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Abstract 

The default mode network (DMN) consists of multiple interacting regions, including the 

posterior cingulate cortex (PCC), temporal parietal junction (TPJ), and medial prefrontal 

cortex (MPFC). Yet, it remains unclear how regions within the DMN contribute to distinct 

cognitive processes and mental disorders. We applied a meta-analytic approach within the 

Neurosynth database to determine which cognitive processes and mental disorders were 

primarily associated with the activity of the DMN regions. To assess how DMN regions 

coactivate with the whole brain, we generated meta-analytic coactivation profiles by 

identifying voxels with a greater probability of coactivating with each region than with other 

DMN regions. Based on these profiles, we clustered voxels within each region into 

separable subregions. Results revealed that DMN regions were involved with overlapping 

as well as distinct functional networks with the rest of the brain. To map between functional 

states (cognitive processes and mental disorders) and DMN regions, we trained classifiers 

to predict which studies activated a given region. We found that all DMN regions support 

multiple cognitive functions such as social, decision making, memory and awareness. We 

also found that each region was differentially recruited by distinct cognitive processes and 

mental disorders. Furthermore, we observed more fine-grained functional specialization 

among subregions within each of the DMN regions. Taken together, our results support 

two broad conclusions regarding DMN. First, DMN is associated with multiple 

psychological functions and mental disorders. Second, although some functions are 

common to all DMN nodes, other functions are preferentially associated with specific DMN 

nodes.  
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Introduction 

The default mode network (DMN) has garnered increasing interest as recent brain 

imaging studies implicate it in a wide range of cognitive functions and disease processes 

(Shulman et al., 1997; Raichle et al., 2001; Garrity et al., 2007). The DMN consists of the 

medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right 

temporal-parietal junction (left- and right-TPJ) (Leech et al., 2011; Braga et al., 2013). 

These regions have been shown to preferentially activate when the brain is at rest, and 

decrease in activity when engaged in a goal-directed task (Raichle, 2015). Yet, it remains 

unclear how individual regions of DMN may differentially contribute to the various cognitive 

processes associated with DMN function.  

DMN activity is primarily implicated in spontaneous thought processes that occur 

when humans are not actively engaged in a directed task, and is thus thought to be 

responsible for self-referential processing (Davey, Pujol, & Harrison, 2016) and mind-

wandering (Brewer et al., 2011). However, task-based patterns of activation are also seen 

across DMN regions during autobiographical memory retrieval (Spreng & Grady, 2010), 

self-judgements (Buckner, Andrews-Hanna, & Schacter, 2008; Gusnard, Akbudak, 

Shulman, & Raichle, 2001), prospective thinking (Spreng & Grady, 2010), decision making 

(Greene, Sommerville, Nystrom, Darley, & Cohen, 2001; Harrison et al., 2008), and social 

cognition (Mars et al., 2012a), indicating a possible indirect role of the same networked 

areas in these psychological processes (Harrison et al., 2008). In particular, MPFC has 

been implicated in self-referential processing with functional specialization observed within 

MPFC: ventral MPFC deactivates more when making self-referential judgments while 

dorsal MPFC activity increases (Gusnard et al., 2001). Moreover, there seems to be 
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ventral-dorsal subspecialization in MPFC during DMN activity, with ventral MPFC 

responsible for emotional processing and dorsal for cognitive function (Gusnard et al., 

2001). Recent meta-analysis attempted to further delineate regional differences in MPFC 

function, identifying anterior, middle, and posterior zones, responsible for episodic memory 

and social processing, cognitive control, and motor function, respectively (de la Vega, 

Chang, Banich, Wager, & Yarkoni, 2016). Importantly, these works also suggests there 

may be both overlap in function and sub-specialization within MPFC regions (de la Vega et 

al., 2016), leaving room for further research into the more fine-grained aspects of MPFC 

function.  

Although these previous lines of investigation into DMN functional specialization 

have largely focused on MPFC, two other DMN regions – posterior cingulate cortex (PCC) 

and bilateral temporoparietal junction (TPJ) – may also serve a wide range of functions. 

