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Abstract—The automatic reconstruction of single neuron cells
from microscopic images is essential to enabling large-scale data-
driven investigations in neuron morphology research. However,
few previous methods were able to generate satisfactory results
automatically from 3D microscopic images without human inter-
vention. In this study, we developed a new algorithm for auto-
matic 3D neuron reconstruction. The main idea of the proposed
algorithm is to iteratively track backwards from the potential
neuronal termini to the soma centre. An online confidence score
is computed to decide if a tracing iteration should be stopped
and discarded from the final reconstruction. The performance
improvements comparing to the previous methods are mainly
introduced by a more accurate estimation of the traced area and
the confidence controlled back-tracking algorithm. The proposed
algorithm supports large-scale batch-processing by requiring only
one hyper-parameter for background segmentation. We bench-
tested the proposed algorithm on the images obtained from
both the DIADEM challenge and the BigNeuron challenge. Our
proposed algorithm achieved the state-of-the-art results.
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I. INTRODUCTION

D IGITAL reconstruction of 3D neuron morphological mod-
els is important for understanding the connectivity of

the nervous system and the cell information processing within
neurons. Given a 3D light microscopic image stack containing
a single neuron, the reconstruction resembles a tree graph
model that represents the circuit of the neuron cell. Within the
scope of computational neuroscience, the reconstructed models
are acquired for purposes such as neuronal identity, anatomi-
cally and biophysically realistic simulations, morphometric and
stereological analysis and determining potential connectivity.
On the other hand, the speed of image acquisition techniques
has greatly surpassed the speed of processing these images.
The 3D neuron models being used for neuron morphology
studies nowadays were mainly generated by manual or semi-
automatic tracing methods, which is a highly time-consuming
task. The automatic reconstruction of the neuron morpholog-
ical models has thus become one of the core bottlenecks in
neuroscience nowadays. The DIADEM challenge [1] and the
recent BigNeuron challenge [2] were also hosted to provide
open-access data and software tools for improving the accuracy
of neuron reconstruction algorithms. However, most automatic
tracing methods still tend to fail with low-quality images.

Siqi Liu, Donghao Zhang, Yang Song and Weidong Cai are with School of
Information Technologies, University of Sydney, Darlington, NSW Australia.
(lsqshr@gmail.com)

Hanchuan Peng is with Allen Institute for Brain Science, Seattle, WA, USA.

The challenges of neuron reconstruction are mainly caused
by the low image quality and the complex neuronal mor-
phology. Due to the fundamental limits of light microscopic
imaging and neuron cell extraction pipelines, the 3D micro-
scopic image-stacks often contain strong background noise,
irrelevant structures and small gaps along the neuronal arbours.
Image qualities from different sites also vastly differ due to the
different imaging pipelines.

Many recent methods were proposed to automate 3D neuron
reconstruction by combining computer vision techniques and
neuron morphological knowledge [3]–[14]. The state-of-the-
art algorithms are often pipelines combining preprocessing,
branch tracing, and post-processing components. According
to a recent review paper [15], the existing neuron tracing
methods can be divided into global processing [3], [16]–[20],
local processing [21]–[23], and meta-algorithms [5], [24], [25].
The global approaches process the entire image whereas the
local processing methods explore the image only around the
fibres of interests. Some of the meta-algorithms were proposed
to tackle the challenges of low image quality or large image
scale independently of any specific neuron tracing algorithm.
Global processing algorithms are becoming more popular in
the recent years than the local processing algorithms since the
global information is essential to generate the correct neuronal
topology.

The Rivulet algorithm was proposed [8], [26] as a combi-
nation of global and local approaches. The global informa-
tion is firstly explored with the Multi-Stencils Fast Marching
[27]. Rivulet then iteratively tracks neuronal arbours from
the furthest potential termini back to the soma centre and
erases the areas covered by newly traced branches. The branch
erasing ensures the algorithm does not generate duplicated
arbours. The tracing finishes only when a high proportion of
the foreground area has been explored. However, the Rivulet
algorithm tends to generate many over-reconstructed arbours
and connection errors when the image contains strong noise.
The performance of Rivulet is also highly dependent on the
choice of three hyper-parameters, which makes it hard to be
applied to large-scale datasets.

