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Abstract 

Genetic clustering algorithms, implemented in popular programs such as STRUCTURE and 

ADMIXTURE, have been used extensively in the characterisation of individuals and populations 

based on genetic data. A successful example is reconstruction of the genetic history of African 

Americans who are a product of recent admixture between highly differentiated populations. 

Histories can also be reconstructed using the same procedure for groups which do not have 

admixture in their recent history, where recent genetic drift is strong or that deviate in other ways 

from the underlying inference model. Unfortunately, such histories can be misleading. We have 

implemented an approach (badMIXTURE, available at github.com/danjlawson/badMIXTURE) to 

assess the goodness of fit of the model using the ancestry “palettes” estimated by CHROMOPAINTER 

and apply it to both simulated and real examples. Combining these complementary analyses with 

additional methods that are designed to test specific hypothesis allows a richer and more robust 

analysis of recent demographic history based on genetic data.  
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\body 

STRUCTURE/ADMIXTURE are excellent tools for analysing recent admixture between 

differentiated groups  

Model-based clustering has become a popular approach to visualizing the genetic ancestry of 

humans and other organisms. Pritchard et al. [1] introduced a Bayesian algorithm STRUCTURE for 

defining populations and assigning individuals to them. FRAPPE and ADMIXTURE were later 

implemented based on a similar underlying inference model but with algorithmic refinements that 

allow them to be run on datasets with hundreds of thousands of genetic markers [2, 3]. 

One motivating example for the algorithms was African Americans. The “admixture model” of 

STRUCTURE assumes that each individual has ancestry from one or more of K genetically distinct 

sources.  In the case of African Americans, the most important sources are West Africans, who were 

brought to the Americas as slaves, and European settlers. The two groups are thought to have been 

previously separated with minimal genetic contact for tens of thousands of years. This means that 

their history can be separated into two phases, a “divergence phase” lasting thousands of years of 

largely independent evolution and an “admixture phase”, in which large populations met and 

admixed within the last few hundred years. Specifically, most of the ancestors of African Americans 

that lived 500 years ago were either Africans or Europeans. The goal of the algorithm is to 

reconstruct the gene frequencies of these two distinct “ancestral” populations and to estimate what 

proportion of their genome each African American inherited from them. 

Pritchard et al. hoped that STRUCTURE would be “flexible enough to permit appropriate clustering 

for a wide range of datasets”, but also emphasized that the output should be interpreted with care 

since “clusters may not correspond to real populations”. Many subsequent users of the algorithm, 

such as Evanno et al. [4] have been less reticent and for example made a considerable effort to 

“detect the true number of clusters (K)”, assuming implicitly that such a quantity was biologically 

meaningful.  In practice, rigorous estimation of K is a difficult statistical problem, even if the 

assumptions of the underlying model are assumed to hold.  Pritchard et al. suggest a heuristic 

approach based on comparing “model probabilities” estimated in runs of the model for different 

values of K. A widely used modification of the protocol was suggested by Evanno et al. [4] while 

Alexander et al. [2] suggest a cross validation approach, using consistency between different runs of 

the algorithm at a particular value of K as an indication of validity.  

When the STRUCTURE admixture model is applied to a dataset consisting of genetic markers from 

West Africans, African Americans and Europeans it infers two ancestral populations. Each of the 

Europeans and Africans is assigned a great majority of their ancestry from one of them. Africans are 

inferred to have an average of 18% ancestry from the European cluster but with substantial inter-

individual variation [5]. This and other successful examples of inference [6-8], as well as the difficulty 

of interpreting the results at all if they are not taken literally, have lead researchers to use 

STRUCTURE or ADMIXTURE according to a protocol that can be summarized as follows:  

(1) Estimate K using a refined statistical procedure. 

(2) Assume that the inferred value of K is the true value of K. 

(3) Assume each of the K ancestral population existed at some point in the past. 
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(4) Assume that modern individuals were produced by recent mixing of these ancestral 

populations.  

There are genetic differences amongst both the Africans and the Europeans who contributed to 

African American ancestry, e.g. reflecting genetic variation between regions within Europe and 

Africa, but these are likely to be subtle relative to the magnitude of the differences between 

continents. Moreover, the divergence between Europeans and African took place over millennia, in a 

different epoch to the recent admixture. For the purpose of analysing recent African American 

admixture it is therefore reasonable to add the following assumptions to the protocol:  

(3a) Neglect the possibility an ancestral population might itself be admixed. 

(3b) Label ancestral populations based on the locations they are currently most frequent in. 

(3c) Neglect substructure within the inferred ancestral populations. 

