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Abstract

Protein interactions are fundamental building blocks of biochemical reaction systems
underlying cellular functions. The complexity and functionality of these systems emerge
not only from the protein interactions themselves but also from the dependencies
between these interactions, e.g., allosteric effects, mutual exclusion or steric hindrance.
Therefore, formal models for integrating and using information about such dependencies
are of high interest. We present an approach for endowing protein networks with
interaction dependencies using propositional logic, thereby obtaining constrained protein
interaction networks (“constrained networks”). The construction of these networks is
based on public interaction databases and known as well as text-mined interaction
dependencies. We present an efficient data structure and algorithm to simulate protein
complex formation in constrained networks. The efficiency of the model allows a fast
simulation and enables the analysis of many proteins in large networks. Therefore, we
are able to simulate perturbation effects (knockout and overexpression of single or
multiple proteins, changes of protein concentrations). We illustrate how our model can
be used to analyze a partially constrained human adhesome network. Comparing
complex formation under known dependencies against without dependencies, we find
that interaction dependencies limit the resulting complex sizes. Further we demonstrate
that our model enables us to investigate how the interplay of network topology and
interaction dependencies influences the propagation of perturbation effects. Our
simulation software CPINSim (for Constrained Protein Interaction Network Simulator) is
available under the MIT license at http://github.com/BiancaStoecker/cpinsim and
via Bioconda (https://bioconda.github.io).

Author summary

Proteins are the main molecular tools of cells. They do not act individually, but rather
collectively in order to peform complex cellular actions. Recent years have led to a
relatively good understanding about which proteins may interact, both in general and in
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specific conditions, leading to the definition of protein interaction networks. However,
the reality is more complex, and protein interactions are not independent of each other.
Instead, several potential interaction partners of a specific protein may compete for the
same binding domain, making all of these interactions mutually exclusive. Additionally,
a binding of a protein to another one can enable or prevent their interactions with other
proteins, even if those interactions are mediated by different domains. Hence,
understanding how the dependencies (or constraints) of protein interactions affect the
behaviour of the system is an important and timely goal, as data is now becoming
available. Here we present a mathematical framework to formalize such interaction
constraints and incorporate them into the simulation of protein complex formation.
With our framework, we are able to better understand how perturbations of single
proteins (knockout or overexpression) impact other proteins in the network.

Introduction

A central goal in cell biology is to understand how cellular functions emerge from the
collective action of interacting proteins. High-throughput protein-protein interaction
detection techniques, including yeast two-hybrid and mass spectrometry [1–3], can
provide static snapshots of complete interactomes, as demonstrated with several
organisms [4, 5]. The obtained information is typically modeled as networks, i.e.
undirected graphs with nodes and edges corresponding to the proteins and their
pairwise physical interactions, respectively [6–8]. However, a fundamental feature of
protein networks is that the interactions between proteins are dependent on each other.
A key mechanism generating interaction dependencies is allosteric regulation, in which a
protein undergoes conformational change upon one interaction which affects its
capability to bind other proteins [9]. Another major mechanism for interaction
dependencies is mutual exclusiveness arising from steric hindrance that prevents
proteins from binding simultaneously to too close or identical protein domains (Fig 1).

The dependencies between interactions have profound impact on the properties of a
protein network, as they constrain the set of possible protein complexes and their
assembly paths [10–12]. Moreover, interaction inter-dependencies enable perturbations
of one interaction to propagate along the network and affect other
interactions [11,13–15]. Therefore, considering the dependencies between protein
interactions and inferring their collective impact is essential for understanding the
design and function of intracellular protein networks.

An example of a bioinformatics application that benefits immediately from the
incorporation of dependencies is protein complex prediction. Various approaches to infer
protein complexes in silico at large scales exist [16]. They usually rely on detecting
dense regions in the plain protein network via clustering algorithms [17–20]. Studies
indicate that considering mutual exclusiveness between interactions improves the quality
of such protein complex prediction [21–24]. So far, no approach appears to exist that
takes arbitrary types of dependencies into account.

