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ABSTRACT 

Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and 

generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this 

analysis — the ontology and the annotations — evolve rapidly. We used gene signatures derived from 104 disease analyses 

to systematically evaluate how enrichment analysis results were affected by evolution of the GO over a decade. We found 

low consistency between enrichment analyses results obtained with early and more recent GO versions. Furthermore, there 

continues to be strong annotation bias in the GO annotations where 58% of the annotations are for 16% of the human 

genes. Our analysis suggests that GO evolution may have affected the interpretation and possibly reproducibility of 

experiments over time. Hence, researchers must exercise caution when interpreting GO enrichment analyses and should 

reexamine previous analyses with the most recent GO version. 

INTRODUCTION 

Ontologies provide a uniform vocabulary for representing domain knowledge. The Gene Ontology (GO) is the most widely 

used ontology for specifying cellular location, molecular function, and biological process participation of human and model 

organism genes 1. The two building blocks of the GO are [1] the ontology itself and [2] the GO annotation. The ontology is 

a tree-like hierarchical structure of concepts (called GO terms) and their relationships to each other. The GO annotation is 

the list of all annotated genes linked to ontology terms describing those genes. The GO annotation documents all evidence 

that led to the association of a gene and a GO term by using evidence codes. In January 2015, 57% of all human gene 

annotations were assigned by automated methods, without curatorial judgment. They were labeled “inferred from electronic 

annotation” with the evidence code IEA. The remaining 43% of the gene annotations were manually assigned from 

experimental or computational analysis and author or curatorial statements. Manually assigned annotations are generally 

considered to be of better quality 2. Both the GO and its annotations are continuously evolving 3–5 as more experimental 

data become available. However, the human genome annotation is still incomplete. Furthermore, previous GO annotation 

versions were shown to be affected by confounds and biases such as annotation bias, where most annotations are for only 

few well-studied genes 6,7 or literature bias, where few articles disproportionally contribute many experimental annotations 

8. These issues affect various applications relying on GO data including GO enrichment analysis 5,9, protein function 

prediction 10,11 or gene network analysis 12,13. 
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The GO is predominantly used to analyze high-throughput data, such as gene expression microarray results. A typical 

analysis starts by identifying a list of differentially expressed genes. Then, to gain insight into the biological significance of 

the alterations in gene expression levels, researchers use GO enrichment analysis methods to determine whether GO terms 

about specific biological processes, molecular functions, or cellular components are over- or under-represented within the 

gene set of interest 6. Those methods can be based on different statistical methods and include traditional over-

representation methods 14,15, Functional Class Scoring 16,17 or Pathway Topology 18–20. Wide adoption of the GO enrichment 

analysis in biomedical research is evident from tens of thousands of citations these tools have received. In many instances, 

enrichment analysis results are fundamental to the findings in research studies. For instance, Berry et al.21 concluded that 

there is “an interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis,” where differentially 

expressed genes were identified to be interferon‑related. The authors proposed a set of these genes as diagnostic markers. 

However, in subsequent years, it became clear that these genes, and interferon-stimulated genes in general, are not specific 

or sensitive to tuberculosis. Therefore, changes in the Gene Ontology and its annotations might affect the interpretation of 

experimental results 5.  

There is an ongoing discussion about reproducibility of biomedical research that has significant effect on clinical translation 

22. We hypothesized that use of continuously evolving ontologies may be one of the factors contributing to the reproducibility 

discussion because of evolving interpretation of the same data over time. To quantify the effects of GO evolution, we 

systematically analyzed 1.) the extent of changes in the Gene Ontology and the GO annotations between 2004 and 2015 

and 2.) the effects of those changes on variation of p-values for enriched GO terms and on the consistency of GO enrichment 

analysis results over a decade. For this, we performed a Big Data analysis of gene sets derived from 104 multi-cohort 

analyses across 92 human diseases including more than 23,000 samples. Then, for each gene set, we systematically 

identified enriched GO terms 23 in specific versions of the ontology and annotations, monitored p-value changes over time, 