In this study, we present an algorithm, named Rivulet2,
that generates more accurate neuron tracing results with fewer
hyper-parameters and faster speed than Rivulet. We refer the
original Rivulet algorithm as Rivulet1 for clarity. The major
components of the proposed algorithm can be summarised
as (1) Preprocessing the image to obtain a segmentation as
shown in Fig. 1(b) and generating a distance transform shown
in Fig. 1(c); (2) Applying the multi-stencils fast-marching
(MSFM) as shown in Fig. 1(d) on the distance transform and
computing the gradients of the MSFM time crossing map; (3)
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(a) Original image (b) Segmentation (c) Distance transform (d) Time crossing map

(e) Initial neuron tracing with Rivulet2 (f) Neuron tracing after post-processing

Fig. 1. The original image of a zebrafish neuron is shown in (a). Along with the neuron cell of interest, the image also contains many noise and some irrelevant
fibres. The example effects of the preprocessing components are shown in (b)-(d). The initial tracing is shown in (e) preserves irrelevant fibres that might be
wrongly included in the neuron extraction. The final tracing shown in (f) is obtained by eliminating the redundant fibres and fuzzy leaves. The branch colours
are randomised for visualisation.

Iteratively tracking back from the geodesic furthest point on
the foreground and erasing the area that covered by the newly
traced branch shown in Fig. 1(e) and (4) Post-processing the
result neuron by pruning the short leaves and the unconnected
branches to obtain the final results as shown in Fig. 1(f).

Comparing to Rivulet1, the novelty of Rivulet2 mainly
resides in the (3) and (4) components. The back-tracking of
Rivulet1 stops after it traces on the background for a long
distance, which is determined by a gap parameter. However,
it is ill-posed to set a single hyper-parameter to distinguish
the gap distances between unconnected neuronal segments
since there could be gaps between noise points and neuronal
segments as well. The gap parameter is no longer needed in
the the proposed Rivulet2 algorithm since the branch back-
tracking is stopped by two new hyper-parameter free criteria.
The first criterion is computed with an online confidence score
that is updated at every tracing step. The second criterion is
to check if a large gap presents on an arbour by comparing
the gap distance and a score determined by the mean radius
sampled at the previous tracing steps. Combing both criteria,

Rivulet2 can trace the neuronal arbours with high accuracy
even when neuronal segment gaps and strong noise both reside
in the image. Rivulet1 also generates small fuzzy branches
which are caused by the coarsely estimated neuron surface.
We present a method to erase the traced branches precisely
for suppressing the false positive branches. It also makes the
proposed algorithm faster than the original Rivulet since it
finishes within fewer iterations without revisiting the traced
image areas. A parameter-free approach is added to merge the
newly traced branches into the neuron tree-trunk. Rivulet2 has
no hyper-parameter other than a foreground threshold, which
can be trivially eliminated by the automatic thresholding meth-
ods in well-contrasted images. In our experiments, we found
that the proposed algorithm was able to generate reasonable
results in most of the challenging images acquired from various
species and neuron types. Rivulet2 was shown to outperform
Rivulet1 and several state-of-the-art methods in a majority of
the bench-test images obtained from the DIADEM challenge
and the BigNeuron challenge.
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II. METHODS

A. Overview of Rivulet2
Taking a 3D grey scale image I(x) as the input with 3D

coordinates x, a neuron tracing algorithm aims to output the
neuron reconstruction as a tree graph model G where each tree
node is assigned a 3D spatial coordinate and a radius. Each
neuron tree node can have a degree between 1 and 3. The root
node of G is defined as the soma centre.

