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Abstract—A fundamental and important challenge in modern
datasets of ever increasing dimensionality is variable selection,
which has taken on renewed interest recently due to the growth
of biological and medical datasets with complex, non-i.i.d. struc-
tures. Naı̈vely applying classical variable selection methods such
as the Lasso to such datasets may lead to a large number of
false discoveries. Motivated by genome-wide association studies
in genetics, we study the problem of variable selection for datasets
arising from multiple subpopulations, when this underlying
population structure is unknown to the researcher. We propose
a unified framework for sparse variable selection that adaptively
corrects for population structure via a low-rank linear mixed
model. Most importantly, the proposed method does not require
prior knowledge of sample structure in the data and adaptively
selects a covariance structure of the correct complexity. Through
extensive experiments, we illustrate the effectiveness of this
framework over existing methods. Further, we test our method on
three different genomic datasets from plants, mice, and human,
and discuss the knowledge we discover with our method.

I. INTRODUCTION

Increasingly, modern datasets are derived from multiple
sources such as different experiments, different databases,
or different populations. In combining such heterogeneous
datasets, one of the most fundamental assumptions in statistics
and machine learning is violated: That observations are inde-
pendent of one another. When a dataset arises from multiple
sources, dependencies are introduced between observations
from similar batches, regions, populations, etc. As a result,
classical methods breakdown and novel procedures that can
handle heterogeneous datasets and correlated observations are
becoming more and more important.

In this paper, we focus on the important problem of vari-
able selection in non-i.i.d. settings with possibly dependent
observations. In addition to the aforementioned complications
in analyzing datasets arising from multiple sources, the rapid
increase in the dimensionality of data continues to hasten the
need for reliable variable selection procedures to reduce this
dimensionality. This issue is especially salient in genomics
applications in which datasets routinely contain hundreds of
thousands of genetic markers coming from different popula-

tions. For example, to discover genomic associations for a
certain disease, genetic data from patients is often collected
from different hospitals. As a result, data from the case
and control groups can be confounded with variables such
as the hospital, clinical trial, city, or even country. Another
common source of sample dependence is family relatedness
and population ancestry between individuals [1].

Unfortunately, in many applications information on the
origin of different observations is lost either through data com-
pression or experimental necessity. For example, for privacy
reasons, it may be necessary to anonymize datasets thereby
obfuscating the relationship between different observations.
As a result, the data becomes confounded and attempts to
learn associations via existing variable selection procedures
are doomed to fail [2]. In seeking to discover information
from such rich datasets when we do not have this important
information, it becomes necessary to deconfound our models
in order to implicitly account for this.

Existing solutions rely on traditional hypothesis testing after
a dedicated confounding correction step, usually resulting in
suboptimal performance [3], [4]. In contrast, state-of-the-art
variable selection methods usually assume that the data comes
from a single distribution, leading to reduced performance
when applied to multi-source data.

We directly address the problem of variable selection with
heterogeneous data in this paper. Our main contributions are
the following:

• We propose a general sparse variable selection framework
that takes into account possibly heterogeneous datasets by
implicitly correcting for confounders,

• We improve this framework by introducing an adaptive
procedure for automatically selecting a low-rank approx-
imation in the linear mixed model,

• We apply our model to three distinct genomic datasets
in order to illustrate the effectiveness of the method and
report our findings.
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II. RELATED WORK

Variable selection is a fundamental problem in knowledge
discovery and has attracted significant attention from the
machine learning and statistical communities. The basic idea
is to reduce the dimensionality of a large dataset by selecting
a subset of representative features without substantial loss of
information. This problem has attracted substantial attention
in the so-called high-dimensional regime, where it is typically
assumed that only a small subset of features are relevant to a
response. In order to identify this subset, arguably the most
popular method is `1-norm regularization (i.e. Lasso regres-
sion [5]). More recently, nonconvex regularizers have been
introduced to overcome the limitations of Lasso [6]. Examples
include the Smoothly Clipped Absolute Deviation (SCAD) [6]
and the Minimax Concave Penalty (MCP) [7]. These methods
overcome many of the aforementioned limitations at the cost of
introducing nonconvexity in the optimization problem; a recent
review of these methods can be found in [8]. In applications,
variable selection is broadly used to extract variables that
are interpretable or potentially causal [9], [10], especially in
biology [11] and medicine [12].