and quantified the consistency of a GO enrichment analysis result over time using the Jaccard Index 24. We found significant 

increases in the number of GO terms, annotated human genes, and annotations per gene. Furthermore, there was 

significant annotation bias in recent years as 58% of the annotations were for 16% of human genes. These significant 

changes in the GO and increased annotation bias resulted in very low consistency in enrichment analyses between earlier 

and later GO versions. Our analysis demonstrates that interpretations of the same gene set change over time with the 

evolution of the ontology and its annotations. This suggests that researchers must exercise caution when interpreting GO 

enrichment analyses. 

 

RESULTS 

We analyzed two parameters. First, we looked at the extent of changes in the GO structure and in GO annotations between 

2004 and 2015 by comparing the number of ontology terms and relationships, the number of GO annotations for the human 

genome, and the number of annotated human genes. Next, we analyzed the effects of those changes on the significance 

of p-values for enriched GO terms and on the overall consistency of GO enrichment analysis results (Figure 1).  

Quantifying the changes in GO during 2004 - 2015 

We first analyzed the extent of changes between 2004 and 2015 in the Gene Ontology, GO annotations and human genes. 

We compared the number of ontology terms and relationships as well as the number of annotations describing the human 

genome. In the 11 years between February 2004 and January 2015, the number of terms in the GO increased by 2.5 folds 
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(from 16,139 to 40,810; Supplementary Figure 1A), and the number of GO terms used for annotation of human genes 

increased by 3.8 folds (from 2,972 to 11,403; Supplementary Figure and 1B). In the same period, the number of 

relationships between terms increased by 3.5 folds (from 21,998 to 78,078; Supplementary Figure 1A). In the biological 

process and molecular function ontologies, which are the most informative ontologies for enrichment analyses, the increase 

was primarily due to 64,935 new relationships and 23,249 new GO terms. At the same time, 6,833 relationships were 

deleted, and 2,356 terms and 553 relationships were mapped to new terms and relationships (Supplementary Figure 1C). 

Further, the number of annotations increased by 6.3 folds (19,616 in 2004 to 109,162 in 2015; Figure 2A). Consequently, 

the proportion of protein-coding human genes with at least one GO annotation increased from 32% to 65%. 

However, despite the increase in the number of annotated genes, the distribution of annotations remained skewed. We 

defined well-characterized genes as those with >10 GO annotations and poorly characterized genes as those with ≤10 

annotations. Then, we compared the proportion of human genes with no, few (≤10) or many (>10) GO annotations. Only 

16% of protein-coding human genes in 2015 had more than 10 annotations each (58% of the GO annotations), whereas 

49% of protein-coding genes had 10 or fewer annotations (42% of GO annotations; Figure 2A-B). Importantly, one-third of 

protein-coding human genes still had no annotations. This bias persisted even when electronically inferred annotations were 

included in the analysis, where 69% of the annotations were for 27% of human genes (Supplementary Figure 2). It is 

possible that some of these genes lack annotations because curators have not yet reviewed the corresponding literature. 

However, the pervasive practice of forming new hypotheses based on enrichment analyses and selecting well-studied genes 

with many annotations for further study—and hence publication—is also responsible for this skew. For example, an 11-

gene signature was shown to diagnose sepsis 2 to 5 days prior to clinical diagnosis 25, and it performed better than the 

current clinical tests 26. Unfortunately, 7 genes had <10 papers associated with them in NCBI Entrez Gene database. In 

contrast, >7,700 publications are associated with the tumor suppressor TP53 in Entrez Gene. This discrepancy clearly 

shows the need for further experimental work to improve functional annotation of the human genome.  