Ultimately, a complete quantitative biochemical description of the whole biochemical
system, including the concentrations and spatial distribution of all involved proteins and
the kinetic constants of their interactions is desirable [25–27]. However, despite the
progress in technologies for measuring these parameters in living cells, a complete
description of large intracellular biochemical systems is still beyond reach. Moreover,
even given a detailed description of such a complex system, insightful simulations and
modeling remain challenging with current computational technology [27,28]. Therefore
this approach is fundamentally difficult even for small protein networks [29,30]. A
valuable simplification of this challenge can be achieved based on the observation that
mutual exclusiveness and allosteric regulations typically lead to all-or-none changes in
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Fig 1. Interaction dependencies limit simultaneously possible protein interactions. Two
or more proteins can compete on the same binding domain (left) leading to the
constraints {(CBL, d3), (SRC, d2)} ⇒ ¬ {(CBL, d3), (FYN, d1)} and
{(CBL, d3), (FYN, d1)} ⇒ ¬ {(CBL, d3), (SRC, d2)}.
On the other hand, one interaction can depend on another, allosteric, interaction that
induces a conformational change (right). This is represented by the constraint
{(CBL, d4), (ABL1, d5)} ⇒ {(CBL, d3), (SRC, d2)}.

the state of the target protein interaction, and therefore can be viewed as Boolean-logic
dependencies between protein interactions. Logic-based models were previously
successfully used for the analysis of signaling networks [31].

In comparison to finding interactions between proteins, identifying the dependencies
between the interactions is more challenging. In order to infer mutual exclusiveness
between the binding of two proteins to a third one, their minimal binding domains
should be identified and found to be at least partially overlaping. However, in case of
non-overlapping binding sites which are in close proximity, structural information has to
be incorporated in order to determine if there is steric hindrance between the binding
proteins [13,14,32,33]. Similarly, structural comparisons between proteins that are
known to interact with a common protein enable to infer probabilities for mutually
exclusive interactions in a protein network [34]. Advances in computational
protein-protein docking enable to infer protein interactions, and hence with sufficient
structural resolution it can also indicate competing interactions throughout a
network [35–39].

In addition to the experimental and computational challenges to identify
dependencies between protein interactions, the knowledge that accumulated about such
interaction dependencies is less standartized and centralizied, in comparison to protein
interactions. While partial information about interaction dependencies is available in
databases, a considerable amount of experimental findings which indicate interaction
dependencies are textually described in scientific publications, rather than standardized
for mining. Along this line, we previously established a computational approach for
high-throughput mining of protein interaction dependencies from large text corpora [11].
Finally, while all of the aforementioned methods lead gradually to accumulation of
organized information about interaction dependencies in large biochemical systems, a
comprehensive approach to integrate this knowledge for getting a better understanding
of large biochemical systems is still required.

Contributions. So far, no unifying model appears to exist that takes arbitrary types
of protein interaction dependencies (beyond mutual exclusiveness) into account.
Additionally, previous work rarely considered the concentration of proteins, although
they can, in particular combined with interaction dependencies, have a significant
impact on the possible complexes. Here we propose a framework and a simulation
method for the evaluation of complex assembly on a large scale, for hundreds of proteins
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with thousands of copies. We use propositional logic to model interaction dependencies,
and provide a flexible framework for their system-wide representation that we call a
constrained protein interaction network (more specifically, a constrained protein
domain-domain interaction network, or just constrained network for short). We present
a computational approach to simulate constrained networks for studying steady state
and response to perturbations (knockout and overexpression of single or multiple
proteins, changes of protein concentrations). We show how this framework enables a
fast simulation and the analysis of many proteins in large networks. We then illustrate
the benefits of our model on the human adhesome network, with adjusted simulation
parameters to match properties of known human protein complexes. By comparing
complex formation with known dependencies against complex formation without
dependencies, we show that interaction dependencies limit the resulting complex sizes
and have an influence on the fraction of singleton proteins of each type. We illustrate
how our model enables us to study the effects of perturbations like knockout or
overexpression of proteins. Thereby, we show how the interplay of network topology and
interaction dependencies guides the propagation of perturbation effects across the
network.

To allow others to investigate these effects, we offer our simulation software CPINSim

(Constrained Protein Interaction Network Simulator) under the MIT license at
http://github.com/BiancaStoecker/cpinsim.