To obtain this tree graph model, Rivulet2 starts with Gaus-
sian and median filtering for very noisy images. A binary
segmentation map B(x) is then generated to classify the voxels
as foreground and background. The foreground voxels are
considered as the potential neuronal signals imaged by light
microscope. In practice, Rivulet2 is capable of generating
reasonable results only with a coarse image segmentation
generated by only applying a background threshold. We then
generate a 3D boundary distance transform DT (x) based on
B(x). The voxels close to the background have lower values
than the voxels close to the neuronal centrelines in DT (x).
Next, a time crossing map T (x) is generated with a fast
marching method [27] using a speed image generated by
DT (x). Based on the gradient of this map ∇T (x), Rivulet2
traces each branch of the neuron tree iteratively. It starts with
the geodesic furthest point remaining in the foreground and
attempts to track back to the soma centre. An online confidence
score is computed at each tracing step along with several other
stopping criteria. The tracing iteration is stopped if any of
the criteria is triggered. The area covered by the newly traced
branch is marked on the time map T (x) to indicate that it
has been explored. The newly traced branch is merged to the
trunk if it touches the area covered by a previous branch. The
whole process stops after all of the foreground areas have
been explored. Finally, the short leaves and the unconnected
branches are removed in the output tree G to ensure the neuron
topology is valid for morphometric analysis.

B. Time Crossing Map
The segmentation map B(x) is firstly obtained with a back-

ground threshold. We then use the multi-stencils fast marching
(MSFM) [27] to obtain the geodesic distance between the soma
centre xsoma and every voxel in the input image, including the
background area. The fast marching method outputs a map of
travelling time T (x) departs from the source point, psoma in
our case, to any voxel by solving the Eikonal equation

F (x) =
dx

dT
, |∇T (x)| = 1

F (x)
, T (xsoma) = 0 (1)

where F is the travelling speed defined at 3D coordinates x.
To make the speed image F , we obtain a boundary distance
transform DT (x). Each voxel of DT (x) contains its euclidean
distance to the segmented boundary [3]. argmaxxDT (x) and
maxDT (x) are used as the soma centre xsoma and the soma
radius Rsoma respectively. Our speed image F (x) used in
MSFM is formed as

F (x) =

{
(DT (x)/maxDT (x))4 if B(x) = 1

10−10 if B(x) = 0
(2)

Thus, only the speed of the foreground area is determined
by DT (x). The normalised DT (x) is powered by 4 to further
highlight the centreline. We leave a small speed value 10−10 in
the background area to allow the tracing to proceed when a gap
presents. The background travelling speed would not outweigh
the foreground speed, due to the large speed differences.
MSFM is then performed on DT (x) with xsoma as the single
source point. The computation of MSFM is stopped when all
the foreground voxels with B(x) = 1 have been visited. Since
the travelling time changes faster within the neuronal arbours
than the background area, the gradient direction in ∇T (x) at
each foreground voxel is expected to align with the orientation
of the neuron arbour it resides in.

C. Sub-Voxel Back-Tracking in a Single Branch
With the gradient descent on ∇T (x), we can trace the

neuron structure that a source node p resides in by repeatedly
updating the location of p as

pi+1 = pi − α
∇T (pi)

‖∇T (pi)‖
(3)

where α is the step-size constant. p is supposed to move from
the outer area of the neuron towards the soma centre xsoma.
However, since most of the light microscopic images are
under-sampled, the precision of voxel-wise gradient descent
may introduce direction errors that affect the future tracing
steps. Therefore, we use the sub-voxel gradient interpolation
to perform the back-tracking with the fourth order Runge-Kutta
method (RK4) as

k1 = 0.5α/max(‖∇T (pi)‖, 1)

pi,1 = pi − k1

k2 = 0.5α/max(‖∇T (pi,1)‖, 1)

pi,2 = pi,1 − k2

k3 = α/max(‖∇T (pi,2)‖, 1)

pi,3 = pi,2 − k3

k4 = α/max(‖∇T (pi,3)‖, 1)

pi+1 = pi − (k1 + 2k2 + 2k3 + k4)/6

(4)

where k1, k2, k3, k4 are the direction vectors interpolated at the
sub-voxel resolution. α is fixed as 1. To prevent tracing from
stopping at a local minimal, the momentum is used instead for
point update when the velocity ‖pi+1 − pi‖22 is small

pi+1 = 2pi − pi−2 (5)