We also measured bias by assessing the difference in mean information content (IC) of the annotations for less and more 

extensively studied genes. The IC of a GO term quantifies the specificity of the term in the context of the entire set of 

annotations. Terms annotating many genes are expected to be general and therefore have a low IC. Terms annotating only 

a few genes are specific, and have a high IC. Because the annotation count for a given term is up-propagated to all its 

parent terms, high-level terms always have a lower IC than their more specific child terms. We calculated the mean IC for 

less- and more extensively studied genes to quantify whether this annotation increase also constituted an increase in new 

information (i.e. precise and specific terms with high IC) or redundant information (e.g. adding only general terms with low 

IC). We found that the mean IC of extensively studied genes was higher than the mean IC of less-studied genes (p=4e-229; 

Figure 2C, Supplementary Figure 3), indicating that extensively studied genes have specific and detailed annotations, 

which were lacking in most of the less-studied genes. Collectively, these results illustrate that despite large increases in the 

Gene Ontology and GO annotations of human genes between 2004 and 2015, there is significant bias towards a small set 

of genes, which in turn can have significant impact on GO enrichment analysis, its consistency over time, and ultimately on 

interpretation of molecular data. 

Evolution of the GO affects the consistency of enrichment analysis results  

To evaluate how changes in the GO and its annotations affect the interpretation of a list of differentially expressed genes, 

we collected whole genome expression profiles from more than 23,000 human samples across 377 independent datasets 
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from 92 diseases. Then, for each disease, the we applied a multi-cohort analysis framework to identify disease gene 

signatures. This framework27 has been shown to identify reproducible gene signatures28 across multiple independent 

cohorts in different disease conditions, including bacterial and viral infections, organ transplantation, and cancer for 

identifying diagnostic and prognostic disease signatures, novel drug targets and repurposing FDA-approved drugs25,28–33. 

Next, we performed a GO enrichment analysis via traditional over-representation statistical methods for each disease gene 

signature, producing a set of enriched GO terms. We repeated this analysis using all combinations of historical Gene 

Ontology versions and GO annotation versions by year, and we monitored p-value changes over time. Furthermore, we 

calculated the consistency of GO enrichment analysis results for a given disease over time using the Jaccard Index24 as a 

measure of overlap between two sets of enriched GO terms to quantify changes in results as GO evolved. We chose 

Jaccard Index over other metrics such as the dice approach because of its robustness to low overlap between sets as well 

as to changes in set sizes, both of which are very likely to occur in our analysis. A consistency score of 0 indicates that two 

enrichment analysis results are entirely different, while a score of 1 indicates both analyses produced the same set of 

enriched terms. We used this score to explore changes in enrichment results across the complete set of disease gene 

signatures, using the March 2015 version of the annotation and ontology as our reference.  

First, we compared each disease signature between different versions of the ontology while keeping the annotation version 

constant to January 2015 (the newest annotation independent of our reference). We observed an increase in median 

consistency from 0.27 in 2004 to 1 in 2015 (Supplementary Figure 4A). This large difference reflects significant re-

structuring of the GO over the last decade. The steadiness of the trend also suggests the existence of small changes in the 

GO structure that were stable and propagated each year.  

Next, we varied the annotation version while keeping the ontology version constant to January 2015 and observed low 

consistency until 2010 (median consistency range: 0.038 to 0.1), followed by a steady increase until 2015 (Supplementary 

Figure 4B). We observed the same trends when including electronic annotations (Supplementary Figure 4C-D) and across 

individual disease signatures (Supplementary Figure 5A-D). For instance, we analyzed gene signatures for influenza 

infection33 as well as  pancreatic and non-small cell lung cancers, and observed trends in line with our general results. 

Collectively, these results suggest that changes in GO and its annotation have substantial effects on the results of 

enrichment analyses, which in turn can result in different interpretations for the same experiment depending on which 

version of the GO and its annotation were used for analysis. 

 

Evolution of the GO affects the p-value significance of enriched GO terms  

Next, we analyzed the effects of annual GO and GO annotation updates on the significance of p-values for enriched GO 

terms to observe general trends for specific diseases. Thus, we changed both the ontology and the GO annotations together. 