(3d) Do not ask how the inferred ancestral populations are related to each other. 

 

Qualitatively different historical scenarios can give indistinguishable STRUCTURE/ADMIXTURE 

plots 

Versions of the protocol are often applied with limited prior knowledge about how the groups in a 

sample are related to each other. Many real population histories are not neatly separable into 

divergence and admixture phases but the methods can be applied to all datasets to produce 

ancestry bar plots. Figure 1 shows admixture histories inferred by STRUCTURE for three scenarios.  

Note that these simulations were performed with 12 populations but only results for the four most 

relevant populations are shown.  The “Recent Admixture” scenario represents a history qualitatively 

similar to African Americans. The true history is that P2 is an admixture of P1, P3 and P4. 

ADMIXTURE, interpreted according to the above protocol, infers that this is what happened and 

estimates approximately correct admixture proportions, with the light green ancestral population 

contributing a higher proportion than the light pink one (true admixture proportions 35% and 15% 

respectively).  

In the “Ghost Admixture” scenario, P2 is instead formed by a 50% -50% admixture between P1 and 

an unsampled “ghost” population, which is most closely related to P3. For this scenario, the larger 

proportion of ancestry inferred from the light green population than the light pink one does not 

reflect a difference in admixture proportion, since neither P3 nor P4 actually contributed material to 

P2. Rather, it reflects the fact that P3 is more closely related to the unsampled ghost population, as 

seen in the phylogeny. 

In the “Recent Bottleneck” scenario, P1 is a sister population to P2 that underwent a strong recent 

bottleneck. Members of P2 are once again inferred to be admixed, again with ancestry proportions 

that reflect phylogenetic distance rather than admixture proportions, while P1 receives its own 

ancestry component.  

In order to understand these results, it is useful to think of STRUCTURE and ADMIXTURE as 

algorithms that parsimoniously explain variation between individuals rather than as parametric 
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models of divergence and admixture.  If admixture events or genetic drift affect all members of the 

sample equally, then there is no variation between individuals for the model to explain. For example, 

non-African humans have a few percent Neanderthal ancestry, but this is invisible to STRUCTURE or 

ADMIXTURE since it does not result in differences in ancestry profile between individuals.  The same 

reasoning helps to explain why for most datasets –even in species such as humans where mixing is 

commonplace - each of the K populations is inferred by STRUCTURE/ADMIXTURE to have non-

admixed representatives in the sample. If every individual in a group is in fact admixed, then (with 

some technical caveats discussed by Falush et al. [5]) the model simply shifts the allele frequencies 

of the inferred ancestral population to reflect the fraction of admixture that is shared by  

 

Figure 1 Three scenarios that give indistinguishable ADMIXTURE results. (A) Simplified schematic of each simulation 
scenarios. (B) Inferred ADMIXTURE plots at K=11. (C) CHROMOPAINTER inferred painting palettes. (D) Painting residuals 
after fitting optimal ancestral palettes using badMIXTURE, on the residual scale shown. (E) Ancestral palettes estimated 
by badMIXTURE. 12 populations in total were simulated, with grey populations all being outgroups to those shown in 
colour. 

all individuals. This can result in misinterpretation of the true admixture history, particularly when 

applied to datasets where there is little prior knowledge on the relationships between groups.   
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Each additional population allowed in a STRUCTURE or ADMIXTURE model requires many additional 

parameters to be inferred. First, every individual has a proportion of ancestry from the population 

that must be estimated. Secondly, every allele has an unknown frequency in the population. Models 

with large numbers of parameters are algorithmically more difficult to fit to the data and also are 

penalized in statistical comparisons to prevent overfitting. The large number of parameters can lead 

to some undesirable algorithmic behavior For example, because the number of parameters increases 

with the number of loci, the algorithms can fail to detect subtle population structure  in relatively 

simple scenarios even if the number of loci is very large [9]. 

In practice, the best that can be expected, even if the models converge on good solutions and K is 

estimated sensibly, is that the algorithms choose the smallest number of ancestral populations that 

can explain the most salient variation in the data. Unless the demographic history of the sample is 

particularly simple, the value of K inferred according to any statistically sensible criterion is likely to 

be smaller than the number of distinct drift events that have significantly impacted the sample. 

What the algorithm often does is in practice is use variation in admixture proportions between 

individuals to approximately mimic the effect of more than K distinct drift events without estimating 

ancestral populations corresponding to each one. 

To be specific, in the Ghost Admixture scenario, the ghost population is modelled as being a mix of 

the sampled populations it is most closely related to, rather than being given its own ancestral 

population. In the Recent Bottleneck scenario, the genetic drift shared by P1 and P2 is modelled by 

ADMIXTURE by assigning both populations some ancestry from the light blue ancestral population. 