For example, the PCC is thought to play a key role in focused attention during task-based 

activities (Small et al., 2003; Castellanos et al., 2008) and continuous monitoring of internal 

and external stimuli at rest (M E Raichle et al., 2001). It has also been implicated in 

retrieval of episodic memory (Cabeza, Dolcos, Graham, & Nyberg, 2002; Greicius, 

Krasnow, Reiss, & Menon, 2003), emotional processing (Maddock, 1999), and self-

referential processing (Northoff et al., 2006). Similarly, TPJ has been shown to play a role 

in self-referential processing (Davey et al., 2016); and is important for social cognition in 

conjunction with other DMN regions (PCC and MPFC; Laird et al., 2011; Mars et al., 

2012a). Although less is known about potential functional subspecialization within the PCC 

and TPJ, these DMN regions may also show regional differences in cognitive processing 

similar to MPFC.  
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In addition to studies linking DMN to various cognitive processes, recent efforts 

have explored the role of DMN in studies of a range of health problems, including 

psychopathology and neurological diseases. A growing body of literature suggests that 

DMN dysfunction may underlie disease states including Alzheimer’s disease, 

schizophrenia, ADHD, Parkinson’s disease, depression and anxiety (Broyd et al., 2009). 

Decreased activity of DMN at rest and decreased task-induced deactivation of DMN has 

been observed in individuals with autism (Assaf et al., 2010; Padmanabhan et al., 2017), 

particularly in the MPFC (Daniel P. Kennedy & Courchesne, 2008; Daniel P. Kennedy, 

Redcay, & Courchesne, 2006). Patients with anxiety disorders show reduced deactivation 

of MPFC and increased deactivation of PCC (Broyd et al., 2009), while the component 

regions of DMN appear to change entirely during major depressive episodes, with activity 

of thalamus and subgenual cingulate increasingly seen at rest (Greicius et al., 2007). 

Alzheimer’s patients not only show altered DMN activity at rest, but different task-induced 

deactivation patterns during a working memory task (Rombouts, Barkhof, Goekoop, Stam, 

& Scheltens, 2005) and regional activation differences within PCC (He et al., 2007). In 

schizophrenia, both resting state and task-based DMN activity changes have been 

associated with positive disease symptoms (Bluhm et al., 2007; Broyd et al., 2009; Garrity 

et al., 2007). Of note, while the aforementioned disease states share the commonality of 

generally altered DMN function, specific findings from these studies also suggest that 

altered activity in different DMN nodes may be specific to different mental disorders; for 

instance, with PCC specifically implicated in Alzheimer’s and ADHD, and MPFC in 

schizophrenia and anxiety (Broyd et al., 2009). As specific nodes of the DMN appear to be 

responsible for specific cognitive processes, it is plausible that specific nodes may also be 
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associated with different disease states, although no study has yet addressed this 

question. 

To investigate how cognitive processes and mental disorders are linked to 

activation within distinct subunits of the DMN, we utilized the Neurosynth database and 

identified core DMN regions based on prior work and anatomical landmarks. We also used 

tools and methods developed in prior work that has successfully characterized the 

functional substructure of the medial prefrontal cortex (de la Vega et al., 2016) and the 

lateral prefrontal cortex (de la Vega et al., 2017). Our application of these analytical 

methods to the DMN is important because it allows us to quantify how those DMN regions 

are functionally associated with cognitive processes and disease states—thus extending 

and complementing prior efforts to fractionate the DMN (Laird et al., 2009; Andrews-Hanna 

et al., 2010). Our primary analyses focus on two key questions. First, are different 

psychological functions and disease states preferentially associated with distinct nodes of 

the DMN? Second, are there functionally distinct subregions within individual DMN nodes? 

Methods 

Our analysis was based on version 0.6 of the Neurosynth dataset, which contains 

activation data from more than 12,000 fMRI studies (Yarkoni et al., 2011).  

DMN mask  

We first created a DMN mask defined by the intersections of functional activation 

and anatomical masks, in order to find regions that are functionally related but restricted to 

anatomical regions within DMN (Fig. 1A; Poldrack et al., 2017). Specifically, we performed 
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reverse-inference meta-analysis by searching topic “DMN" in Neurosynth with false 

discovery rate at 0.01 to create a functional mask that specifically mapped term “DMN” to 

brain regions. We chose reverse inference because it can help estimate the relative 

specificity between brain activity and the DMN (Yarkoni et al., 2011). Thus, the resulting 

functional mask identified voxels in studies where term “DMN” was mentioned in their 

abstract given brain activation. We next constrained the mask to anatomical regions that 

belong to DMN by using the Harvard-Oxford probabilistic atlas at P > 0.25  (Desikan et al., 

2006), including medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left 

and right temporal parietal junction (left- and right-TPJ). 