For this test, we monitored p-value changes for all biological process terms that were deemed significant by at least one 

GO version for three diseases: influenza, non-small cell lung cancer, and pancreatic cancer (Figure 3). For the influenza 

gene signature, we hypothesized that child terms of the ontology branches immune system process or response to stimulus 

will be statistically significant as the stimulus induced by the influenza virus prompts an immune response in the host through 

transcriptional alteration of influenza signature genes. However, analysis of our influenza signature gene set returned at 

most 15 terms with p-values <0.05 before 2011, and none of the significant terms were child terms of those branches 

(Figure 3A). There are two reasons for lack of significance: (1) the term immune system process was added to the GO in 
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September 2006, and (2) not enough genes were annotated with the terms in this branch. However, since 2012, many 

immune system- and stimulus-related terms became significant. 

Similarly, for lung and pancreatic cancer gene signatures, we hypothesized that terms in the cellular process branch will be 

statistically significant because cell cycle-related events are essential to cancer survival (Figure 3B-C: purple). Unlike 

influenza, the GO enrichment analysis of the cancer signatures did not have an inflection point after which terms from the 

cellular process branch became significant. Instead, for the cancer gene signatures, we observed frequent changes between 

significant and insignificant p-values for individual GO terms, demonstrating that the enrichment results for cancer signatures 

were unstable over time. These results again demonstrate that different versions of the GO and its annotations could provide 

different interpretations of the same experiment. 

 

 

Evolution of GO affects the interpretation of enrichment analysis results 

We explored how the interpretation of a disease signature would change with evolution of the GO, using the same three 

disease signatures as above. For each signature, we performed enrichment analyses using every possible pairing of 

ontology and annotation versions since 2004, and identified significantly enriched GO terms. In addition, we calculated the 

number of genes that were annotated with a term of interest, including any child terms, in the disease signature, and the 

reference gene set used for computing p-values over time. Finally, we calculated the IC of a GO term of interest to see 

whether bias—quantified via the IC—could affect interpretation of the analyses.  

To test how well different GO versions represented current knowledge, we examined established disease mechanisms, 

which were expected to be identified in analyses of the selected diseases. First, we analyzed results from influenza infection. 

It has been known since 1981 that, upon infection, the host mounts a defense response by producing interferon-gamma 34 

which, in turn, activates interferon-stimulated genes. We therefore expected the term response to interferon-gamma to be 

significant in our analysis. However, the term became enriched only when we used GO versions made starting in 2012 

(Figure 4A). A number of factors contributed to this situation. First, the term response to interferon-gamma did not exist in 

the GO until March 2008. Second, once the term was introduced, it was annotated with very few genes (Figure 4B): up to 

2011, only 15 genes were annotated with this term, of which only two were included in the 967 genes from our influenza 

infection signature. Consequentially, the IC for the term was high (>7.5) until 2011, indicating that it was used to annotate 

few genes (Figure 4C). As the number of genes annotated with response to interferon-gamma increased to 87 in 2012, its 

IC decreased to 5.6. This increase in annotations and genes for response to interferon-gamma is likely driven by research 

preference, as it coincided with increased research interest in influenza infection following the 2009 H1N1 influenza 

pandemic. A PubMed search revealed that in 2008, 2,824 influenza-related articles were published. This number increased 

to 5,586 in 2010. It is reasonable to assume that it took two years for this increased research output to be reflected in the 

GO annotations, when relevant terms correctly showed statistical significance for the gene signature. These observations 

underscore how before 2012 experimental influenza data may have been misinterpreted, or worse, deemed inconclusive 

and discarded. 

We observed similar results when we analyzed the term cell cycle in two cancer signatures. The role of dysregulated cell 

cycle in cancer has been well-established since the 1960s 35. The term cell cycle has existed in the GO since March 2001, 

and 386 human genes were annotated with the term (or any child terms) in 2004. However, cell cycle was not significant 
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for either of the cancer gene signatures until 2008 (Figure 4D, Supplementary Figure 6), or until 2007 annotations if 

electronic annotations were included. However, in contrast to response to interferon-gamma, cell cycle is a more general 

term. Its IC from 2004 to 2010 was 6.5 (range: 6.3 to 6.7), which dropped to 4.6 in 2011 as the number of genes annotated 

with this term or any of its child terms increased from 379 to 587 in 2011, and has remained constant since then (Figure 

4E). As more genes were annotated with cell cycle, we observed an increase in the significance of the term (Figure 4E). 