D. Iterative Back-Tracking with Precise Branch Erasing
All the branches of a neuronal tree are traced iteratively, with

the gradient back-tracking described in Section II-C. Next, we
make a copy of T (p) that is denoted as T ∗(p) for finding the
starting point for each tracing iteration and labelling the traced
branch. The values of the original T (p) are used for the branch
erasing described later in this section. Each tracing iteration
starts with the voxel xsource = argmaxT ∗(x). xsource is
considered as the location of either an undiscovered neuronal
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(a) Tracing (b) Segmentation (c) ΩR region (d) Ω region

Fig. 2. Illustration of the contour used for branch erasing. (a) is the tracing of
one iteration (red) overlaid on the original image (blue); (b) is the segmentation
used for Rivulet2 tracing; The green area in (c) is the ΩR region which is also
used to erase the traced branch in Rivulet1; The black area inside ΩR in (d)
is the region Ω used in Rivulet2. Since Ω enables a more accurate estimate
of the traced region, Rivulet2 traces the entire neuron faster than Rivulet1
without breaking the connection at the neuronal joints.

terminus or a noise voxel segmented by mistake. The position
of the neuronal node p is updated by tracking from xsource
to xsoma along the neuronal fibre curve c(t) that xsource
might reside in using the RK4 tracking described in Eq.4. c(0)
represents the start of the curve at xsource and c(1) represents
the newly traced end of the curve. We track the distance G(i)
that the i-th node has been travelled on the background as

G(i) =

{
‖pi − pi−1‖22 +G(i− 1) if B(pi) = 0

0 otherwise
(6)

The radius Ri of the node at pi is obtained by growing a
spherical region centred at pi as ΩR(p) = {p|‖pi−p‖22 < Ri}
until

∫
p∈ΩR(p)

B(p)

|ΩR(p)| ≤ 60%, where |ΩR(p)| is the volume of
ΩR(p). Since the RK4 tracking is powerful of tracing across
large gaps between the broken neuron segments, we designed
a few stopping criteria to avoid Rivulet2 from generating false
positives. The tracing of c(t) is stopped when any of the
following criteria is triggered:

1) c(1) reaches the soma area when ‖pi−psoma‖22 < 1.2∗
Rsoma

2) The online confidence (OC) score P (c(t), B(x)) is
smaller than 0.2 or a deep OC valley is detected as
described in Section II-E.

3) An exceptionally large gap presents in c(t) as described
in Section II-E.

4) c(t) is ready to merge with another previously traced
branch as described in Section II-F.

5) The tracing of c(t) has not moved out of the same voxel
it reached 15 steps before.

6) c(t) reaches an out of bound coordinate.
To avoid repeatedly tracing the area covered by c(t) in the

future iterations, T ∗(p) is then erased as
T ∗(Ωc(t)) = −1 if P (c(t), B(x)) > 20%

and no deep valley
T ∗(Ωc(t)) = −2 otherwise

(7)

The erased regions Ωc(t) with T ∗(Ωc(t)) = −1 is considered
as erased by a neuronal fibre; it is otherwise considered as
erased by a curve traced on the noise points. The regions with
T ∗(x) < 0 are thus excluded for selecting new xsource in
future iterations. The erased regions also indicate when a newly
traced branch should be merged as described in Section II-F.
At the end of a tracing iteration, xsource = argmaxxT

∗(x)
is chosen from the remaining T ∗(x) as the location of the
new source point p for the next iteration. The entire algorithm
terminates when all the foreground region has been erased
from T ∗(x).