 

 

Fig 1. Overview of methods. (A) We searched topic “DMN” in Neurosynth to create a 

B C
k-means
clustering

Select k using
silhouette score

Whole-brain
coactivation

Identify voxels
with a greater probability

coactivating with the rest of the brain

~10,000 fMRI studies

A
Neurosynth

Constrain the mask
to anatomical regions

Using Harvard-Oxford
probabilistic atlas

D Select studies that
activate ROI

Select studies that
do not activate ROI

Cognitive processes Mental disorders

Naive Bayes
Classifier

Predict which studies
activate the ROI

social priming

inhibition

switching

categorization

memory

reading

semantics

math

language
awareness

WM

attention

spatial

imagery

decision
making

reward

learning

emotion

fear
depression

eating-disorder
schizopherenia

ADHD

autism

Alzheimer or Parkinson's

PTSD

smoking

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 8 of 46

functional mask, and then constrained the mask to 4 anatomical regions that belong to DMN by 

using Harvard-Oxford probabilistic atlas. (B) We applied k-means clustering to determine 

functionally different subregions within each of the 4 regions. (C) We generated whole-brain 

coactivation profiles to reveal functional networks for different regions. (D) Functional profiles 

were generated to identify which cognitive processes or mental disorders best predicted each 

region’s (or subregion’s) activity. 

 

Coactivation-based clustering  

To determine more fine-grained functional differences within four regions, we 

applied a clustering method used by previous work (de la Vega et al., 2016) to cluster 

individual voxels inside each of the four regions based on their meta-analytic coactivation 

with voxels in the rest of the brain (Fig. 1B). For each region, we correlated activation 

pattern of each voxel with the rest of the brain across studies. The resulting coactivation 

matrix was then passed through principal component analysis, where the dimensionality of 

the matrix was reduced to 100 components. Subsequently, we calculated Pearson 

correlation distance between every voxel with each whole-brain PCA component in each of 

the four DMN regions. Based on correlation coefficients, k-means clustering algorithm was 

used to group voxels into 2-9 clusters for each region separately (Thirion et al., 2014). To 

select the number of clusters, we computed silhouette coefficients to select the number of 

clusters for each region (Rousseeuw, 1987). As pointed out by other researchers 

(Varoquaus & Thirion, 2014; Poldrack & Yarkoni, 2016), identifying the objectively correct 

number of clusters could become an intractable problem due to the fact that the goals and 

levels of analysis varied across investigators. Nevertheless, the silhouette score has 
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received success at assessing cluster solutions (Pauli et al., 2016; de la Vega et al., 2016, 

2017) 

Coactivation profiles  

We next analyzed the differences in whole-brain coactivation patterns between 

regions to reveal their functional networks (Fig. 1C, de la Vega et al., 2016). We contrasted 

the coactivation pattern of each region (e.g., MPFC) with the other three (e.g., PCC, left 

and right TPJ) to show differences between regions. Specifically, we performed a meta-

analytic contrast to the studies that activated the region of interest (ROI) and studies that 

activated control regions to identify the voxels in the rest of the brain with a greater 

probability coactivating with ROI than other regions within DMN. We then conducted a two-

way chi-square test between two sets of studies and calculated p values to threshold the 

coactivation images using False Discovery Rate (q<0.01). The resulting images were 

binarized and visualized using the NiLearn Library in Python.  

Meta-analytic functional preference profiles  

To map between functional states (e.g., cognitive processes, mental disorders) and 

regions of the DMN, we used a set of 60 topics identical to that used in previous studies 

(Poldrack et al., 2012a; de la Vega et al., 2016). These topics were derived from latent 

Dirichlet allocation topic modeling (Blei, Ng & Jordan, 2003), which helped reduce the level 

of redundancy and ambiguity in term-based meta-analysis maps in Neurosynth (de la 

Vega et al., 2016). 23 topics that were irrelevant to either cognitive processes or mental 

disorders were excluded from the generated topics, leaving 29 cognitive topics and 8 

disorder-related topics.  
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We generated functional preference profiles by identifying which cognitive 

processes, or mental disorders best predicted each region’s (or cluster’s) activity across 

studies (Fig. 1D). We adopted the same procedure used in a previous study to select 

studies in Neurosynth that activated a given region (or cluster) and studies that did not (de 

la Vega et al., 2016). A study was defined as activating a given region if at least 5% of 

voxels in the region was activated in that study. We then trained a naive Bayesian 

classifier (Yarkoni et al., 2011; de la Vega et al., 2016) to discriminate between two sets of 

studies based on cognitive and disease-related topics for each region. Due to the 

redundancy and ambiguity in term-based meta-analytic maps (e.g., term “memory” could 

refer to working memory or episodic memory), we trained models to predict whether 

studies activated the region, given the semantic representation of the latent conceptual 

structure underlying descriptive terms (de la Vega et al., 2016, 2017). These predictions 

could then be used to characterize the extent to which a study activated a region, given 

that the topics were mentioned in that study. 