Methods

Constrained protein interaction networks: model

A protein-protein interaction network may be formalized as an undirected graph (P, I)
with a vertex p ∈ P for each protein and an undirected edge {p, p′} ∈ I for each possible
interaction. In this sense, the graph describes all potential interactions, not a concrete
state of interacting proteins.

Sometimes there are several possible interactions between two proteins, which can be
distinguished by different binding domains. Therefore, a more fine-grained model is
helpful that considers interactions between domains of proteins.

Definition 1 (Domain interaction network). A protein domain is a pair (p, d)
consisting of a protein name and a domain name. Two protein domains (p1, d1) and
(p2, d2) belong to the same protein if p1 = p2. A domain interaction network is an
undirected graph (P, I) whose nodes are protein domains (p, d) ∈ P and whose edges
are domain interactions {(p1, d1), (p2, d2)} ∈ I.

A domain interaction network (P, I) can be projected down to a protein interaction
network (P ′, I ′) by defining P ′ := {p | (p, d) ∈ P} and
I ′ := {{p1, p2} | {(p1, d1), (p2, d2)} ∈ I}.

We now present a method for incorporating dependencies between domain
interactions. Our method is based on propositional logic [40].

Definition 2 (Propositional logic). The propositional logic Prop(Q) over a set Q (the
atomic units of the logic) is the smallest set of formulas such that

• > (True) and ⊥ (False) are formulas.

• q itself is a formula for all q ∈ Q,

• if φ, φ′ are formulas, so are ¬φ, φ ∧ φ′, φ ∨ φ′, and φ⇒ φ′. (The operators
¬,∧,∨,⇒ have the usual semantics “not”, “and”, “or”, and “implies”,
respectively. The implication φ⇒ φ′ is equivalent to (¬φ ∨ φ′). )

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2017. ; https://doi.org/10.1101/229435doi: bioRxiv preprint 

http://github.com/BiancaStoecker/cpinsim
https://doi.org/10.1101/229435
http://creativecommons.org/licenses/by/4.0/


In our application, the atomic units of the logic are the interactions I. Thereby, the
satisfiability of an interaction i ∈ I represents whether it is possible or not in a given
state (e.g. in partially assembled complexes). We describe interaction dependencies via
propositional logic formulas with a particular structure (“constraints”).

Definition 3 (Constraint for an interaction dependency). A constraint is a
propositional logic formula of the form i⇒ ψ with i ∈ I and ψ ∈ Prop(I). With
C(I) ⊆ Prop(I) we denote the set of all possible constraints over I.

A constraint i⇒ ψ restricts the satisfiability of i by the satisfiability of ψ. In other
words: Formula ψ is a necessary condition for interaction i.

For example, the dependency of an interaction i on an allosteric effect due to a
scaffold interaction j can be formulated by the constraint i⇒ j. Mutual exclusiveness
of two interactions i, j ∈ I can be modeled by the two (equivalent) constraints i⇒ ¬j
and j ⇒ ¬i. Fig 1 shows some examples graphically.

Using propositional logic also allows defining constraints of higher order: An
interaction i could depend on an arbitrary scaffold interaction of a given set j1, . . . , jn,
which is modeled by the formula i⇒ (j1 ∨ · · · ∨ jn). For example the interaction of
F-ACTIN with VCL becomes possible by either ACTN1 or TLN1 binding to VCL. This
leads to the constraint

{VCL,F-ACTIN} ⇒ ({VCL,ACTN1} ∨ {VCL,TLN1}) . (1)

Protein domains have been omitted for readability. By combining multiple constraints,
it is possible to model arbitrary combinations of allosteric effects and steric hindrance.

Now, we can define constrained protein interaction networks as a set of protein
domains (nodes) connected by interactions (edges) extended by a set of constraints
(dependencies between edges).

Definition 4 (Constrained protein domain-domain interaction network). Let (P, I) be
a domain interaction network. Let C ⊆ C(I) be a set of constraints according to
Definition 3. Then the triple (P, I, C) is called a constrained protein domain-domain
interaction network, or constrained network for short.