The estimate of Ωc(t) is important for tracing accuracy as
well as the running time. Rivulet1 [8], [26] used a similar
method for region estimation as the pruning based methods [4],
[28] by forming it as the union region ΩR of all the spherical
regions covered by the nodes in c(t)

ΩR = ∪t∈[0,1]ΩR(c(t)) (8)

However, since ΩR was only an approximated estimate, when
ΩR(c(t)) is locally over-reconstructed, there is a risk that
voxels on the unexplored branches and the branch forking
might be erased; Otherwise, it leaves small fragments remain-
ing at T ∗(p), resulting in more tracing iterations and over-
reconstructed branches.

In Rivulet2, we form a new region Ω by combining another
region generated with the original time map T (p)

ΩT = {ω ∈ T |T (c(1)) 6 ω 6 T (c(0))} (9)

A region ΩR∗ that is slightly larger than the previous ΩR is
formed with 120%× Ri to include all the possible candidate
voxels to be erased. Ω is then formed as Ω = ΩR∗ ∩ ΩT .
The formulation of Ω is illustrated in Fig.2(d). Ω is a precise
estimate of the covered region of c(t) by considering the
travelling time generated by MSFM. In a majority of cases,
Ω covers exactly the branch boundary without leaking at the
branch forking points.

E. Branch Cut with Online Confidence Score
Since xsource can sometimes be a noise voxel, an effective

method is needed to distinguish branches traced on neuronal
fibres and the ones traced from noise voxels. Rivulet1 uses a
single gap threshold to stop the tracing when a certain number
of steps have been made in the background. However, the
choice of the gap threshold is ill-posed. For Rivulet2, we
compute an online confidence (OC) score P (c(t), B(x)) for
each tracing step. OC is defined as the proportion of back-
tracking steps that are made in the foreground voxels so far

P (c(t), B(x)) =

∑
tB(c(t))

|c(t)|+ 1
(10)

where
∑

tB(c(t)) represents the number of steps in the fore-
ground; |c(t)| is the number of total steps in c(t). Different OC
curves generated in a single fly neuron are shown in Fig. 3(a).
P (c(t), B(x)) is expected to decrease quickly during back-
tracking if the tracing starts from a noise point. P (c(t)) would
otherwise remain a high value if the back-tracking jumps over
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Fig. 3. (a) visualises the online confidence (OC) curves while tracing a
single neuron cell from a noisy image. Some of the tracing iterations are
stopped when their OC curves touch 0.2 (the red horizontal line). For the
tracing iterations with OC scores higher than 0.2, the branches traced before
the deep valleys, represented by blue spots, are discarded. (b) shows a single
OC curve accompanied by two of its moving average (MA) curves with the
window sizes 4 and 10. Inspired by a financial analysis technique, the deep
valley of OC curve is detected at the lowest value between the two crossings
of the MA curves.

small neuron fibre gaps since the majority of back-tracking
steps are made in the foreground voxels. The +1 term ensures
P (c(t), B(x)) on a noise branch starts from 0.5 at its first step.
The back-tracking is stopped if P (c(t), B(x) is lower than
20% as shown with the horizontal line in Fig. 3(a), indicating
it was tracked from a noise voxel far away from the neuron
fibre. The regions erased by low confidence branches are
considered to be noise regions. The low confidence branches
are excluded from the final neuronal tree. It is also notable
that the future iterations are allowed to trace across the regions
with T ∗(p) = −2 without the branch merging being triggered.
The branches with P (c(t)) > 20% might show a dramatic
decrease at the beginning and an increase after it reaches the
neuron fibre if it is traced from a noise voxel. As depicted

in Fig. 3(a), deep valleys would appear along the OC curves
of the noisy branches, indicating the step when it touches the
neuron fibre. We erase T ∗(p) with only the former part of the
branch with −2 before the valley if P (c(t), B(x)) < 50% at
the valley point.