The strong recent drift specific to P1 is approximately modelled by assigning more light blue ancestry 

to P1 than to P2, thereby making P1 more distinct from the other populations in the sample. An 

alternative outcome in both scenarios would be for ADMIXTURE to infer a higher value of K and to 

include an extra ancestral population for P2. The algorithm is more likely to infer this solution if 

there was stronger genetic drift specific to P2 or if members of the population made up a greater 

overall proportion of the sample.  

 

A visualization of the goodness of fit of admixture models using chromosome painting 

We have implemented an approach, badMIXTURE, that uses painting “palettes” calculated by 

CHROMOPAINTER [9] to assess the goodness of fit of a recent admixture model to the underlying 

genetic data. CHROMOPAINTER uses haplotype information to identify fine-scale ancestry 

information by identifying, for each individual, which of the other individual(s) in the sample are 

most closely related for each stretch of genome. The palettes (Figure 1C) show the proportion of the 

genome of each individual that is most closely related to the individuals sampled from each of the 

labelled populations. 

In this manuscript we use sampling labels but if these are not available or are not predictive of 

genetic relationships, it is possible to use fineSTRUCTURE [9] to cluster individuals into genetically 

homogeneous groups based on their inferred painting profiles, thus generating labels. We assume 

that there are more labelled populations P than there are ancestral populations K. The painting 

palettes can be thought of as a way of representing the information that the genetic data provides 

on shared ancestry between the populations. There is no underlying historical or evolutionary model 
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assumed by this representation but the plots are normally interpreted based on the assumption that 

each labelled population is approximately homogeneous in its ancestry profile.  

The palettes are distinct for the three simulated scenarios, demonstrating that it is possible to 

distinguish between them using genetic data and that the palettes provide complementary 

information to the ADMIXTURE plots (Figure 1B compared to Figure 1C). In order to more directly 

relate the results of STRUCTURE/ADMIXTURE to the painting palettes, we assume that each 

ancestral population has a palette and try to estimate this palette from the data. Specifically, 

badMIXTURE uses matrix factorization to find the combination of ancestral palettes that give the 

best overall fit (evaluated using least squares) to the palettes of each individual. 

Crucially, under a number of reasonable assumptions that are detailed in the methods section, in a 

recent admixture scenario, the palettes of admixed individuals should be a mixture of the palettes of 

non-admixed individuals according to the relevant admixture proportions. In other words, if a simple 

admixture scenario is correct, and the proportions are correctly estimated by 

STRUCTURE/ADMIXTURE, then it should be possible to use the N*K admixture proportions of the N 

individuals in the sample and the K*P palettes proportions for the K ancestral populations to predict 

the N*P palette proportions for each individual.  

Figure 1D shows the residuals, representing the difference between the true palettes and those 

estimated by badMIXTURE. Figure 1E shows the corresponding palettes inferred for each ancestral 

population. Under the Recent Admixture scenario, there is no systematic pattern to the residuals, 

validating the assumption underlying the approach. For the Ghost Admixture scenario, the residuals 

show a systematic pattern, with the model substantially underestimating the proportion of palette 

that individuals in P2 have from their own population and overestimating the contributions from the 

other populations. The residuals from P1 are also systematically misestimated. For the recent 

bottleneck model, the deviations are similar but smaller. The main qualitative difference between 

the Ghost Admixture scenario and Recent Bottleneck scenario are in the ancestral palettes. In the 

latter case, the inferred palette for the light blue ancestral population that contributed to both P1 

and P2 is dominated by P1, with most of the rest of the palette from P2. This is an indication that 

there has been strong drift in its recent history.  

badMIXTURE can be used to distinguish the Recent Admixture scenario from alternatives because 

the recent admixture model makes the distinctive prediction that admixed individuals are not 

particularly related to each other, as shown by the small amount of black in their palettes in Figure 

1C. Members of P2 get 50% of their genomes from the light blue ancestral population, 35% from the 

light green population and 15% from the light pink one, while P1 received all of its ancestry from the 

light blue population.  For any given locus, a member of P2 will have the same ancestral source as a 

member of P1 50% of the time. But two members of P2 will have the same ancestry source only 

0.5*0.5+0.35*0.35+0.15*0.15= 0.395 of the time. This means that paradoxically, members of P2 will 

(depending on the exact details of population history) be more related to members of P1 than they 

are to each other and have relatively little of their palette from their own population. Under the 

other scenarios, individuals from P2 receive more of their palette from other members of their own 

population. 