Simulation of protein complex formation

A constrained network allows us to approximate the behavior of real proteins in a cell
via simulations. For a constrained network (P, I, C), we consider np copies of each
protein p to be present in the system. Together, the domains of these protein copies
form a graph. Edges represent currently happening interactions between domains. In
addition, we consider all domains of the same protein to be implicitly connected. Hence,
the connected components of the graph represent protein complexes. Initially, each
complex is a singleton protein: there are no interactions. We abstract from the spatial
location of the proteins, and perform our simulation stepwise by repeatedly conducting
two phases. In the association phase, each protein copy can (randomly) form new
associations according to the current state, the possible interactions and the interaction
constraints. In the dissociation phase, existing interactions probabilistically dissociate,
potentially breaking large complexes into smaller ones. These phases are repeated until
certain observable quantities reach stable levels (“convergence”, see below).

In the association phase, we iterate over all protein copies. For each copy, with a
given probability α (association probability), a new interaction is attempted (with the
complementary probability 1− α, the protein copy will do nothing in this phase). For
protein copy p we have

∑
p′:{(p,d),(p′,d′)}∈I np′ different possible interactors to choose

from. To attempt a new interaction, first an interactor p′ and then a specific domain
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interaction i = {(p, d), (p′, d′)} are randomly chosen from the possible interactions not
yet established with p. It is then checked whether the proposed interaction i is valid,
i.e., that no constraint will be violated if it is established. For this, we consider the
conjunction of i with all present interactions Ip ⊆ I and Ip′ ⊆ I involving protein p or
p′ respectively and all constraints of the new interaction i. Consider the propositional
logic formula

fi := i ∧
∧
j∈Ip

j ∧
∧
k∈Ip′

k ∧
∧

c=(i⇒ψ)∈C(I)

c. (2)

The interaction i can be formed if and only if fi is satisfiable. Essentially, satisfiability
means that none of the constraints c contradicts the conjunction of the new and the
existing interactions. Satisfiability of fi is checked (see below for an efficient algorithm),
and interaction i is added to the simulation state in the affirmative case. If the
proposed interaction is not possible in the current state, it is not added; this leads to an
effective rate less than α for new associations.

In the dissociation phase, we iterate over each existing interaction and remove it
with probability β. We do not check whether any constraints are violated after removal.
This is motivated by the following reasoning. Consider an allosteric activation where
proteins A and C can only interact if already an interaction between A and B is present.
Assume a state where both interactions exist for specific copies of A, B and C. Now the
interaction between A and B may dissociate without removing the interaction between
A and C. So while that interaction is necessary for the formation of the interaction A
and C, it is not necessary for maintaining it. This simplification is based on the
assumption that once the allosteric activator B enabled the binding of protein C to
protein B, the bound C locks the conformation of B in the state which is compatible for
allowing this interaction. An example for such binding-mediated conformation locking is
the binding of Vinculin (VCL) to Talin (TLN1), which depends on the mechanical
stretching of Talin and then inhibits Talin refolding after the force is released [41].

We conduct the simulation until a steady state has been reached. Informally, this is
a state where subsequent simulation steps change neither the total number of
interactions (edges) in the simulation network nor the distribution of complex sizes in
the network. As a proxy for the size distribution, we consider the fraction of singleton
proteins (i.e., the number of non-interacting protein copies, divided by the total number
of protein copies in the simulation).

As we start with no interactions, during the initial steps, the number of interactions
(edges) grows until association and dissociation reach a balance where the number of
interactions stabilizes. Formally, we detect this point in step s when the mean number
of edges over the last ten steps (s− 9, . . . , s) is smaller than the previous ten-step mean
(steps s− 10, . . . , s− 1). We then continue the simulation for another s steps to monitor
the behavior and ensure that both the number of interactions and the proteins’
singleton fractions have stabilized. So the simulation runs for 2s steps when in step s
the convergence criterion is first satisfied. Fig 2 visualizes the process.

An efficient algorithm for checking constraints

We now discuss how the decision whether a proposed interaction i = {(p, d), (p′, d′)}
does not violate any constraints can be made quickly during the simulation. This is of
importance because potentially hundreds of thousands such decisions must be made
during a single simulation run.