Interestingly, while the term continued to be statistically significant for the pancreatic cancer signature, it was not significant 

for the lung cancer signature (Figure 4F). This trend was not affected even when electronic annotations were considered. 

These results again illustrate how interpretation of a gene set could change with evolution of the GO and its annotations. 

 

 

DISCUSSION 

GO enrichment analysis is virtually a de facto standard for interpreting high throughput molecular data and identifying 

underlying biological themes. GO evolution influences the results of enrichment analyses and interpretation of an 

experiment. Our analyses found increases in the number of GO terms, the number of annotated human genes, and the 

number of annotations for the human genome between 2004 and 2015. Gillis et al.7 previously investigated the stability of 

each gene’s ‘functional identity’ (agreement of gene-associated GO terms) over a 10-year period from 2001 to 2011, and 

they found that annotation bias in GO generally increased in humans. Our results are in agreement with those findings. Our 

analysis extend these results to show that the bias continues to increase rapidly also after 2011. In 2015, we found that 

58% to 69% of the annotations are for 16% to 27% of the human genome, depending on whether electronically inferred 

annotations are included or not. For the same set of gene signatures, these changes and the bias in GO annotations may 

contribute to low consistency and different interpretations for enrichment results obtained using early and more recent GO 

versions. 

Because of the lack of a gold standard for GO enrichment analysis, we used the latest (March 2015) version as reference 

to represent our current knowledge that is still incomplete and biased. To guard against this incompleteness and bias, we 

used established disease mechanisms that are a priori expected to be identified in analyses of the selected diseases. Yet, 

our analysis identified several factors that drive ontology evolution, which in turn could lead to misinterpretation, or worse 

no interpretation, of experimental data. For instance, a community effort to improve the representation of immunology 

content led to the introduction of 726 new GO terms covering immunological processes as well as revisions of existing 

immunology-related terms and relationships36. However, the number of human genes annotated with these terms remained 

low. For example, although the term response to interferon-gamma was added to GO in March 2008, only 15 genes were 

annotated with the term until 2011, which increased to 87 in 2012. The large increase is very likely due to increased efforts 

in influenza research following the influenza pandemic in 2009. This observation demonstrates that there is often a lag time 

until newly introduced terms are assigned to enough genes to become significant in enrichment analyses (4 years for 

response to interferon-gamma). Such a lag could in turn have further effect on interpretation of experiments. 

Our results are in contrast with previous studies, which reported that despite evolution of GO, enrichment analyses are 

stable and do not necessarily change the interpretation 5,9. There are several important reasons for this discrepancy. First, 

the annotation bias was low in the GO annotations in 2010 compared to 2015 (Figure 2). Only 3% of the human genes had 

more than 10 annotations that accounted for 27% of annotations in 2010. Hence, prior to 2010, majority of the annotations 
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(73%) were for less studied genes that restricted the effects of more studied genes on the enrichment analyses. In 2015, 

more studied genes represented 16% of the genes that accounted for 58% of annotations, and significantly enhanced the 

effect of annotation bias. 

Second, Groß et al. used middle (2007) of the duration they analyzed (2003-2010) as the reference. The GO versions closer 

in time tend to have more significant categories in common (Supplementary Figure 4). Hence, choosing a reference 

version in the middle of the evaluation period is unlikely to observe cumulative effect of smaller changes aggregated over a 

longer period on interpretation of enrichment analyses. In contrast, we chose the last version of the GO (2015) as the 

reference for evaluating effect of GO evolution from 2004 to 2015, which allowed us to aggregate changes over more than 

a decade to observe effects of GO evolution on enrichment analyses. 