When the data is non-i.i.d., such as when it arises from
distinct subpopulations, two popular approaches for addressing
this are principal component analysis [13] and linear mixed
models [2], [14]. Mixed models first rose to prominence
in the animal breeding literature, where they were used to
correct for kinship and family structure [15]. Interest in these
methods has surged recently given improvements that allow
their application to human-scale genome data [16], [17], [18],
[19], [20], [21]. These methods, however, ultimately rely on
classical hypothesis testing procedures for variable selection
after confounding correction. Finally, a recent line of work
has sought to combine the advantages of linear mixed models
with sparse variable selection [22], [23], [24], [25].

III. TRUNCATED-RANK SPARSE LINEAR MIXED MODEL

Before we introduce our method, we first revisit the classical
linear mixed model [26].

A. Linear Mixed Model

The linear mixed model (LMM) is an extension of the
standard linear regression model that explicitly describes the
relationship between a response variable and explanatory
variables incorporating an extra, random term to account
for confounding factors. As a consequence, a mixed-effects
model consists of two parts: 1) Fixed effects corresponding to
the conventional linear regression covariates, and 2) Random
effects that account for confounding factors.

Formally, suppose we have n samples, with response vari-
able y = (y1, y2, ...yn) and known explanatory variables
X = (x1, x2, ...xn). For each i = 1, 2, ..., n, we have
xi = (xi,1, xi,2, ...xi,p), i.e., X is of the size n × p. The
standard linear regression model asserts y = Xβ + ε, where
β is an unknown parameter vector and ε ∼ N(0, σ2

eI). In

the linear mixed model, we add a second term Zµ to model
confounders:

y = Xβ + Zµ+ ε, (1)

Here, Z is a known n × t matrix of random effects and µ
is a random variable. Intuitively, the product Zµ models the
covariance between the observations yi. This can be made
explicit by further assuming that µ ∼ N(0, σ2

gI), in which
case we have

y ∼ N(Xβ, σ2
gK + σ2

eI) (2)

where K = ZZT . Here, K explicitly represents the covariance
between the observations (up to measurement error σ2

eI): If
K = 0, then each yi is uncorrelated with the rest of the
observations and we recover the usual linear regression model.
When K 6= 0, we have a nontrivial linear mixed model. As
K is required to be known, early applications of LMMs also
assumed that K was known in advance [15]. Unfortunately,
in many cases (including genetic studies), this information is
not known ahead. In these cases, a common convention is to
estimate K from the available explanatory variables. As we
shall see in following texts, finding a good approximation to
K is crucial to obtaining good results in variable selection.

B. Sparsity Regularized Linear Mixed Model

For high-dimensional models with p � n, it is often
of interest to regularize the resulting model to select out
important variables and simplify its interpretation. This can
easily be achieved by introducing sparsity-inducing priors to
the posterior distribution. For example, [24] introduces the
Laplace prior, which leads to a `1 regularized linear mixed
model as following:

p(β, σg, σe|y,X,K) ∝ N(y|Xβ, σ2
gK + σ2

eI)e−λ|β|

We call the result the sparse linear mixed model, or SLMM
for short.

This choice of prior—which corresponds to the well-known
Lasso when only fixed effects are considered—is well-known
to suffer from limitations in variable selection [6], [27]. The
first contribution of our paper is to extend this SLMM-
Lasso model to more advanced regularization schemes such
as the MCP and SCAD, which we call the SLMM-SCAD and
SLMM-MCP, respectively. For simplicity, we will use f(β)
to denote a general regularizer, yielding the following general
posterior:

p(β, σg, σe|y,X,K) ∝ N(y|Xβ, σ2
gK + σ2

eI)e−f(β). (3)

This allows us to combine the (independently) well-studied
advantages of the linear mixed model for confounding cor-
rection with those of high-dimensional regression for variable
selection.
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Figure 1: Distributions of singular values of K for different
number of distributions the data originate.