Recall that we need to evaluate whether the formula fi given by (2) is satisfiable,
where Ip, Ip′ in (2) are the sets of existing interactions involving the same protein copies
p, p′ as in i. Since i and all active interactions j and k have to be present, we can omit
the first half of the formula and simplify the last part to

∧
c=(i⇒ψ)∈C ψ. Note that most

6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2017. ; https://doi.org/10.1101/229435doi: bioRxiv preprint 

https://doi.org/10.1101/229435
http://creativecommons.org/licenses/by/4.0/


Initial: 
np copies per protein,

no interactions

Analysis of connected
components

Start of
simulation

End simulation
after 2s steps

Association
+

Dissociation

-

Simulation till 
convergence (s steps)

Continue simulation 
for another s steps

Test for conver-
gence triggered

Association
+

Dissociation

-

Fig 2. Visualisation of the simulation procedure. Starting without interactions,
association and dissociation phases alternate until the convergence criterion is first
satisfied after s steps. Then the simulation continues for another s steps.

Fig 3. Example for the relationship between network, constraints and bit vector
representation. Left: Subnetwork for Host-protein A with its interaction dependencies.
The interaction with B has two independent allosteric activators C and D, that are
competing for the same domain at A. Further, E is an allosteric inhibitor for the
interaction between A and B. Middle: Constraints resulting from the interaction
dependencies. Right: Bit vector representations of the constraints for protein A. The
indices are assigned in lexicographical order. Since the interaction with B has two
possible interactors, there are two clauses in the DNF and thus two pairs of bit vectors.

of the ψ will consist of a single literal (e.g., a negated interaction in case of mutual
exclusion). Only in the case of higher order constraints (see Eq. (1)), a disjunction
remains after the simplification. These should be rare in practice. Now, we precompute
the equivalent disjunctive normal form (DNF). A logic formula is in disjunctive normal
form if and only if it is a disjunction of clauses, where each clause is a conjunction of
one or more literals [40]. In other words, we transform the constraints into the form

(`1,1 ∧ `1,2 ∧ · · · ∧ `1,n1
) ∨ · · · ∨ (`m,1 ∧ · · · ∧ `m,nm

),

where each `·,· is an interaction j or a negated interaction ¬j. Each clause of the DNF
then represents one conjunction of interactions that have to be present or absent (if
occurring negated) in order for interaction i to be possible. If a clause evaluates to true
when setting the already present interactions Ip and Ip′ to true and all other
interactions to false, we know that the formula fi is satisfiable. In theory, the
conversion to DNF could lead to an exponential growth of the number of clauses, but as
shown above, we expect most constraints to be simple, consisting of a single literal.
Hence, the DNF can be calculated as follows. First, all single literals are combined into
a conjunction φ. Second, for the first disjunction l1 ∨ l2 ∨ . . . , we spawn a conjunction
φ ∧ li for each literal li and go on recursively with the next disjunction. Once the
recursion is completed, we have

∏
(i⇒ψ)∈C |ψ| clauses where |ψ| is the number of literals

in the disjunction ψ.
Consider the subnetwork in Fig 3 with a current simulation state where one copy of

protein A is already interacting with a copy of protein D and the questioned interaction
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is i = {(A, d1), (B, d4)}. The full formula from above is

fi := {(A, d1), (B, d4)}∧
{(A, d2), (D, d6)}∧
{(A, d1), (B, d4)} ⇒ ¬{(A, d3), (E, d7)}
∧ {(A, d1), (B, d4)} ⇒ {(A, d2), (C, d5)} ∨ {(A, d2), (D, d6)}.

The two bottom rows represent the constraints and can be transformed into the
equivalent DNF

{(A, d2), (C, d5)} ∧ ¬{(A, d3), (E, d7)}
∨
{(A, d2), (D, d6)} ∧ ¬{(A, d3), (E, d7)}.

If one of the clauses is satisfied given the proposed and the existing interactions (first
two rows in the formula above), then the proposed interaction is possible and does not
violate any constraints.