Third, Groß et al. used the dice approach for computing stability, which corresponds to the harmonic mean and is suitable 

for comparing sets of similar size. In contrast, we used Jaccard index as a measure of stability, which produces slightly 

different results than dice, especially when overlap between two results is low37. The choice of a stability measure in turn is 

dependent of the amount of data used for analysis. Groß et al. only used two datasets and GO terms with at least 20 genes, 

which justified use of the dice approach. In contrast, we used 377 datasets composed of over 23,000 human samples to 

derive 104 gene signatures to perform systematic global analyses of effects of GO evolution. We also did not restrict the 

set of GO terms used in our analyses based on the number of genes, which further justified our use of Jaccard index. 

Arguably, a limitation of our analysis is that Jaccard index does not account for semantic similarities of ontology term. It is 

possible that accounting for semantic similarity may increase overall consistency for some diseases. However, different 

number of enriched terms between early and later versions of GO for a given gene signature demonstrate that the low 

consistency observed in our analysis is mostly independent of semantic similarity, and that the effect of accounting for 

semantic similarity will likely be limited. For instance, for the influenza gene signature, compared to 112 significant terms in 

2015, there were only four significant terms in 2004, none of which were stimulus- or immune-related. Similarly, for 

pancreatic cancer, no terms were significant in 2004 compared to 81 significant terms in 2015. Further, given that 35% of 

the human genes still do not have any GO annotations (20% when including electronically inferred annotations), this problem 

is likely to persist for a foreseeable future. If the GO continues to grow at the same rate as in the last 5 years, it will likely 

still take more than 10 years before 90% of the human genes are annotated. In our analysis 21-23% of disease gene 

signatures (8-14% when including electronically inferred annotations) did not return any significant terms and therefore had 

to be excluded from further consistency analyses. Therefore, special attention must be paid when interpreting a gene list 

with a substantial number of un-annotated genes in the list. 

In general, enrichment analysis results are intended as an exploratory approach to organize and probe large scattered 

datasets. Our analyses show, especially in early GO versions with a lot of missing annotation data, that enrichment results 

with many terms close to the significance cutoff (p-values ~ 0.05) can be noisy. In practice, this means that enrichment 

results should be filtered and curated by an expert in the topic under study before additional experiments are performed. 

Since we performed an analysis comparing a very large number of enrichment results with each other, we could not account 

for the expert curation step, which should be kept in mind when interpreting our results. Our study is an attempt to illustrate 

the extend and effects of GO evolution at a large scale and especially including recent GO versions, which were not included 

in earlier studies. Our results highlight the importance to develop methods for assessment of enrichment results if 

correctness is unknown due to still incomplete annotation data. Towards this goal, a recent study by Ballouz et al.38 

demonstrated that robustness and uniqueness of enrichment results can be used as method for bias correction and for 

assessment whether enrichment analysis results are biologically meaningful.  
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Therefore, we suggest the following best practices for publication and re-use of GO enrichment analysis results. Publications 

should document the exact GO and annotation version used for analysis, and provide gene signature used for enrichment 

analysis in an easily accessible format to simplify re-running enrichment analyses once GO updates become available (e.g., 

CSV or text files using standard gene identifiers). Publications should also report the number and proportion of 

uncharacterized genes excluded from analysis, and include the number of well-studied genes in gene signature since they 

contribute most annotations. Further, it is advisable to periodically re-analyze a gene signature as recommended by the GO 

Consortium 39, and apply assessment methods to enrichment analysis results when correctness is unknown. 

In summary, the ongoing discussion regarding reproducibility in biomedical research is justifiably focused on appropriate 

use of statistical methods and experimental models. However, our results strongly suggest that it should also include how 

using current knowledgebases, especially GO, to interpret experimental data is affected by evolution of these 

knowledgebases. It is very likely that changing interpretation of an experiment due to evolution of these knowledgebases 

could be viewed as irreproducible results. However, in these cases, it is important to highlight that it is the interpretation of 

data generated from an experiment that is not reproducible instead of the data itself; that the data themselves may be, and 

very likely are, still reproducible. Biomedical researchers must exercise caution when interpreting experimental results, and 

continue to reexamine previous analyses periodically with the most recent GO version. 
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MATERIALS AND METHODS  

Gene ontology  

We obtained archived versions of GO and GO annotations in annual intervals from 2004 to 2015 from the Gene Ontology 

website (ftp://ftp.geneontology.org/pub/go/ontology-archive, http://www.ebi.ac.uk/GOA/archive and 

ftp://ftp.geneontology.org/pub/go/godatabase/archive/full/). 