C. Truncated-rank Sparse Linear Mixed Model

Despite their successes, the main drawback of the aforemen-
tioned mixed model approaches is the estimation of K from
the data X . In this section, we propose an adaptive, low-rank
approximation for K in order to more accurately model latent
population structure as the second contribution of our paper.

1) Motivation: Even though K is assumed to be known
in LMMs, we have already noted that in practice K is often
unknown. Thus, to emphasize the distinction between the true,
unknown covariance K and an estimate based on data, we let
K̃ = K̃(X) denote such an estimate. Substituting K̃ for K
in (3), the posterior then becomes:

p(β, σg, σe|y,X, K̃) ∝ N(y|Xβ, σ2
gK̃ + σ2

eI)e−f(β). (4)

By far the most common approximation used in practice is
K̃ = XXT [15], [16]. Under this approximation, equation 1
becomes

y = Xβ +Xµ+ ε = X(β + µ) + ε

where µ ∼ N(0, σ2
µ). As our goal is the estimation of β, this

evidently makes distinguishing β and µ difficult.
This approximation was originally motivated as a way to

use the observed variables X as a surrogate to model the
relationship between the observations y. The hope is that the
values in X might cluster conveniently according to different
batches, regions, or populations, which are the presumed
sources of confounding. One straightforward observation is
that such sources of confounding typically have a much lower
dimensionality than the total number of samples in the data.
As a result, we expect that K will have a low-rank structure
which we can and should exploit. Unfortunately, the matrix
XXT will not, in general, be low-rank—in fact, it can be full
rank, with rank(XXT ) = n. To correct for this, we propose
the Truncated-rank Sparse Linear Mixed Model (TrSLMM).

2) Method: Instead of choosing K̃ = XXT as our ap-
proximation, we seek a low-rank approximation to the true
covariance K. Let Γ := XXT and Γ = UΛV T be the SVD of

Γ. Define Λs to be the diagonal matrix such that (Λs)jj = Λjj
for j ≤ s and (Λs)jj = 0 otherwise (assuming values of
Λ are in decreasing order). Then a natural choice for K̃ is
Γs := UΛsV

T for some 0 < s < n, i.e. the best s-rank
approximation to Γ.

a) Selection of s: Therefore, we have replaced the prob-
lem of estimating K with that of estimating an optimal rank s
from the data. Fortunately, the latter can be done efficiently. To
motivate the selection of s, we first investigate the distribution
of Λ under different population structures. Let G denote the
number of subpopulations or distributions used to generate
the data, which all follows the Gaussian distribution with
the zero means. Figure 1 shows a plot of normalized Λ for
100 data samples for G = 1, 5, 20, 100. We can clearly see
that in the middle two cases (G = 5 and G = 20), the
singular values exhibit some interesting patterns: Instead of
decaying smoothly (as for G = 1 and G = 100), there are a
few dominant singular values and more small singular values
following a steep drop-off. This confirms our intuition of a
latent, approximately low-rank structure within Γ.

Based on this observation, we introduce a clean solution
to truncate Λ: We can directly screen out the top, dominant
singular values by selecting the top s values Λj for which

Λj − Λj+1

Λ0
>

1

n

where n is the number of samples. In particular, the number
of selected singular values s satisfies (Λs −Λs+1)/Λ0 > 1/n
and (Λs−1 − Λs)/Λ0 ≤ 1/n.

Then, we have:

(Λs)jj =

{
Λjj if j ≤ s
0 otherwise

and finally:

K̃ = Γs = UΛsV
T

A similar low-rank approximation idea has been used previ-
ously [28], [2], however, these procedures require specifying
unknown hyperparameters, even when replaced by sparse PCA
[29] or Bayesian K-means [30]. Another approach is to fit
every possible low-rank Λs sequentially and selecting the best
configuration of singular values based on a pre-determined
criteria [31], which is O(n) slower than our method and most
importantly does not scale for modern human genome datasets.