For each possible interaction in the system, there is one such DNF which has to be
evaluated fast. For this, we propose the following approach. We first observe that each
protein has a limited number of possible binding partners (Fig 6). This limits the size of
the DNF clauses. For each protein, we encode the DNFs of the possible interactions
using bit vectors. This representation does not change during the simulation and is
shared by all copies of a protein. In addition, for each copy p of a protein, we represent
the state of currently active interactions Ip ⊆ I in another bit vector. This bit vector is
updated whenever p enters or leaves an interaction. For a potential interaction
i = {(p, d), (p′, d′)}, the satisfiability of fi can then be efficiently checked by evaluating
the bit vector representations of the corresponding DNFs for both p and p′.

In the following we present the details of the representation. We enumerate the
interactions of a protein in a convenient order and assume that the index kj of an
interaction j can be obtained in constant time. Then, for each potential interaction of a
protein, we represent each clause of the corresponding DNF by two bit vectors b+

and b−. In bit vector b+, we store the positive literals: we set the kj-th bit to one if
interaction j occurs in a positive literal. The bit vector b− stores the negative literals by
setting the kj-th bit to one if interaction j occurs in a negative literal. The state of
currently present interactions of protein copy p is represented by a bit vector b∗ with the
kj-th bit set to one for each present interaction j ∈ Ip. (The same is additionally done
with another bit vector for Ip′ .) Then, the satisfiability of the DNF can be calculated by
iterating over the clauses and checking each clause against the status vector. If
b+& b∗ = b+ and b−& ¬b∗ = b− (with ¬b∗ being the bitwise negation of b∗ and & the
bitwise conjunction), we know that one clause evaluates to true. Once the iteration
reaches the first satisfiable clause, we can stop, knowing that the DNF is satisfiable.

In our example we assign the indices lexicographically and get (0010, 1001) and
(0100, 1001) as bit vectors (b+, b−) for the two clauses in the DNF. In both vector pairs
the least significant (rightmost) bit reprensenting the interaction with B is set in the
vector b−. This is to ensure that A and B are not already interacting with each other.
The other set bit in b− is for the allosteric inhibition of E. The two different set bits in
b+ represent the independent allosteric activators C and D. The bit vector for the
current state of active interactions is b∗ = (0100). In the example, we have

b+& b∗ = 0100 & 0010 = 0000 6= b+

for the first clause. In contrast, the second clause is satisfiable with

b+& b∗ = 0100 & 0100 = 0100 = b+

and
b−& ¬b∗ = 1001 &¬0100 = 1001 = b−.

Hence, the constraints are not violated and the example interaction is possible.
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Fig 4. Example of the construction process of a constrained protein interaction
network, starting with an initial protein set P0. We seek to find a minimal network
encapsulating P0 while not discarding interesting constraints. A: A section of the
complete constrained network. The diamond-shaped nodes (�) are proteins from the set
P0 (human adhesome network), the others (#) are proteins not from P0. Black lines are
interactions, red arcs indicate constraints between the interactions. B: Selection (blue)
of all constraints and corresponding proteins and interactions, where at least two
proteins are from P0. C: Selection (green) of proteins whose constraints have an
influence on the previously selected proteins. D: Final set of proteins, interactions and
constraints for simulation.

Simulation of perturbations

With a constrained network (P, I, C), we may simulate not only the given network, but
also perturbations of it. Typical perturbations are protein knockout and overexpression.
Recall that our model considers a copy number (or expression) np for each protein p.
Assuming that these np copies represent a typical state of the constrained network, we
can simulate a perturbation by modifying the expression of a particular protein p with a
factor, i.e. n′p := o · np. An overexpression is equivalent to a factor greater than 1,
whereas a knockout corresponds to a factor less than 1. A factor o = 0 describes a
perfect knockout, where no copies of the protein are left. It is of course possible to
combine overexpression or knockout of different proteins in the same simulation run.

Construction of constrained protein interaction networks

Often, it is of interest to study a certain subnetwork, that is characterized by a set of
proteins P0. At the boundaries of such a subnetwork, there will be interactions that are
constrained by proteins that are not part of P0. Not considering such constraints would
lead to biased results. In the following, we provide a solution that includes outside
proteins such that these constraints are considered as well. Given an initial set P0 of
proteins, protein domain interactions I0 (that may involve additional proteins not
contained in P0) and a set C0 of constraints over I0, we construct a constrained network
(P, I, C) as follows.