Year (GO version) ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 

Annotation version 2004/03/29 2005/02/11 2006/01/19 2007/01/13 2008/01/20 2009/01/18 2010/01/24 

Ontology version 2004/02/14 2005/01/03 2006/01/03 2007/01/03 2008/01/05 2009/01/09 2010/01/05 

Year (GO version) ‘11 ‘12 ‘13 ‘14 ‘15  2015 Reference 

Annotation version 2011/01/01 2012/01/11 2013/01/08 2014/01/18 2015/01/08  2015/03/05 

Ontology version 2011/01/05 2012/01/04 2013/01/05 2014/01/07 2015/01/07  2015/03/13 

Table 1: GO annotation and ontology versions used in this analysis.  

For all human genes, we generated GO annotation statistics by counting the number of enrichment-analysis-relevant GO 

annotations. We excluded terms with GO evidence codes Inferred from Electronic Annotation (IEA) or No biological Data 

available (ND), terms from cellular component ontology, and duplicate annotations that only differ in evidence codes. 

Changes between 2004 and 2015 Gene Ontology versions were calculated using the COntoDiff tool 40. 

Gene sets 

Next, we obtained differentially expressed gene sets from the MetaSignature Database 27 (Version January 2015 

http://metasignature.stanford.edu/), which contains 104 manually curated multi-cohort analyses for 92 diseases, with 

normalized expression levels derived from 377 individual microarray experiments (Supplementary Dataset 1).  All datasets 

were downloaded from Gene Expression Omnibus (GEO). Multi-cohort analyses were performed using our MetaIntegrator 

pipeline 29, and we applied a false discovery rate (FDR) cutoff of 0.01 to select sets of differentially expressed genes for 

each experiment.  

GEO datasets used for influenza multi-cohort analysis 33: GSE6269, GSE52428, GSE42026, GSE40012, GSE389000, 

GSE38900, GSE34205, GSE32139, GSE32138, GSE20346, GSE17156 

GEO datasets used for non-small cell lung cancer multi-cohort analysis: Bhattacharjee, GSE10072, GSE1037, GSE11969, 

GSE19188, GSE2514, GSE4824, GSE7670, Shedden 

GEO datasets used for pancreatic cancer multi-cohort analysis: E-EMBL-6, E-MEXP-1121, E-MEXP-950, GSE11838, 

GSE15471, GSE15550, GSE16515, GSE19650, Sourtherland 

Gene symbol mapping 

Mappings to gene symbols were not provided in GO annotation files before 2009. Therefore, we combined all GO annotation 

gene mappings from all years to account for the fact that earlier versions of GO annotations did not contain complete 
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mappings. We removed annotations with obsolete identifiers used in early versions that could not be mapped to any current 

gene. 

Enrichment analysis 

We analyzed the gene sets using BinGO, a Cytoscape plugin for GO enrichment analysis. BinGO applies traditional over-

representation statistical methods to produce a set of enriched GO terms, including enrichment p-values.14 For each gene 

set, we re-ran the analysis using all possible combinations of GO and GO annotation versions, including and excluding 

electronic annotations. We recorded each GO term’s enrichment p-value across all ontology and annotation versions, 

producing a two-dimensional time series of the enrichment p-value for all GO terms. To create the result set of terms used 

to generate hypotheses, we selected terms with FDR corrected p-values <= 0.05 in the hypergeometric test.  