3) Parameter Learning: In order to infer the parameters
{β, σg, σe}, we break the problem into two steps: 1) Con-
founder correction, where we solve for σg and σe; and 2)
Sparse variable selection, where we solve for β in Equation 4.

a) Confounder Correction:: Following the empirical re-
sults in [2], we first estimate the variance term with:

p(σg, σe|y, K̃) ∝ N(y − ȳ|0, σ2
gK̃ + σ2

eI) (5)

where ȳ is the empirical mean of y. We then solve Equation 5
for σg and σe, where we can adopt the trick of introducing
δ =

σ2
e

σ2
g

to replace σ2
g for more efficient optimization [16].
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Finally, we can then correct the confounding factors by
rotating the original data:

X ′ = (diag(Γs) + δI)−
1
2V TX

y′ = (diag(Γs) + δI)−
1
2V T y

where K̃ = UΓsV
T is the singular value decomposition,

which has already been computed to determine s.
b) Sparse Variable Selection:: After rotating the data to

produce X ′ and y′, we have a standard variable selection task
at hand [24]. Thus, maximizing the posterior in Equation 4
becomes equivalent to solving a variable selection problem
with X ′ and y′. Note that unlike vanilla linear regression,
which would be unchanged by rotations, the introduction of
the random effects Zµ in (2) violates this rotation-invariance
property.

For different choices of regularizer f(β), we can then solve
the following regularized linear regression problem:

arg min
β
‖y′ −X ′β‖22 + f(β)

where standard optimization techniques can be adopted. In our
experiments, we use proximal gradient descent [32].

IV. SYNTHETIC EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed method Truncated-rank Sparse Linear Mixed Model
(TrSLMM-MCP, TrSLMM-SCAD, TrSLMM-Lasso, as well
as SLMM-MCP and SLMM-SCAD) against existing SLMM
method (SLMM-Lasso), vanilla sparse variable selection
method (Lasso, SCAD, MCP), and recent popular LMM
method extensions (LMM-Select [18], LMM-BOLT [20], and
LMM-LT [21]).

A. Data Generation

We first simulate observed covariates coming from G dif-
ferent populations. We use cg to denote the centroid of the
gth population, g = 1, . . . , G. First, we generate the centroids
cg and from each centroid, we generate explanatory variables
from a multivariate Gaussian distribution as follows:

xij = N(cg, σ
2
eI)

where xij denotes the ith data from gth distribution.
We then generate an intermediate response r from X from

the usual linear regression model:

r = Xβ + ε. (6)

Here β is a sparse vector indicating which variables in X
influences the outcome r and ε ∼ N(0, σ2

ε ).
Note that the components of r are uncorrelated—in order to

simulate a scenario with correlated observations, we introduce
a covariance matrix to simulate correlations between the yi.
Thus, we generate the final response y as follows:

y ∼ N(r, σ2
yM) (7)

where M is the covariance between observations and σ2
y is a

scalar that controls the magnitude of the variance. Letting C

Table I: Simulations configurations

Notation Description Default Value
n the number of data samples 1000
p the number of explanatory variables 5000
d the percentage of active variables 0.05
G the number of distributions 10
σe the covariance of explanatory variables 0.1
σr the covariance of response variables 1

be the matrix formed by stacking the centroids cg , we choose
M = CCT . This has the desired effect of making observations
from the same group g more correlated.

B. Experimental Results in Variable Selection

We use the parameters described in Table I in our simula-
tions.

The results are shown as ROC curves in Figure 2. In
general, across all the parameter settings tested, we see that
the proposed Truncated-rank Sparse Linear Mixed Model out-
performs the other methods. Unsurprisingly, the Sparse Linear
Mixed Model outperforms traditional sparse variable selection
methods, which was completely ineffective in this experiment.
This illustrates how methods that do not account for possible
sources of confounding can drastically underperform when the
assumption that observations are independent is violated.