When the image is highly noisy, it might be insufficient
to identify a deep OC valley with only the lowest value of
P (c(t), B(x)) across the entire branch. We use the exponential
moving average (EMA) that is widely used in the financial
analysis to detect the deep OC valleys. The EMA is defined
as

EN
t = EN

t−1 +
2× (P (c(t), B(x))− EN

t−1)

N + 1
(11)

where Et is the EMA score with the window size of N at the
step t. We use two different window sizes 4 and 10 to track
a short-term EMA E4

t and a long-term EMA E10
t . The valley

point is found at the lowest point in P (c(t), B(x)) between the
two crossings of E4

t and E10
t if such two crossings exist. The

example valley points are shown as the blue spots in Fig. 3(a).
Using both the bottom boundary and the valley points, the

OC score is a simple but effective approach to identify most of
the neuronal gaps and the noise points. However, some of the
images also contain bright curvilinear structures that do not
belong to the same neuron cell of interest. For example, the
single neurons extracted from the Brainbow [29] images with
colour extraction sometimes contain fibres of other neurons
as shown in Fig 1(e). Though the gaps between such fibres
and the neuron of interest are normally large, P (c(t), B(x))
could remain high. To stop tracing from such irrelevant fibres,
the tracing stops when a continuous gap G(t) is larger than
8 × R(c(t)) where R(c(t)) is the mean radius estimated on
c(t).

F. Branch Merging
When the branch c(t) reaches a voxel x with T ∗(x) = −1, it

means the branch has reached an area explored by the previous
iterations. Rivulet1 stops the tracing iteration immediately in
such voxel and search for a previously traced node to connect.
However, it may cause topological errors since the endpoint of
c(t) might still be far from the branch that it should be merged
into. In Rivulet2, the tracing iteration does not stop once it
touches the boundary of a previously traced area. Instead, it
keeps performing back-tracking after the boundary touch and
seeks for a candidate node from the previous branches to merge
at each step. It is merged into the tree trunk if the closest node
pmin is either ‖c(1) − pmin‖ < Rc(1) or ‖c(1) − pmin‖ <
Rpmin

. The wiring threshold that controls the tolerable node
distance to merge used in Rivulet1 is thus no longer needed
in Rivulet2.

G. Post-processing
After all the back-tracking iterations, only the largest con-

nected section is kept. The majority of the discarded branches
are the background bright curvilinear structures that do not
belong to the same neuronal cell. It is also optional to remove
short leaves having the lengths shorter than 4 as long as spine
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detection is not required. Though the detection of the node type
is normally not required in the challenges such as DIADEM
[1] and BigNeuron [2], the node types such as soma, fork
points, end points are labelled when the branch is added to the
tree trunk. It is not capable of distinguishing the fibre classes
including apical dendrites, basal dendrites and axons.

III. EXPERIMENTAL RESULTS

A. Data
The images used in this study were recruited from both

the DIADEM challenge [1] and the BigNeuron challenge [2].
Nine image stacks of Olfactory projection (OP) fibres were
obtained from the DIADEM challenge. The OP dataset was
widely used and compared in the previous studies. Each OP
image stack contains a separate drosophila olfactory axonal
projection with a corresponding gold standard reconstruction.
The OP images were acquired with 2-channel confocal mi-
croscopy. The groundtruth manual tracings were obtained with
Neurolucida (Williston, VT) and Amira (Chelmsford, MA)
extension module hxskeletonize [30]. We manually fixed some
of the incomplete manual reconstructions with Vaa3D before
benchmarking all the methods.