A visualisation of goodness of fit without linkage information 
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STRUCTURE/ADMIXTURE has been applied to thousands of different species, most of which do not 

have the linkage maps (either physical or genetic) required for chromosome painting. The algorithm 

can also be applied to datasets with relatively small number of markers. It would therefore be 

advantageous to be able to apply a similar approach to these datasets.  

An equivalent analysis can be performed using chromosome painting in unlinked model, as shown in 

Figure 2. The results are qualitatively similar to the CHROMOPAINTER analysis exploiting Linkage 

Disequilibrium; however because the palettes are closer to uniform (Figure 2B), the residuals contain 

more noise (Figure 2C). With few markers, there may be no interpretable signal remaining making it 

impossible to distinguish between different scenarios. 

 

Figure 2 Unlinked badMIXTURE results for the Ari simulated data example using unlinked data. The scenarios match 
Figure 1. The colour labels at the top describe the population labels, and columns are individuals. The palettes look 
dramatically more homogeneous without linkage information (A vs Figure 1C) the residuals (B vs Figure 1D) follow the 
same pattern, i.e. they are unstructured in the Recent Admixture data (scale shown below main plots). 

Testing the fit of admixture models can prevent false histories being inferred 

Three sets of researchers [10-12] investigated the relationships between the origins of the Ari 

Blacksmiths and the Ari Cultivators from Ethiopia all applying ADMIXTURE analyses (Figures 2A, B, C). 

The first two sets of researchers tentatively concluded that the two groups were most likely to have 

had different ancestral sources: 

According to Pagani et al. [10]: 

One insight provided by the ADMIXTURE plot (Figure [2A]) concerns the origin of the Ari Blacksmiths. 

This population is one of the occupational caste-like groups present in many Ethiopian societies that 

have traditionally been explained as either remnants of hunter-gatherer groups assimilated by the 

expansion of farmers in the Neolithic period or as groups marginalized in agriculturalist communities 

due to their craft skills. The prevalence of an Ethiopian-specific cluster (yellow in Figure [2A]) in the 
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Ari Blacksmith sample could favor the former scenario; the ancestors of this occupational group 

could have been part of a population that inhabited the area before the spread of agriculturalists.  

While according to Hodgson et al. [12]:  

 As the Ari Blacksmiths have negligible EthioSomali ancestry, it seems most likely that the Ari 

Cultivators are the descendants of a more recent admixture between a population like the Ari 

Blacksmiths and some other [Horn Of African] population (i.e. the Ethio-Somali ancestry in the Ari 

Cultivators is likely to substantially postdate the initial entry of this ancestry into the region).  

If the ADMIXTURE plots from the three studies are interpreted according to the protocol above, they 

all imply that the Blacksmiths are pure representatives of one ancestral population (as shown by a 

homogeneous block of colour), while Cultivators are recently admixed, receiving ancestral 

contributions from neighbouring Ethiopian groups. However, the results of the three studies differ in 

how much the ancestral population that Blacksmiths purportedly represent has contributed to the 

Cultivators or to other groups. For example, Somalis receive on average approximately 20% of their 

ancestry from the group in Figure 3A, approximately 2% in Figure 3B and less than 1% in Figure 3C. 

 

Figure 3 Analysis of Ari ancestry.  ADMIXTURE analyses of the Ari and neighbouring Ethiopian groups adapted from (A) 
Pagani et al. [10], (B) Hodgson et al.[12]  and (C) van Dorp et al. [11] at K = 11. Somali (SOM) and Afar (AFAR), Ari 
Blacksmith (ARIb) and Ari Cultivator (ARIc) populations were used in all three of the studies but the other populations 
differ substantially and the exact individuals differ slightly due to different quality control procedures.  (D) 
CHROMOPAINTER inferred painting palettes based on (C). (E) Palette residuals under best fit ancestral population 
admixture model (F) Estimated ancestral palettes. Palette received from other populations are shown in grey.   

In fact, as was demonstrated by the third set of authors [11] based on several additional analyses, 

this history is false and the totality of evidence from the genetic data shows that the true history is 

analogous to the Recent Bottleneck Scenario of Figure 1A. The Blacksmiths and the Cultivators 

diverged from each other, principally by a bottleneck in the Blacksmiths, which was likely a 

consequence of their marginalised status. Once this drift is accounted for the Blacksmiths and 
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Cultivators have almost identical inferred ancestry profiles and admixture histories. In our analysis, a 

strong deviation from a simple admixture model can be seen in the residual palettes, which imply 

that the ancestral palettes estimated by badMIXTURE substantially underestimate the drift in the Ari 

Blacksmiths (Figure 3E).   