We next extracted the log-odds ratio (LOR) of a topic, defined as the log of the 

ratio between the probability of a given topic in active studies and the probability of the 

topic in inactive studies, for each region (or cluster) separately. A positive LOR value 

indicates that a topic is predictive of activation in a given region (or cluster). Based on LOR 

values, we identified 20 cognitive topics that loaded most strongly to whole DMN mask for 

further analysis. We applied a procedure used in previous study to determine the statistical 

significance of these associations (de la Vega et al., 2016). To do so, we performed a 

permutation test for each region-topic log odds ratio for 1000 times. This resulted in a null 

distribution of LOR for each topic and each region. We calculated p values for 
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each pairwise relationship between topics and regions and then adjusted the p-values 

using a False Discovery Rate at 0.01 to account for multiple comparisons within 20 

selected cognitive topics and 8 disease-related topics, separately. We reported 

associations significant at the corrected p < 0.05 threshold.  

Results 

Coactivation and functional preference profiles for the DMN regions 

We defined DMN mask on the basis of functional mapping that mapped topic “DMN” 

to brain regions, and constrained it to anatomical regions that belong to DMN (Fig 2A). The 

resulting anatomical mask contains 4 spatially dissociable regions: medial prefrontal cortex 

(MPFC), posterior cingulate cortex (PCC), left and right temporal parietal junction (left-TPJ 

and right-TPJ). 
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Fig 2. Meta-analytic coactivation and functional profiles for the DMN. (A) Functionally and 

anatomically defined regions within DMN: medial prefrontal cortex (MPFC), posterior cingulate 

cortex (PCC), left and right temporal parietal junction (left- and right-TPJ). (B) Coactivation 

profiles for 4 regions. Colored voxels indicate significantly greater coactivation with the region of 

same color (Fig. 2A) than control regions. Some regions were involved in overlapping functional 

networks whereas some were involved with distinct functional networks. Related subcortical 

structures are labeled as: Hipp, hippocampus; Amyg, amygdala; VS, ventral striatum. (C) 

Functional preference profiles of DMN. Functional profiles were generated by determining which 

cognitive topics best predicted each region’s activity within DMN. All regions within DMN were 

primarily involved with social, decision-making, awareness, and memory. Distinct functions were 

also observed across MPFC, PCC and left-TPJ. LOR is used to measure strength of 
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association, and color-coded dots corresponding to each region are used to indicate 

significance (p< 0.05) based on permutation test. (D) DMN and mental disorders. Functional 

profiles related to mental disorders were generated to determine whether regions within DMN 

were differentially recruited by psychological diseases.  

 

We next sought to characterize functional similarities and differences across regions 

of DMN. To do so, we adopted an approach used by previous work (de la Vega et al., 

2016, 2017). To determine how regions of DMN coactivate with voxels across the brain, 

we identified voxels with a greater probability of coactivating with each region of interest 

(ROI) than with other regions within DMN. We found that regions within DMN interactively 

coactivated with each other. Specifically, PCC and MPFC strongly coactivates with each 

other, and both regions showed greater coactivation with bilateral-TPJ (Fig 2B). This 

pattern suggests that DMN as a whole operates to support multiple cognitive functions. 

Additionally, we found that different regions were involved with overlapping functional 

networks. For example, PCC and bilateral-TPJ showed stronger coactivation with 

hippocampus, an important region for memory, suggesting that there are functional 

similarities between regions of DMN. Finally, we also found that certain regions are 

involved with distinct functional networks, particularly MPFC. MPFC more strongly 

coactivated with amygdala and ventral striatum, regions known for emotion processing and 

decision making (Fig 2B). Taken together, these coactivation patterns demonstrate that 

there are both functional similarities and differences within the DMN. 

