for kth layer respectively, 392

values for which are provided in Table 1. Stochastic noise drawn from 393

a Gaussian is added to the threshold and α a dividing constant to adjust 394

the variance of the noise. 395

Table 1: Threshold mechanism parameters

Parameters for implementing salient event threshold
Layer No. neurons Tmax Tmin τ

conv2 290400 340 100 100
pool5 9216 400 100 100
fc7 4096 35 5 100
output 1000 0.55 0.15 100

The parameters of the model, T k
max, T k

min and τk, were chosen so that 396

the Euclidean distances of each layer exceed the threshold only when 397

a large increase occurs. The choice of particular values is not very 398

important as the model performance is robust across a broad range 399

of these values. When we scaled the values of T k
max, T k

min by a fac- 400

tor allowing us to vary the level of the threshold mechanism (’Atten- 401

tion Level’), our model can still estimate time with relatively good 402

accuracy across a broad range of these values (Fig. 7A) and, most im- 403

portantly, still differentiate between short and long durations (slope is 404

greater than zero for most levels). To further examine the effect of T k
max 405

and T k
min, we scaled each parameter by an independent scaling factor 406

to show that the model estimations (compared to the real physical du- 407

ration) are robust over a wide range of values for these two parameters 408

(Fig. 7B). 409

The number of accumulated features in the accumulators represent 410

the elapsed duration between two points in time. In order to convert 411

estimates of subjective time into units of time in seconds, a simple 412

regression method was used based on epsilon-Support Vector Regres- 413

sion (SVR) from sklearn python toolkit25. The kernel used was the 414

radial basis function with a kernel coefficient of 10−4 and a penalty pa- 415

rameter for the error term of 10−3. We used 10-fold cross-validation. 416

To produce the presented data, we used 9 out of 10 groups for training 417
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and one (i.e. 10% of data) for testing. This process was repeated 10418

times so that each group was used for validation only once. In order to419

verify that our system performance was not simply due to overfitting of420

the regression method for the set of durations we included, rather than421

the ability of the system to estimate time, we tested the model esti-422

mation performance when excluding some durations from the training423

set, but keeping them in the testing set. The mean normalised error424

for durations included and excluded in each experiment is shown in425

(Fig. 8). As can be seen, only when excluding a large number of train-426

ing levels (e.g. 10 out of 13 possible levels) does the estimation error427

get notably larger.428
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Figure 5: (Extended figure) Videos used as stimuli for the human experiment and input for the system experiments included scenes recorded
walking around a city (top left), in an office (top right), in a cafe (bottom left), walking in the countryside (bottom right) and walking around a
leafy campus (center).
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Figure 6: (Extended figure) Comparison of system accumulation of salient changes depending on input frame rate and composition of the
input video. Each panel shows the normalised root-mean squared difference between the accumulated salient changes in the system when given
the normal input video at 30 Hz, compared to input videos at half the frame rate, inputs videos with 20% of frames pseudo-randomly skipped,
and input videos presented at 30 Hz (same as the normal input videos), but with the order of presentation of the video frames shuffled. The
manipulations of frame rate (halving or skipping 20%) had little effect on the accumulated changes (blue and orange lines), while shuffling the
order of presentation of the frames altered the accumulation of salient changes dramatically (green lines).
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Figure 7: (Extended figure) Robustness of the temporal attention mechanism. A: Comparison of system duration estimation at different
attention levels. Attention level refers to a scaling factor applied to the parameters Tmax and Tmin, specified in Table 1. and equation 1 Each
panel shows the performance for a different variant of the model (“Gaze”, “Shuffled” and “Full-frame”). While changing the Attention level did
affect duration estimates, often resulting in a bias in estimation (e.g. many levels of the “Full-frame” exhibit a bias towards over-estimation),
across a broad range of Attention levels the models (particularly in the “Gaze” model) still differentiate longer from shorter durations, as
indicated by the positive slopes with increasing real duration. For the models in Fig. 3, the following scalings were used: (“Gaze”: 1.20,
“Shuffled”: 1.10 and “Full-frame”: 1.06) as they were found to produce estimations most closely matching human reports. B: Normalised root
mean squared error (NRMSE) of duration estimations of the “gaze” model versus real physical durations, for different combinations of values
for the parameters Tmax and Tmin in equation (1). The gray areas in the heatmap represent combinations of values that cannot be defined. Dotted
lines represent the chosen attention threshold scaling used for the “Gaze” model in Fig. 3.
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Figure 8: (Extended figure) Comparison of system performance by means of normalized duration estimation error, when a subset of testing
durations were not used in the training process. For each pair of bars, 10 trials of N randomly chosen durations (out of 13 possible durations)
have been excluded (x-axis). The SVR was trained on the remainder of the durations and tested on all durations. The errors for excluded and
included trials are reported for each N. Only when excluding a large number of training levels (e.g. 10 out of 13 possible levels) does the
estimation error get notably larger.
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