Sample sizes can substantially affect clustering and ancestral population inference 

The alert reader will have noticed a difference between the results inferred for the simulated Recent 

Bottleneck Scenario and the real Ari data. In the real data (Figure 3), the Ari Blacksmiths have the 

largest residuals, which imply that their genetic drift is much stronger than predicted based on the 

ancestral palettes. For the simulated data, the light blue ancestral palette (Figure 1E) incorporates 

strong drift in its recent history and the largest residuals are found in P2 which is analogous to the 

Ari Cultivators. This difference is due to sample size. In the real data, there are many more 

Cultivators than Blacksmiths, while in the simulations, P1, which is analogous to the Blacksmiths has 

more sample members. Sample size influences the results because the ancestral palettes are 

calculated by badMIXTURE based on minimizing the sum of residuals over all of the individuals, 

giving more weight to larger populations.  

The results obtained by STRUCTURE/ADMIXTURE are themselves also greatly affected by sample size 

[13]. Specifically, groups that are numerically small with respect to other groups in the sample or 

have undergone little population-specific drift of their own are likely to be fit as mixes of multiple 

drifted groups, rather than given their own ancestral population. Indeed, if an ancient sample is put 

into a dataset of modern individuals, the ancient sample is typically represented as an admixture of 

the modern populations (e.g. [14], [15]), which can happen even if the individual sample is older 

than the split date of the modern populations and thus cannot be admixed. A similar effect can 

happen when a source population is put into a dataset with two or more drifted sink populations. 

The source can be represented as a mix, even though there is no mixture within its history. 

The sensitivity of STRUCTURE/ADMIXTURE to sample size and to strong genetic drift allows the 

addition of two more to the above protocol: 

(0) Make sure to over-sample your favourite group.  

(1a) If your favourite group does not have its own population, increase K until it does.  

The effects of sample size are vividly illustrated by the analyses of Friedlaender et al. [16] who 

augmented a pre-existing microsatellite dataset from a worldwide collection by a similar number of 

samples from Melanesia, in order to study genetic relationships between Melanesians, for which 

purpose their sample was excellent. For K=2, their analysis infers PNG as one ancestral population 

and Western Eurasia and Africa as the other, with East Asians being represented as genetic mixtures 

(Figure 4A). This analysis differs from that of Rosenberg et al. [17] for K=2 who had only a small 

number of Melanesians in their sample, and who found Native Americans rather than Melanesians 

to be the unadmixed group  (Figure 4F). For K=6, both models distinguish between all 5 continental 

groups (Americans, Western Eurasians, Africans East Asians, Oceanians), however Rosenberg et al. 

split Native American groups into two ancestral populations (not presented here), while 

Friedlaender et al. infer that Melanesians have two ancestral populations, with pure representatives 
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in Bourganville and New Britain (Figure 4B).  A third result for K=6 was found by Rosenberg et al. [6] 

who found the Kalash, an isolated population in Pakistan, to be the sixth cluster. 

It is tempting to attribute the global clustering results of Friedlaender et al. as being due to peculiar 

sampling but for K=2, the results of Rosenberg et al. [17] are actually odder, if interpreted literally, 

since they imply a continuous admixture cline between Africa and the Americas. From almost any 

perspective, the most important demographic event that has left a signature in the dataset is the 

out-of-Africa bottleneck. This is not taken by STRUCTURE to be the event at K=2 in either of the 

analyses or of others with similar datasets because sub-Saharan Africans constitute only a small 

proportion of the sample. 

Some even more peculiar results are obtained for an analysis that focused on Melanesian 

populations, leaving in only East Asian populations and a single European population, namely the 

French. Friedlander et al.’s purpose in presenting this analysis was to analyse the fine-scale 

relationships amongst the Melanesians, while detecting admixture e.g. from Colonial settlers. Our 

purpose here is to ask what the results imply, when interpreted literally, about the relationships 

between Melanesians, East Asians and Europeans. For all values from K=2 to K=9, the French 

population is inferred to be a mixture between an East Asian population and a Melanesian one. For 

K=7 to K=9, the model is more specific, fitting the European population as a mixture of East Asian 

population and one from New Guinea (Figure 4D,E). Only for K=10 do the French form their own 

cluster and in this case they are inferred to have variable levels of admixture from East Asians (Figure 

4C). 