As the various parameters are changed, we observe some
expected patterns. For example, in Figure 2(a), as n increases,
and in Figure 2(b) as p decreases, the ratio of p

n gets smaller
and the performance gets better. As we increase the proportion
of nonzero coefficients in β, the number of distributions, or
the variance of response variable y, the problem becomes
more challenging. In almost all of these cases, however,
the TrSLMM-based methods show improved performance.
As an example where the SLMM methods are comparable
when G = 2 SLMM-MCP and SLMM-SCAD behave better
than TrSLMM-Lasso, but even they remain slightly inferior
to TrSLMM-MCP and TrSLMM-SCAD. Traditional variable
selection methods, for the most part, show the same behavior
as these parameters are manipulated—this suggests that the
fluctuations we observe in the other methods are due to the
different strategies by which confounding is corrected.

C. Prediction of True Effect Sizes

Figure 3 shows the averaged mean squared error in es-
timating the effect sizes β and its standard error over five
runs for different settings when we adjust the feature covari-
ance σe on synthetic data. We do not consider the LMM
extensions here because they do not estimate the effect sizes.
Interestingly, we can see that TrSLMM-Lasso behave the
best in estimating β, while SLMM-Lasso closely follows-up.
Traditional sparse variable selection methods (Linear-Lasso,
Linear-SCAD, Linear-MCP) behave worse than these two
methods, but mostly better than other TrSLMM and SLMM
based methods.
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Figure 2: ROC curves for the variable selection experiment.
We have zoomed-in to focus on the region of most interest.
For each configuration, the reported curve is drawn over five
random seeds.
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D. Running Time

After confounding correction, we observed that the final
sparse variable selection step converged faster. Across all
the configurations of synthetic experiments, in comparison
to the vanilla sparse variable selection methods, TrSLMM-
Lasso, TrSLMM-SCAD, and TrSLMM-MCP only required
49%, 38%, and 29%, respectively, of the time needed for
the Lasso, SCAD, and MCP, respectively, to converge on
average. SLMM-Lasso, SLMM-SCAD, SLMM-MCP were
slightly faster, and only required 28%, 38%, 37% of the time
needed on average. While not necessarily faster overall, this
is an interesting observation and confirms previous theoretical
work suggesting that variable selection is faster and easier for
uncorrelated variables.

V. REAL GENOME DATA EXPERIMENTS

In order to evaluate the TrSLMM framework in a practical
setting, we tested our model on three datasets coming from
genomics studies. To provide a clearer evaluation, we tested
our method on datasets from three different species. We
then evaluate our discovered knowledge with some of the
published results in relevant literature to show the reliability
of our methods compared with existing approaches. Finally,
we report our discovered associations. We do not consider
the performance of LMM-family models because we have
showed their inferior performance in the simulations. Here,
we can always attach the truncated-rank idea to these methods
and propose new models. We do not believe it is necessary
to exhaust these ideas when we can prove the concept of
truncated-rank models by comparing vanilla LMM and the
truncated-rank counterparts sufficiently.

A. Data Sets

1) Arabidopsis thaliana: The Arabidopsis thaliana dataset
we obtained is a collection of around 200 plants, each with
around 215,000 genetic variables [33]. We study the associ-
ation between these genetic variables and a set of observed
traits. These plants were collected from 27 different countries
in Europe and Asia, so that geographic origin serves as a
potential confounding factor. For example, different sunlight
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Arabidopsis thaliana (27) Heterogeneous Stock Mice (65) Human Alzheimer's Disease (9)

unselected eigenvalues selected eigenvalues

Figure 4: The selected eigenvalues to consider as the sources
of confounding factors

conditions in different regions may affect the observed traits
of these plants. We tested the genetic associations between
genetic variables with 44 different traits such as days to
germination, days to flowering, lesioning etc.