First, note that a non-trivial constraint c = (i⇒ ψ) involves at least three proteins,
two in interaction i and at least an additional one in ψ. Let P (c) be the (multi)set of
proteins mentioned in constraint c.

1. Select all proteins from P0.

2. Select the subset C1 ⊂ C0 of constraints that mentions at least two proteins from
the initial protein set P0, i.e. C1 := {c : |P (c) ∩ P0| ≥ 2}.

3. Select all proteins mentioned in C1; i.e., define P1 :=
⋃
c∈C1

P (c).
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4. To extend the currently selected protein set, consider constraints C2 ⊂ C0 that
have an influence on the previous selected proteins; i.e.
C2 := {c : |P (c) ∩ (P0 ∪ P1)| ≥ 2} and select proteins P2 :=

⋃
c∈C2

P (c).

5. Define proteins P := P0 ∪ P1 ∪ P2,
interactions I := {{(p1, d1), (p2, d2)} | (pi, di) ∈ P, {(p1, d1), (p2, d2)} ∈ I0},
and constraints C := C1 ∪ C2.

An example for this procedure, based on an initial small subset of the human adhesome
network, is shown in Fig 4.

It remains to discuss how and where to obtain information on interactions and
interaction dependencies, I0 and C0 in the terminology above. While protein
interactions are available from various databases [42–44], information about interaction
dependencies is not yet collected systematically for various reasons discussed in the
Introduction. In the past, we have had success with a semi-automated text mining
approach on the human adhesome network [11]. Further, competitions on binding
domains can be inferred from domain interaction databases, such as DOMINO [43]. In
those databases each protein interaction is annotated with a binding domain on each
protein, i.e., an interval of positions in the amino acid sequence, such as the interval
[540, 906]. We assume that two proteins compete for the same domain if the domains of
the interactions are overlapping each other. If we have a competition between proteins
without domain annotations (e.g., obtained by text mining), but each involved protein
has a unique domain involved in interactions in the dataset, we assume that the
constraint involves the same domains. If we cannot infer the domain in this way, we
create artificial unique domains. For allosteric effects we assume that interactor and
activator/inhibitor each bind to a different domain of a host protein, while competitors
are all assigned to the same domain of the host.

Results

We first describe the used adhesome interaction network and some of its statistics, as
well as the chosen simulation parameters. Then we present our results regarding the
running time and convergence of the simulation. Finally, we discuss the effect of
constraints on complex formation and demonstrate the propagation of perturbations in
the constrained network in contrast to the unconstrained network.

Construction of the constrained extended integrin adhesome
network

Since not many interaction dependencies are known, we selected a network with a high
density of known constraints. In previous work, we discovered 71 interaction
dependencies for the human adhesome network by systematically mining a collection of
over 50 000 full-text articles [11], where we searched for dependencies with at least one
involved protein from the adhesome. Further we inferred competitions on binding
domains from the domain interaction database DOMINO [43].

We started with the human adhesome proteins as initial set P0 in the construction
described above. In this initial network there are 121 proteins and 392 interactions
(between only these proteins) as well as 139 competitions and 2 allosteric effects
(resulting from text mining and DOMINO). The interactions between all selected
proteins were taken from the HINT database (only binary interactions, [44]). Applying
the described network construction leads to a network with 718 proteins (Table 1,
Fig 5).
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Fig 5. Constructed protein network (constraints not shown). Node color and size
represents the number of interactors. Yellow nodes have a single interactor; the number
of interactors increases with the amount of blue. Key proteins with many interactors
are shown by name.

Table 1. Characteristics of the constrained protein interaction network used for
simulation (human adhesome network): Row “initial” refers to the network consisting of
only nodes from the adhesome (P0). Row “extended” describes the complete
constrained network constructed incrementally from P0, as described in Methods.

network proteins interactions competitions allosteric effects
initial 121 392 139 2
extended 718 2933 2753 21

In the resulting network, 139 proteins have only one domain and one interactor,
while most of the proteins have between two and six interactors. Interactors are counted
with regard to the domains, meaning that the same protein is counted as two
interactors if the interactions are at different domains. The distribution of the number
of interactors is shown in Fig 6 (left).