To further explore functional properties among DMN regions, meta-analysis was 

used to select studies that activated a given ROI, and a naive Bayesian classifier was 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 14 of 46

trained to predict which studies activated the region (de la Vega et al., 2016). We first 

describe functional preference profiles based on cognitive processes, and then those 

related to mental disorders. Cognitive predictors were limited to 20 psychological topics 

previously shown to be relevant to DMN function. We found that all regions of DMN were 

primarily predicted by the topics “social”, “decision making”, “awareness”, and “memory” 

(Fig 2C), consistent with previous evidence suggesting DMN was involved in social, 

decision-making, metallizing and memory processing. Functional distinctions were also 

observed among DMN regions: activity in MPFC was predicted by fear, emotion, and 

reward; activity in PCC was predicted by emotion; and activity in left TPJ was predicted by 

math, semantics, and reading. Next, we entered 8 disorder-related topics as predictors to 

examine whether regions within DMN were differentially recruited by mental disorders. We 

found that distinct disorders were predicted by MPFC or PCC: activity in MPFC was 

associated with smoking, eating disorder, and depression whereas activity in PCC was 

associated with smoking and Alzheimer’s/Parkinson’s disease (Fig 2D). These results are 

consistent with observed coactivation patterns among regions of DMN, supporting the 

notion that there are functional similarities as well as differences among 4 regions of DMN.  

Functional Distinctions Within DMN Subregions  

We clustered individual voxels inside MPFC, bilateral-TPJ and PCC based on their 

meta-analytic coactivation with voxels in the rest of the brain to distinguish more fine-

grained functional differences among subregions (Smith et al., 2009; Chang et al., 2013; 

de la Vega et al., 2016). We used the silhouette score to select optimal solutions for each 

region, and generated coactivation and functional preferences profiles for each subregion. 

We describe the results for four regions separately.  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 15 of 46

Within the MPFC, we identified two clusters based on silhouette score (Fig 3A, left 

panel): a dorsal cluster (Fig 3A right panel, orange) and a ventral cluster (Fig 3A right 

panel, green). Our analysis did not reveal any cluster that coactivated more strongly with 

the rest of the brain. Both clusters in MPFC were associated with social, emotion, reward, 

decision-making, awareness and memory, while only the ventral cluster was associated 

with fear (Fig 3B). Additionally, both clusters in MPFC were associated with depression 

and smoking, but only the ventral cluster was associated with eating-disorders (Fig 3C).  

 

 

Fig 3. Coactivation-based clustering and functional preference profiles of MPFC. (A) We 
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identified two clusters within MPFC based on silhouette score: a dorsal cluster (orange) and a 

ventral cluster (green). (B) Functional preference profiles of MPFC. Both clusters in MPFC were 

predicted by social, emotion, reward, decision-making, awareness and memory, whereas the 

ventral cluster was predicted by fear. (C) MPFC and mental disorders. Both clusters in MPFC 

were recruited by depression and smoking, but only the ventral one was associated with eating 

disorder. 

 

Our silhouette score analysis (see Supplementary Table 1) revealed that a three-

cluster solution was optimal for the right-TPJ (Fig 4A, left panel): a dorsal cluster (Fig 4A 

right panel, green), a ventral one (Fig 4A right panel, yellow) and a posterior cluster (Fig 

4A right panel, purple). No cluster showed stronger coactivation with the rest of the brain. 

All clusters were predicted by social, memory, and awareness, while only the dorsal cluster 

was predicted by decision making (Fig. 4B). No subregions were more significantly 

associated with disorder-related topics (Fig. 4C). 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/225375doi: bioRxiv preprint 

https://doi.org/10.1101/225375
http://creativecommons.org/licenses/by/4.0/


 Page 17 of 46

 

Fig 4. Coactivation-based clustering and functional preference profiles of right-TPJ. (A) 

We identified two clusters within right-TPJ using silhouette score: a dorsal cluster (purple) and a 

ventral cluster (green). (B) Functional preference profiles of right-TPJ. Both clusters in right-TPJ 

were predicted by social, memory, and awareness, while only the dorsal cluster was predicted 

by decision making. (C) Right-TPJ and mental disorders. No subregions were significantly 

associated with disease-related topics. 

 

We identified three clusters within left-TPJ with silhouette score (Fig 5A, left panel): 

an anterior cluster (Fig 5A right panel, red), a posterior cluster (Fig 5A right panel, yellow) 

and a ventral cluster (Fig 5A right panel, green). We directly contrasted the coactivation 
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patterns of each subregion. We found all three regions strongly coactivate with right-TPJ. 