We use images from the BigNeuron project as the second
dataset with a larger diversity of neuron types and image
conditions. The BigNeuron images were recruited from dif-
ferent neurobiology labs globally. Each image was traced and
validated by at least three neuroscientists using Vaa3D [31].
We chose nine challenging subsets of the BigNeuron cohort
with 114 images in total, containing neuron cells from different
species including fly, fruit fly, human, zebrafish, silkmoth, frog
and mouse. The subsets were chosen considering the feasibility
for automatic large-scale bench-marking. Also, to evaluate the
robustness of Rivulet2 on large-scale image datasets, we tested
it against the first-2000 dataset containing 2000 fruit fly neuron
images.

B. Implementation and Evaluation
To quantitatively evaluate Rivulet2, we used the Python

implementation Rivuletpy 1 released together with this paper.
A C++ implementation of Rivulet2 is also available in Vaa3D
as a neuron tracing plugin 2. We compared Rivulet2 with sev-
eral state-of-the-art neuron tracing methods, including APP2
[28], SmartTracing (SMART) [5], Farsight Snake (SNAKE)
[16], Probability Hypothesis Density Filtering (PHD) [11],
Ensemble Neuron Tracer [10], Neutube [7] and its predecessor
Rivulet1 ([8], [26]). We used the Vaa3D ported implementa-
tions for bench-marking the methods APP2, SMART, SNAKE,
ENT, and Neutube. For APP2, we used gray-weighted dis-
tance transform (GWDT) and disabled the automatic image
resampling. For PHD, we used its FIJI implementation and
performed grid-search for hyper-parameters using the FIJI
batch-processing macro provided together with the plugin. The
Rivulet Matlab Toolbox3 was used for testing the performance

1https://github.com/lsqshr/rivuletpy
2https://github.com/Vaa3D
3https://github.com/lsqshr/Rivulet-Neuron-Tracing-Toolbox

of Rivulet1. We use grid search for the wiring and the gap
thresholds for Rivulet1. The same manually selected back-
ground thresholds were used for evaluating all the compared
methods when required.

NeuroM (https://github.com/BlueBrain/NeuroM) is used to
validate the outputs before obtaining the quantitative analysis.
The empty or invalid neurons were not included in the quantita-
tive results. We use the precision, recall and F1-score to evalu-
ate the geometric appearance of the automated reconstructions.
A node in the automatic reconstruction is considered as a true
positive (TP ) if a ground truth node can be found within four
voxels; it is otherwise a false positive (FP ). A false negative
(FN) is defined when there is no automatically reconstructed
node within four voxels of a ground truth node. The precision
is defined as TP/(TP + FP ), and the recall is defined as
TP/(TP + FN). The F1 score balances the precision and
recall as 2× precision× recall/(precision+ recall). Also,
we compute the node distance measurements proposed in [32]
which are the spatial distance (SD), significant spatial distance
(SSD) and the percentile of distant spatial nodes (SSD%). SD
measures the mean distance between each pair of closest nodes
between two neuron reconstructions. SSD measures the SD
distance between each pair of closest nodes when they are
at least two voxels away from each other; SSD% measures
the percentile of the reconstructed nodes that are at least two
voxels away. All the bench-marking were performed using the
Artemis high-performance computing (HPC) infrastructure at
the University of Sydney.

C. Diadem Results
We show the Rivulet2 reconstructions of all 8 compared

neurons in the DIADEM OP dataset in Fig. 4. The manual
reconstructions are shown on the left, and the Rivulet2 (R2)
reconstructions are shown on the right. The proposed Rivulet2
algorithm can obtain visually identical reconstructions to the
groundtruth tracings by using a fixed threshold of 30 on all
images. The quantitative results are shown in Fig. 5 with
box plots. Rivulet2 outperforms the compared methods in
precision, F1 score, SD, SSD and SSD%. A small drop of
recall is seen compared to Rivulet1 since Rivulet1 tends to
generate more false positive branches when noise presents. The
robustness of Rivulet2 can also be seen in the relatively small
variances in each metric.