Consistency calculation 

To quantify the consistency/overlap of the result set of an enrichment analysis over time, we used the Jaccard index24. A 

consistency score of 0 indicates that two sets of results are entirely different, while a score of 1 indicates that both enrichment 

analyses produced the same result set. We excluded consistency scores from gene sets that did not return any significant 

GO terms with the selected fixed 2015 version of annotation or ontology. The number of gene sets used for generation of 

consistency plots, is indicated in corresponding consistency plot headings.   

GO annotation counts 

The term GO annotation count refers to the number of genes annotated with a certain term. This parameter was calculated 

by counting all genes annotated with a term of interest in a given GO annotation version, including all genes annotated with 

child terms of the term of interest. 

Calculating Information Content (IC) scores 

We used the IC of a GO term as a proxy for its usage and specificity. The IC of a GO term t is defined as negative log 

likelihood IC(t) = −log2 P(t), where P(t) is the probability of finding t within all GO annotations for human genes of a given 

year. We calculated the IC for each GO term based on the number of human genes annotated with it (or any of its child 

terms in a given GO version) according to a given Gene Ontology Annotation (GOA) file. The IC quantifies the specificity of 

a term in the context of the entire set of annotations for human genes, where terms annotating many genes, such as cell 

cycle, are expected to be general terms and are assigned a low IC. Terms annotating only a few genes, such as response 

to interferon-gamma, are specific terms with a high IC. We calculated the IC for any term and any combination of Gene 

Ontology and Gene Ontology Annotation file for each year from 2004 to 2015 using the using Resnik IC implementation 41 

of the Semantic Measures Library (SML) 42. Furthermore, we computed each gene’s mean IC as the mean IC of the GO 

terms assigned to it. 
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Figure 1: Overview of methods. We analyzed 1) changes in input variables of GO enrichment analyses and 2) how those 

changes affected enrichment analysis results over time.  
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Figure 2: Gene ontology annotation developments, human genome, 2004 to 2015. A) Number of GO annotations and 

their distribution across poorly characterized (blue) and well-characterized (gold) human genes over time. B) GO annotation 

status of the human genome (2004 vs. 2015). Genes are classified by annotation status in uncharacterized (black) vs. poorly 

characterized (blue) vs. well characterized (gold). Only terms relevant for enrichment analysis results were counted 

(excluding: IEA, ND and cellular component). C) Comparison of the average information content (IC) of poorly characterized 

vs. well-characterized human genes in 2015 shows that the mean IC for genes with more annotations was higher (p = 4e-

229). The same difference was observed in 2004 (p = 2e-19, Supplementary Figure 3). 

 

 

Figure 3: Significance of biological process GO terms over time with annual GO version updates (year of GO 

version = year of GO annotation version). Development of p-value significance in GO enrichment analysis result term 

sets in different GO versions are shown for subsets of significantly enriched biological process GO terms (p-value < 0.05 in 

at least one GO version) in three representative diseases: A) influenza, B) non-small cell lung cancer, and C) pancreatic 

cancer. Terms belonging to selected top-level branches in the biological process ontology are indicated in color (e.g. cellular 

process in violet). 
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Figure 4: Effect of ontology and annotation version on consistency and significance of GO enrichment analysis 

results. A) Effect in influenza for GO terms: ‘response to interferon-gamma’. B) Number of human genes annotated with 

GO term: ‘response to interferon-gamma’ (including all child terms) in influenza gene set vs. background. C) Comparison 

of enrichment p-value and information content (IC) developments with annual updates of GO and GO annotations (year of 

GO version = year of GO annotation version) for ‘response to interferon-gamma’ in influenza. D) GO term enrichment 

significance for: cell cycle in non-small cell lung cancer (see Supplementary Figure 6 for pancreatic cancer) E) Number of 

human genes annotated with GO term cell cycle (including child terms) in pancreatic and non-small cell lung cancer gene 

sets vs. background (human genome). F) Comparison of enrichment p-value and IC developments with annual updates of 

GO and GO annotations for cell cycle in pancreatic and non-small cell lung cancer.      
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