2) Heterogeneous Stock Mice: The heterogeneous stock
mice dataset contains measurements from around 700 mice,
with 100,000 genetic variables [34]. These mice were raised in
cages by four generations over a two-year period. In total, the
mice come from 85 distinct families. The obvious confounding
variable here is genetic inheritance due to family relationships.
We studied the association between the genetic variables and
a set of 28 response variables that could possibly be affected
by inheritance. These 28 response variables fall into three
different categories, relating to the glucose level, insulin level
and immunity respectively.

3) Human Alzheimer’s Disease: We use the late-onset
Alzheimer’s Disease data provided by Harvard Brain Tissue
Resource Center and Merck Research Laboratories [35]. It
consists of measurements from 540 patients with 500,000
genetic variables. We tested the association between these
genetic variables and a binary response corresponding to a
patient’s disease status of Alzheimer’s disease.

B. Ground Truth for Evaluation
To evaluate the performance of TrSLMM, we compared the

results with genetic variables that have been reported in the
genetics literature to be associated with the response variables
of interest. For Arabidopsis thaliana, we used the validated
knowledge of the genetic associations reported in [36]. For
heterogeneous stock mice, the validated gold standard genetic
variables were collected from the Mouse Genome Informatics
database.1 For Alzheimer’s disease, we listed the genetic
variables identified by one of our proposed model (TrSLMM-
MCP) and verified the top genetic variables by searching the
relevant literature. Additionally, since the genetic cause of
Alzheimer’s disease is still an open research area, we reported
the genetic variables we identified for the benefit of domain
experts.

C. Selected Groups
We first validate the success of our truncated-rank ap-

proaches to identify the truly confounding factors from dis-

1http://www.informatics.jax.org/

tributions of eigenvalues. Figure 4 shows the distribution of
eigenvalues of XXT . A naı̈ve linear mixed model will correct
the confounding factors with all these eigenvalues, resulting in
an over-correction. In contrast, Truncated-rank Sparse Linear
Mixed Model only identifies the ones that are likely to be con-
founding sources. As Figure 4 shows, TrSLMM conveniently
identifies 27 data origins for Arabidopsis thaliana, while these
200 plants are in fact collected from 27 countries. TrSLMM
identifies 65 sources for mice data, while these mice are from
85 different families. Although TrSLMM didn’t pinpoint every
confounding factor exactly, the number of confounding factors
is much closer compared to vanilla sparse variable selection
methods (only one) and vanilla SLMM methods (number of
samples by construction). On the human Alzheimer’s Disease,
there is no consensus number of data sources available to
check the correctness of TrSLMM’s selection, but the distri-
bution seems to indicate that there are only a few confounding
sources.

D. Numerical Results

Since we have access to a validated gold standard in two out
of the three datasets, Figure 5 and Figure 6 illustrate the area
under the ROC curve for each response variables (observed
trait) for Arabidopsis thaliana and Mice, respectively. The
responses are ordered such that the leftmost variables are those
for which our TrSLMM model outperform the others. Because
discovering associations in genetic datasets is an extremely
challenging task, many of these methods fail to discover useful
variables. It is worth emphasizing that the discovery of even
a few highly associated variants can be significant in practice.
Overall, TrSLMM methods managed to outperform the other
methods for almost 60% of response variables. TrSLMM-MCP
and TrSLMM-SCAD behave similarly, as previously observed
in the synthetic data experiments.

For Arabidopsis thaliana, TrSLMM based models behave
as the best one on 56.8% of the traits. Since not all of the
traits in our dataset are expected to be confounded, it is not
surprising that in some cases traditional methods perform well.
Without confounding, one expects methods that are optimized
for i.i.d. data to perform best (e.g. Lasso, SCAD, MCP).
For example, traits with GH in the name mean that the
corresponding traits were measured in a greenhouse, where
conditions are strictly controlled and potential confounding
effects introduced by different regions are minimized. As
Figure 5 shows, traditional sparse variable selection methods
almost gain the most advantage over greenhouse traits.

For Heterogeneous Stock Mice, TrSLMM based models
behave as the best one on 57.4% of the traits. The results are
interesting: The left side of the figure mostly consists of traits
regarding the amount of glucose and insulin in the mice, while
the right hand side of the figure mostly consists of traits related
to immunity. This raises the interesting question of whether or
not immune levels in stock mice are largely independent of
family origin.