Once again, it is tempting to write these results off as being the product of an inappropriate 

sampling scheme, but instead imagine that there was an environmental catastrophe that spared the 

people of Melanesia and a few lucky others. In this case, the analysis would become a faithful 

sampling of the people of the world and the results would become the world’s genetic history.  This 

exercise is relevant in particular because human history is in fact full of episodes in which groups 

such as the Bantu and the Han have used technological, cultural or military advantage or virgin 

territory to multiply until they make up a substantial fraction of the world’s population.  The history 

of the world told by STRUCTURE or ADMIXTURE is thus a tale that is skewed towards populations 

that have grown from small numbers of founders, with the bottlenecks that that implies. Even if the 

sampling is strictly proportional to modern population sizes, it is a winner’s history. 

Other genetic analysis methods have similar peculiarities. Principle Components Analysis (PCA) is 

closely related to the STRUCTURE model in the information that it uses, both in theory [9] and in 

practice [18] and has also been shown theoretically to be affected by sample size [19].  Friedlaender 

et al. plot a neighbour-joining tree calculated based on Fst values between populations which 

instructively exaggerates the effect of drift (Figure 4G). Africa and the Middle East together make a 

small part of the diversity which is dominated by the isolated populations of Native Americans and 

PNG. If enough individuals are present in the sample, these populations are likely to be picked out as 

major axes of variation, either by STRUCTURE, ADMIXTURE or PCA. 
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Figure 3 STRUCTURE results for global human genetic datasets reproduced from Friedlaender et al. [16] (A-E) and 
Rosenberg et al. [17] (F). (G) reproduces the neighbour-joining Fst tree  [16] coloured according to K=6 STRUCTURE 
results (A).  

 

Summarizing but not over-simplifying complex datasets 
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Notwithstanding the pitfalls we have described, there is tremendous value in summarizing data 

based on a handful of major axes of variation. Identifying these axes is a first step in historical 

reconstruction and in asking whether they can in fact be related to specific historical bottlenecks, 

expansions or migrations or whether they instead reflect continuously acting processes.  PCA is 

effective for representing two or three axes of variation but becomes unwieldy for four or more and 

suffers from similar interpretation issues as STRUCTURE/ADMIXTURE. We finish this article by 

attempting to describe variation within a recently published Indian dataset. 

Basu et al. [20] used an ADMIXTURE plot with K=4 to summarize variation amongst continental 

Indians from 19 populations. The four ancestral populations were labelled Ancestral North India 

(ANI), Ancestral South India (ASI), Ancestral Tibeto-Burman (ATB) and Ancestral Austro-Asiatic (AAA), 

as shown in Figure 5A. The overall fit of badMIXTURE is poor (Figure 5B) principally due to individuals 

receiving much more of their palette from their own population than predicted, as indicated by the 

blue in the diagonals of the residual matrix. Predominantly ASI populations have the largest residuals 

followed by AAA, ATB and then ANI. The most likely explanation for these residuals is genetic drift 

specific to the labelled populations, although populations can also diverge from each other by 

admixture with ghost populations. In any case, the results show that many of these populations have 

undergone significant demographic events of their own and are not simply recent mixtures between 

large ancestral populations. In some of the population, such as the Kharti (KSH), there is substantial 

variation between individuals in the proportion of the within-population painting palettes 

contribution, which is likely to reflect recent relatedness between members of the sample.  

The large proportion of the painting palette that members of ASA and ATB population receive from 

their own population makes the rest of their palette hard to interpret. We have therefore attempted 

to estimate what the painting palettes would look like if the drift specific to individual populations 

had not occurred. Specifically, we replace the within-population palette proportion for each 

individual with the value predicted based on the ancestral palettes and rescale the remaining 

palettes so that the whole palette continues to sum to one. We then re-estimate the ancestral 

palette and iterate until convergence. The resulting palette is shown in Figure 5C. The ancestral 

palettes estimated by this method are substantially altered, particularly for ASI and AAA populations 

(compare Figure 5D-E). The results of this procedure should be interpreted with caution – for 

example because they are highly dependent on how the labelled populations are defined – but have 

proven informative for this dataset. More rigorous approaches to excluding population-specific drift 

are described by van Dorp et al [11]. 

Once population specific drift is accounted for, there is good evidence for four ancestry components, 

as can be seen by eye inspecting the palettes. For example, the four ATB populations each have 

higher proportions of all four ATB population palettes than any of the non-ATB populations. It is also 

possible to make deductions about the relationships between the ancestral populations. The ASI and 

ANI populations are relatively closely related, with high sharing of palettes between them, while ATB 

and AAA are more distantly related to each other and to ANI and ASI. These results validate the 

claim made by Basu et al. [20] that variation within the Indian populations they sampled should not 

be thought of as a predominantly mixture between ANI and ASI.  