In addition, the posterior and ventral clusters showed stronger coactivation with PCC (Fig. 

5B). While both clusters also strongly coactivate with MPFC, posterior cluster showed 

strongly coactivation with ventral MPFC whereas ventral cluster coactivate with dorsal 

MPFC more (Fig 5B). Consistent with functional patterns in DMN, all clusters in left-TPJ 

were primarily predicted by social, decision-making, memory, and awareness (Fig 5C). 

However, ventral cluster was more strongly associated with reading, semantics and 

emotion whereas the anterior cluster showed stronger association with reading and 

working memory (Fig. 5C). In contrast, the posterior cluster was more strongly predicted by 

priming. No subregions were more significantly associated with disorder-related topics 

(Fig. 5D). 
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Fig 5. Coactivation-based clustering, meta-analytic coactivation contrasts and functional 

preference profiles of left-TPJ. (A) We identified three clusters within the left-TPJ based on 

silhouette score: an anterior cluster (red), a posterior cluster (yellow) and a ventral cluster 

(green). (B) Coactivation contrasts of left-TPJ. All three regions strongly coactivate with left-TPJ. 

Posterior and ventral clusters showed stronger coactivation with left-TPJ. Posterior cluster 

showed more coactivation with ventral MPFC whereas ventral cluster more strongly coactivate 

with dorsal MPFC.  (C) Functional preference profiles of left-TPJ. All clusters in left-TPJ were 

primarily predicted by social, decision-making, memory, and awareness. Ventral cluster was 

more strongly associated with reading, semantics and emotion whereas the anterior cluster 

showed stronger association with reading and working memory. The posterior cluster was more 

strongly predicted by priming. (D) Left-TPJ and mental disorders. No subregions were 

significantly associated with disease-related topics. 
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We identified three clusters within PCC with silhouette score (Fig 6A, left panel): a 

dorsal cluster (Fig 6A right panel, blue), a medial cluster (Fig 6A right panel, yellow) and a 

ventral cluster (Fig 6A right panel, red). The medial cluster showed stronger coactivation 

with bilateral-TPJ and MPFC whereas the ventral cluster more strongly coactivate with 

hippocampus (Fig 6B). Similar to this coactivation pattern, all clusters in PCC were 

predicted by memory, awareness and decision-making, while only the medial region was 

associated with social and emotion (Fig 6D). Additionally, all PCC clusters were associated 

with Alzheimer’s/Parkinson’s disease. However, the dorsal cluster was more strongly 

associated with smoking whereas the ventral cluster was more associated with PTSD (Fig 

6D).  
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Fig 6. Coactivation-based clustering, meta-analytic coactivation contrasts and functional 

preference profiles of PCC. (A) We identified three clusters within PCC on the basis of 

silhouette score: a dorsal cluster (blue), a medial cluster (yellow) and a ventral cluster (red). (B) 

Coactivation contrasts of PCC. The medial cluster showed stronger coactivation with bilateral-

TPJ and MPFC whereas the ventral cluster more strongly coactivate with hippocampus. 

(C)Functional preference profiles of PCC. All clusters in PCC were predicted by memory, 

awareness and decision-making, while only the medial region was associated with social and 

emotion. (D) PCC and mental disorders. All PCC clusters were associated with 

Alzheimer’s/Parkinson’s disease. The dorsal cluster was more strongly associated with smoking 

whereas the ventral cluster was more associated with PTSD. 
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Discussion 

The default mode network has been linked to a wide range of cognitive functions 

and disease states. Yet, we lack a comprehensive understanding of how function is 

associated with different nodes within the default mode network. To address this problem, 

the present study draws on high-powered meta-analysis of functional neuroimaging data to 

build upon previous work parcellating the MPFC and LFC by function (de la Vega et al., 

2016, 2017). Our findings also help characterize functional specialization and 

subspecialization in two other key DMN regions, PCC and TPJ. Here, we report 

coactivation among DMN regions and between DMN and hippocampus, amygdala, and 

striatum. Overlap in function among DMN regions was observed with all ROIs sharing 

social, decision making, awareness, and memory; DMN regions were also differentiated by 

function, with MPFC associated with emotion, reward, and fear; PCC associated with 

emotion; and left-TPJ associated with math, semantics, working memory, and reading. 