D. BigNeuron Results
We selected two challenging images to visually compare

the results shown in Fig. 6 and Fig. 7. The neuron in Fig. 6
is a fly neuron with dense noise in the background. Both
Rivulet1 and Rivulet2 were able to reconstruct the entire
neuron without being interrupted by the noise. Comparing to
Rivulet1, Rivulet2 was able to suppress the majority of the
false positive branches. Fig. 7 shows a zebrafish adult neuron
with many gaps in the background containing strong noise.
There are also many irrelevant curvilinear structures residing
in the background that are hard to eliminate when only local
information is considered. Rivulet2 could reconstruct reason-
able results across the entire neuron with little false positive
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Fig. 4. The visual inspections of the eight neurons in the OP neurons. The manual reconstructions are shown on the left, and the Rivulet2 (R2) reconstructions
are shown on the right. The reconstructions are overlaid on the original images. The proposed Rivulet2 algorithm can obtain visually identical reconstructions
to the groundtruth tracings.
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Fig. 5. The quantitative results of the OP dataset containing 8 image stacks.
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(a) Image (b) Manual (c) APP2 (d) SMART (e) SNAKE

(f) PHD (g) ENT (h) NeuTube (i) R1 (j) R2

Fig. 6. The visual inspection of a fly neuron from the BigNeuron project. The image is rendered with inverse intensities to make the image noise visible in
low-resolution. The reconstructions are visualized with Vaa3D using the line-mode.

(a) Image (b) Manual (c) APP2 (d) SMART (e) SNAKE

(f) PHD (g) ENT (h) NeuTube (i) R1 (j) R2

Fig. 7. The visual inspection of an adult zebrafish neuron from the BigNeuron project. The image is rendered with inverse intensities to make the image noise
visible in low-resolution. The reconstructions are visualized with Vaa3D using the line-mode.

branches. Rivulet1 generated many redundant segments due to
the noise and the irrelevant bright area on the top-left corner.

We quantitatively compared all the methods with the gold
standard manual reconstructions traced by the BigNeuron
community as shown in Fig. III-B. Similar to the result in the
OP dataset, Rivulet2 achieved the highest precision, F1-score
and slightly lower recall than the Rivulet1 and SmartTracing.
At the same time, Rivulet2 obtained the lowest or comparable
values in the distance metrics (SD, SSD and SSD%).

To test the robustness of the proposed method on batch-
processing of large-scaled datasets, we applied it to the first-
2000 dataset released by the BigNeuron project that contains
2000 neurons which have been coarsely segmented. Since
this dataset was not manually annotated, we use it only for
comparing the running time of Rivulet1 and Rivulet2. We did
not benchmark the running time of the other state-of-the-art

methods since they were implemented in different languages.
The neurons with the top eight total dendrite lengths are
shown in Fig. 9. The resulted nodes were sorted by the Vaa3D
Sort SWC plugin and validated by NeuroM. 1997 out of
2000 reconstructions were validated neuron trees. We manually
inspected the three failed neurons and found the failures were
only caused by 3 broken images in this repository. The average
running time of Rivulet2 is 110.875 seconds which is more
than four times faster than Rivulet1 (456.605 seconds). The
speed increase is mainly introduced by the precise branch
erasing and the online confidence score. Rivulet2 is slower than
the C++ implementation of APP2 (14.950 seconds) mainly due
to the gradient interpolations needed in the sub-voxel back-
tracking, and the MSFM performed across the entire image.
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Fig. 8. The quantitative results of the BigNeuron dataset containing 114 image stacks.

IV. CONCLUSION

In this study, we proposed a fully automatic 3D neuron
reconstruction method Rivulet2. By evaluating the proposed
method with the newly released data from the BigNeuron
project, we showed that Rivulet2 was capable of generating
accurate neuron tracing results in most challenging cases
with only a single background threshold. Rivulet2 was also
capable of producing topologically authentic neuron models
for morphometrics analysis. Comparing to Rivulet1, it is
approximately four times faster. It also outperformed state-
of-the-art neuron tracing algorithms on most of the selected
BigNeuron benchmark datasets.
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