Most importantly, our proposed model is at least as good
as other SLMM based methods, and sometimes significantly
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Figure 6: Area under ROC curve for the 28 traits of Mice.

better when confounding is present. This gain in performance
comes with no extra parameters and no extra computation, ex-
cept for one computationally trivial step of screening singular
values.

E. Knowledge Discovered and Causality Analysis

Finally, we proceed to the Human Alzheimer’s Disease
dataset. Because Alzheimer’s Disease has not been studied
as extensively as plants and mice, there is no authentic golden
standard to evaluate the performances. Here, we report the top
30 genetic variables our model discovered in Table II to foster
relevant research.

Due to space limitations, we briefly justify only a few of the
most important genetic variables here to evaluate the accuracy
of our model. The 1st is associated with ARHGAP10 gene (also
called GRAF2), which affects the developmentally regulated
expression of the GRAF proteins that promote lipid droplet
clustering and growth, and is enriched at lipid droplet junctions
[37]. The 3rd discovered genetic variable is corresponded

Table II: Discovered Genetic Variable with TrSLMM-MCP

Rank SNP Rank SNP Rank SNP
1 rs10027921 11 rs4898198 21 rs11485173
2 rs12641981 12 rs874404 22 rs1551055
3 rs30882 13 rs16844380 23 rs584478
4 rs2075642 14 rs12563627 24 rs9938976
5 rs12743345 15 rs462841 25 rs5978841
6 rs12734277 16 rs12131475 26 rs6446700
7 rs388192 17 rs1444698 27 rs9384111
8 rs10512516 18 rs4243527 28 rs4421632
9 rs4076941 19 rs5907636 29 rs754865

10 rs684240 20 rs596997 30 rs5951621

to apoB gene, which can influence serum concentration in
Alzheimers disease [38]. The 4th discovered SNP resides
within the region of AOPE, which is prominently believed to
be cause Alzheimer’s disease [39]. The 5th discovered SNP is
within COL1A1, which is associated with APOE [40]. The 6th

resides in WFDC1 and the 9th one is within GALNTL4, both
are reported to be related with Alzheimer’s disease respectively
[41], [42].

VI. CONCLUSIONS

In this paper, we aim to solve a critical challenge in variable
selection when the data is not i.i.d. and does not come from
the same distribution. Due to confounding, traditional variable
selection procedures tend to select variables that are not
relevant. When the sources of confounding are known and can
be controlled for, linear mixed models have long been used to
make such corrections. The use of LMMs to implicitly correct
for confounding that is not explicitly known to an analyst is
a recent development and a very active area of research. This
type of situation occurs frequently in genomics applications
where confounding arises due to population stratification,
batch effects, and family relationships.

To overcome this problem, we introduced a general
framework for sparse variable selection from heterogeneous
datasets. The procedure consists of a confounding correction
step via linear mixed models followed up by sparse variable
selection. We have shown that state-of-the-art variable selec-
tion methods such as SCAD and MCP can be easily plugged
into this procedure. Further, we showed that the traditional
linear mixed model can easily fall into the trap of utilizing
too much information, resulting in an over-correction. To
correct for this, we introduce a Truncated-rank Sparse Linear
Mixed Model that effectively and automatically identifies the
sources of confounding factors. Most importantly, we proposed
a data-driven, adaptive procedure to automatically identify
confounding sources from the spectrum of the kinship matrix
without prior knowledge. Through extensive experiments, we
exhibited how TrSLMM has a clear advantage over existing
methods in synthetic experiments and real genome datasets
across three different species: plant (Arabidopsis thaliana),
mice, and human.

In future work, we plan to explore more complex structured
problems with our proposed framework to select variables for
response variables that are dependent [43] or for explanatory
variables that are correlated [27]. Further, we plan to inte-
grate our method into the popular genomic research toolbox
GenAMap [44].
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