Moreover, DMN regions were uniquely associated with psychopathology and neurological 

diseases, particularly smoking, eating disorders, and Alzheimer’s & Parkinson’s diseases. 

Further examination of these DMN ROIs revealed that they could be divided into 

subregions based on cognitive and disease-related functional subspecialization. 

Our findings of strong associations between MPFC and memory, emotion, 

awareness, social, decision-making, and reward are consistent with previous studies of 

MPFC function (Etkin, Egner, & Kalisch, 2011a; Mars et al., 2012a). Within MPFC 

subdivisions, a ventral cluster was specifically associated with fear, consistent with prior 

work implicating vmPFC in extinction of conditioned fear (Milad et al., 2007; Maria A. 

Morgan & LeDoux, 1995). In addition to consolidating the vast literature on cognitive 
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functions associated with MPFC, our analyses further delineate psychological disorders 

associated with MPFC. In particular, depression, which has been previously associated 

with altered DMN patterns (Belzung, Willner, & Philippot, 2015), loaded most strongly onto 

MPFC. In patients with major depressive disorder, increased functional connectivity of 

MPFC has been observed (Zhu et al., 2012), as well as increased MPFC activation during 

self-referential processing (Lemogne et al., 2010a). The fact that both dorsal and ventral 

MPFC clusters were associated with depression lends further support to previous work 

suggesting involvement of both MPFC subregions in major depressive disorder, with 

dorsal MPFC activation during depressive self-comparisons and ventral MPFC activation 

during the attentional component of depressive self-focus (Lemogne, Delaveau, Freton, 

Guionnet, & Fossati, 2012).  

Consistent with previous literature on PCC, the present study shows associations 

between PCC and social cognition, emotion, decision-making, and awareness. Among 

these heterogeneous functions, PCC has previously been shown to be a DMN node 

central for social cognition – specifically ascribing mental states to others (Robert Leech, 

Braga, & Sharp, 2012; Robert Leech, Kamourieh, Beckmann, & Sharp, 2011; Mars et al., 

2012a) – and to have functional interactions at rest with inferior parietal and superior 

temporal regions, consistent with our observed pattern of coactivation with bilateral TPJ 

(Mars, et al., 2012a). While previously the role of PCC in social cognition has not been 

well-delineated, our results suggest that a medial cluster of PCC may be most strongly 

associated with social cognition (Alcalá-López et al., 2017). The same medial PCC cluster 

was shown to be specific to emotion; while there is relatively less evidence for the role of 

PCC in emotion, previous work has shown that PCC activates in response to emotional 
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words and may mediate interactions between emotional and memory processes 

(Maddock, 1999), consistent with our parallel finding of an association between PCC and 

memory (Vatansever et al., 2017). In addition to a primary association with memory, all 

PCC clusters loaded on Alzheimer’s/Parkinson’s disease, consistent with previous reports 

of PCC-DMN functional connectivity in patients with Alzheimer’s disease and mild 

cognitive impairment (Hafkemeijer, van der Grond, & Rombouts, 2012). This association 

may also be linked to our finding of coactivation between PCC and hippocampus, as 

previous research has suggested disrupted resting state functional connectivity between 

PCC and hippocampus as a mechanism underling Alzheimer’s disease (Hafkemeijer et al., 

2012)).  

Our analyses also highlight the association of both dorsal and ventral PCC with 

smoking. Although most prior neuroimaging studies of smoking behavior focus on anterior 

cingulate and subcortical circuitry, nicotine has also been shown to consistently enhance 

functional connectivity between PCC and medial frontal/anterior cingulate cortex, as well 

as local connectivity between dorsal and ventral PCC (Hong et al., 2009). Additionally, 

PCC activity has been associated with craving (Garavan et al., 2000), viewing smoking 

cessation messages (Chua et al., 2011a; Chua, Liberzon, Welsh, & Strecher, 2009), and 

suppressing cue-induced craving (Brody et al., 2007a). Taken together, these functional 

distinctions indicate that subregions within PCC were differentially recruited by different 

cognitive processes, a pattern consistent with previous literature suggesting the 

multifaceted role of PCC in cognition (Utevsky, Smith & Huettel, 2014; Acikalin, 

Gorgolewski & Poldrack, 2017). 
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We also report involvement with memory, awareness, social and decision-making 

throughout TPJ, with left TPJ specific to math, semantics, reading, emotion, and working 