These palettes also provide evidence of sharing of ancestry between pairs of populations that is not 

predicted based on the four ancestral palettes (shown above the black line in Figure 5C), providing 
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further evidence of the importance of recent demography, rather than ancestral population mixture 

in shaping diversity. These pairs of populations are Tripuri (TRI) and Jamatia (JAM), Irula (IRL) and 

Kadar (KDR), Ho (HO) and Santal (SAN) and Birhor (BIR) and Korwa (Kor). This sharing is most likely to 

have arisen during the divergence of the populations from each other and can for example happen if 

the ATB populations split from each other by a hierarchical process, with TRI and JAM splitting off 

from each other after they split from the ancestors of TRH and MBR. Alternatively, the same pattern 

can arise if the rate of migration is higher between TRI and JAM than the other populations, so that 

they share recent drift. 

 

Figure 4 Comparison of ADMIXTURE with painting palettes for Indian genetic data originally presented in [20]. (A) 
ADMIXTURE profile at K = 4 (B) Residuals palettes estimated by badMIXTURE. (C) Painting palettes after correcting 
within-population values as described in text. The part of the palette above the black line is not predicted by 
badMIXTURE (D) Ancestral palettes estimated by badMIXTURE (E) Estimated ancestral palettes after correcting for 
within-population values. 
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Finally, we can ask whether the variation in ancestry proportions in the ADMIXTURE plots are likely 

to be indicative of a history of admixture between populations. For example, ADMIXTURE assigns 

nearly 100% ASI ancestry to Paniya (PNY), while KDR and IRL are inferred to be admixed (Figure 5A) 

but this result is suspicious because of the tendency documented above for ADMIXTURE to assign 

pure ancestry components to highly drifted populations like PNY. Once population specific drift is 

accounted for, the palette for PNY actually has slightly less overall ASI ancestry than KDR and IRL 

(Figure 5C). PCA also makes PNY the most strongly differentiated population according to the 

relevant Principal Component (see Figure 2, Basu et al.) but this may be based on PNY specific drift 

being incorporated into the component and should not be thought of as providing independent 

confirmation of the ADMIXTURE results. Thus the evidence that PNY is a less admixed representative 

of a putative ancestral ASI population than KDR or IRL is weak. 

For AAA and ANI, an admixture cline does appear to be a real feature of the data, as indicated by 

variation between the labelled populations in the overall proportion of the palette that comes from 

other AAA and ANI populations, respectively (Figure 5C). The palettes are consistent with the 

ADMIXTURE result in implying that Birhor (BIR) have the most AAA ancestry of any population. For 

ANI, ADMIXTURE finds that KSH receive almost all of their ancestry from ANI while Gujarati Brahmin 

(GBR) are more admixed but once the high relatedness of some KSH is accounted for along with 

other population specific drift, it is difficult to discern differences between the palettes of these two 

populations.  

Overall, these results show that in recent history, genetic drift has been at least as important in 

shaping variation within these populations as admixture. A simple history comprising a 

differentiation phase followed by a mixture phase is false and inferences based on this model are 

liable to be misleading. Other, qualitatively different scenarios should also be considered, such as 

one in which in which the processes of mixture and divergence in ancient history was similar to that 

in recent history and the differentiation into four major ancestries reflects sustained differences in 

connectedness between populations. It is beyond the scope of this manuscript to test this or other 

models. The popularity of STRUCTURE and its descendants as unsupervised clustering methods is 

justified but even if interpreted carefully their use should represent the beginning of a detailed 

demographic and historical analysis, not the end. 

 

Materials and Methods 

Simulations 

Figure 1A illustrates the demographic histories behind three simulation scenarios: “Recent 

Admixture”, “Ghost Admixture” and “Recent Bottleneck”. “Ghost Admixture” and “Recent 

Bottleneck” are based on full simulations described in [11] aimed to capture global population 

genetic diversity with an emphasis on exploring population structure in “Ethiopian-like” simulated 

groups, here represented as P1-P4. For our purposes we instead employ these simulations to assess 

how differences in demographic histories impact on inferred ADMIXTURE profiles. 

For the “Recent Bottleneck” and “Ghost Admixture” simulations 13 populations, each containing 100 

individuals were simulated using the approximate coalescence simulation software MaCS [21] under 
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histories that differ in how P2 relates to P1 (Figure 1A).  Specifically, “Recent Bottleneck” equates to 

the “MA” simulations in [11]where P1 splits from P2 (analogously Pop5b splits from Pop5) 20 

generations ago followed immediately by a strong bottleneck in P2. “Ghost Admixture” equates to 

the “RN” simulations of [11] where P1 splits from P2 (analogously Pop5b splits from Pop5) 1700 

generations ago after which migrants from P1 form approximately 50% of P2 over a period of 200-

300 generations. Although simulating 100 individuals in each population, we perform subsequent 

ADMIXTURE and CHROMOPAINTER analyses on a subset of these using only 35 individuals from P1, 

25 individuals from P2, 70 individuals from P3 and 25 individuals from P4, so as to approximately 

mimic sample sizes in the true data. This leaves an ‘excess’ of simulated individuals.  For simplicity 

and ease of interpretation only P1-P4 are depicted in Figure 1 with all other populations coloured 

grey.   

For the “Recent Admixture” scenario we implement a simulation technique adapted from that 

applied in [22], which sub-samples chromosomes from the ‘excess’ individuals simulated under the 

“Recent Bottleneck” scenario. This method explicitly mixes chromosomes from different populations 

based on a set of user-defined proportions, analogous to an instantaneous admixture event. 

Importantly for our purposes, this simulation method allows direct assessment of how well 

ADMIXTURE recapitulates these proportions, an objective which is more difficult to achieve using 

more complex simulation techniques. Using this approach we simulate admixed chromosomes of P2 

by mixing chromosomes of 20 ‘excess’ individuals from each of P1 (50%), P3 (35%) and P4 (15%) 

based on an admixture event occurring λ=15 generations ago. In particularly to simulate a haploid 

admixed chromosome and as in Leslie et al. [22] we first sample a genetic distance x from an 

exponential distribution with rate 0.15 (λ/100). The first x cM of the simulated chromosome is 

composed of the first x cM of chromosomes selected randomly, but without overlap, from ‘excess’ 

individuals of P1, P3 and P4 according to the defined proportions. This process is repeated using a 

new genetic distance sampled from the same exponential distribution (rate=0.15) and continued 

until an entire simulated chromosome is generated. This method is then re-employed to generate a 

set of 20 haploid chromosomes for a single individual and then repeated 70 times to generate 70 

haploid autosomes. Diploid individuals are constructed by joining two full sets of haploid 

chromosomes, resulting in 35 simulated Pop2 individuals in total. All other populations are 

simulated using MaCS as in the “Ghost Admixture” and “Recent Bottleneck” scenarios. 

For each simulation scenario we apply ADMIXTURE [2] to the sampled individuals from every 

simulated group. SNPs were first pruned to remove those in high linkage disequilibrium (LD) using 

PLINK v1.07 [23] so that no two SNPs within 250kb have a squared correlation coefficient (r2) greater 

than 0.1. ADMIXTURE was then run with default values for multiple values of K, and the resultant 

admixture profiles plotted where K=11 (Figure 1B and Figure 3C). In addition for each scenario we 

applied CHROMOPAINTER to paint all individuals in relation to all others using default values for the 

CHROMOPAINTER mutation/emission (“-M” switch) and switch (“-n” switch) rates.  We sum the total 

proportion of genome-wide DNA each recipient individual is painted by each donor group and plot 

the inferred contributions for each recipient as a painting palette (as in Figure 1C and Figure 3D).   

Estimation of ancestral palettes 

Define 𝐴 as the 𝑁 ×𝐾 admixture proportion matrix, where there are N individuals in the sample and 

K ancestral populations used in the ADMIXTURE analysis. Let 𝐶 be the 𝑁 × 𝑃 matrix of individual 
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palettes from the CHROMOPAINTER painting, and 𝑋 be the 𝐾 × 𝑃 matrix of the palettes for each 

ancestral population. Then we seek solutions for 𝑋 that minimise the squared prediction error of the 

form: 

𝐴𝑋 = 𝐶. 

We define 𝐵 = (𝐴𝑇𝐴)−1𝐴𝑇. Then, 𝐵𝐴𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐴𝑋 = 𝑋, leading to the solution 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐶. 

Note that there is no guarantee that 𝑋 will be positive. Negative elements would imply a poor fit of 

the admixture model, and alternative minimization strategies might be employed to find 𝑋 subject 

to the constraint. Further, if the matrix 𝐴𝑇𝐴 is rank deficient its inverse will not exist. This should 

only be the case if 𝐾 is chosen too large, or there are genuine symmetries in the data.  

For a recent admixture model, long haplotypes are inherited from each of the donating populations 

in a given admixture proportion. If we assume that ancestral boundaries can be inferred then, 

excluding drift in either SNP frequency or haplotype structure, the palettes of admixed individuals 

are (by definition) a mixture with the same ancestry proportions as the SNPS under which admixture 

is inferred. 
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