memory. Within the domain of social cognition, previous research has established TPJ as 

most associated with mentalizing and theory of mind (Saxe, 2006). In addition, previous 

work has suggested functional heterogeneity within TPJ on the basis of its functional and 

structural connectivity (Mars, et al., 2012).  One study in particular attempted to map social 

cognition in the human brain, including parcellating TPJ using diffusion-weighted imaging 

with comparison to non-human primates (Mars et al., 2011). This work suggested that 

posterior TPJ was most strongly associated with social cognition, and showed strong 

coactivations with PCC (Mars et al., 2011). Our analyses similarly show strong TPJ-PCC 

coactivation and strong loading of the ‘social’ term across all PCC clusters; the previously 

reported social association with posterior and not anterior TPJ may be a result of TPJ 

mask definition, as Mars et al. (2011) include a broader anterior area of TPJ that overlaps 

further with the inferior parietal lobe.   

Although our study provides a comprehensive characterization of the functional 

roles of the DMN, we note that our findings accompanied by three caveats. First, the 

classifier used in our analysis did not distinguish activations from deactivations. However, 

it is well known that the DMN might be activated for some processes (e.g., social cognition; 

Schilbach et al., 2008; Mars et al., 2012) and deactivated for others (e.g., executive 

control; Anticevic et al., 2010; Binder, 2012; Koshino et al., 2014). Thus, it is conceivable 

that a dataset capable of detecting deactivations would potentially extend our current 

findings and provide a full account of the functional architecture of the DMN. Second, the 

coactivation maps may not be directly related to connectivity between brain regions 
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because they are based on correlations. Indeed, correlations between brain regions can 

be driven by a number of factors that are not related to connectivity or coupling, including 

changes in signal-to-noise ratio in either region or a change in another brain region 

(Gerstein & Perkel, 1969; Friston 2011). A thorough examination of connectivity would 

necessitate integrating behavioral tasks with effective connectivity measures, such as 

psychophysiological interactions analysis (PPI; Friston et al., 1997, 2011; O’Reilly et al., 

2012; Smith et al., 2016; Smith & Delgado, 2017). This alternative approach would provide 

insight into how specific tasks and processes drive connectivity with the DMN. Finally, the 

nature of the topic modeling oversimplified the mapping between psychological ontology to 

complex, dynamic brain activity (Poldrack & Yarkoni, 2016; de la Vega et al., 2017). For 

example, each topic used in our analysis represents a combination of many cognitive 

processes operating at different levels. As a result, mappings between specific 

psychological concepts and brain activity require identification of more fine-grained 

definition of cognitive processes. We acknowledge that future studies should be conducted 

to address these limitations and provide a better understanding of the DMN functions. 

Meanwhile, it is important to note that our results mirrored findings from previous 

investigations using different datasets and analysis, thus strengthening our conclusions. 

In addition to these limitations, we also note that our approach for defining and 

fractionating the DMN merits additional consideration. For example, we defined the DMN 

based on a combination of anatomy and function and then parceled individual nodes of 

DMN (i.e., PCC, TPJ, MPFC). Although an analogous approach has been used in prior 

studies (e.g., Leech et al., 2011), we note that other studies have parceled networks using 

responses from all nodes (Alcalá-López et al., 2017). Both approaches assume a given 
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network is composed of distinct nodes, which depends critically on the definition of those 

nodes (Cole, Smith & Beckman, 2010; Smith et al., 2011). To address this issue, some 

papers have defined networks using independent component analysis and have examined 

connectivity with those networks using dual-regression analysis (Filippini et al., 2009; 

Smith et al., 2014; Yu et al., 2017). We believe that integrating this approach with our 

current analytical framework (de la Vega, 2016, 2017) and unthresholded whole-brain 

maps (Gorgolewski et al., 2015) will help future studies refine functional parcellations of 

the DMN. 

To conclude, we applied a meta-analytic approach in the present study to 

characterize functional mappings between cognitive processes, mental disorders and the 

DMN. Although the DMN as a whole contributes to multiple cognitive processes, we found 

distinct functional properties for each region. We also identified functional specialization for 

each subregion. These results help clarify the functional roles of the DMN across a large 

corpus of neuroimaging studies. We believe our results also help complement other 

studies focused on refining the theoretical and computational framework associated with 

the DMN (Dohmatob, Dumas & Bzdok, 2017).  
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