There are 50 proteins that are not part of a constraint. Most proteins are part of one
constraint, while some proteins are part of over one hundred constraints. The
distribution of the number of constraints is shown in Fig 6 (middle).

Choice of simulation parameters for the extended human
adhesome network

Given the constrained network, the main parameters to adjust are the association
probability α and the dissociation probability β (see Methods, Simulation of protein
complex formation). The choice is guided by two criteria. First, the resulting complex
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Fig 6. Statistics of the proteins in the constructed constrained network. Domain aware
means that interactors and constraints are counted per domain. Left: Frequencies of the
number of interactors; there are 17 outliers with more than 35 interactors: 38, 44, 47,
47, 47, 55, 87, 103, 118, 119, 123, 127, 135, 166, 178, 182, 242. Middle: Frequencies of
the number of constraints; there are 12 outliers with more than 35 constraints: 42, 72,
73, 95, 102, 103, 106, 114, 122, 153, 166, 168. Right: Histogram of ratios of the number
of constraints over the number of interactors. There are 219 proteins with a ratio of 1.

size distribution should approximately reproduce known complex size distributions.
Especially, we want to avoid the formation of overly large unrealistic complexes (several
hundreds to thousands of proteins). Second, as the simulation consists of two discrete
steps (association and dissociation), it has to be sufficiently fine-grained that the
complex size distributions after association and dissociation phase do not differ
significantly in the steady state. This excludes large probabilities.

We systematically evaluated different combinations of α and β and found that the
reasonable parameter space is restricted to α ≤ 0.1 and β = f · α with a factor f in the
interval [2.0, 10.0]. In this parameter range, we compared the simulated complex size
distribution at steady state with the complex size distribution of known complexes. The
known complexes were taken from the CORUM database provided by the Munich
Information center for Protein Sequences (MIPS) [45]. The database contains manually
annotated protein complexes from mammalian organisms without regard to the
connections of proteins in the complexes or the multiplicity of proteins.

Fig 7 shows a histogram of complex sizes for human complexes in the CORUM
database (left) and the complementary cumulative distribution functions (ccdf) of
CORUM complexes and simulated complexes for a particular parameter set
(α = 0.005, β = 0.0125; right). For complexes with more than 20 different proteins,
information is sparse, and there are only one or two known complexes of each of those
sizes. This can be explained by the difficulty of experimentally finding big complexes
and represents a bias in the distribution. It can be assumed that the distribution is
more accurate for the smaller complexes and thus the consistency between the known
and simulated complexes for complexes with size below 20 is an indicator for a good
parameter combination. The shown distribution (α = 0.005, β = 0.0125 = 2.5α) was the
best fitting parameter set. Therefore those parameters were used for all following
evaluations. If not stated otherwise, we consider np = 1000 copies for each protein.

Next, we examined how many simulation steps were needed till convergence (steady
state). For the chosen parameter set, between 250 and 350 steps were required (Fig 8).
The convergence criterion is based on the edge density (number of interactions) in
simulated complexes, which remains stable after meeting the criterion, together with the
number of unbound proteins (singletons).

Running times and reproducibility of simulations

In principle, the number of proteins, interactions and constraints in a simulation is not
limited, except by the available memory and, to a lesser degree, computation time. We
simulated the described network with 718 protein types and np copies of each protein
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Fig 7. Left: Histogram of complex sizes for human complexes in CORUM database.
There are 14 outliers beyond 30: 31, 32, 33, 34, 36, 37, 44, 47, 48, 78, 80, 81, 104, 143.
Complex sizes larger than 20 (yellow line) occured only once or twice. Right:
Comparison of the complementary cumulative distribution function (ccdf) of simulated
complex sizes with constraints for α = 0.005, β = 0.0125 (averaged over 50 runs) against
the distribution from the CORUM database. Cumulative distributions are capped at
complex sizes where the absolute complex frequency drops below 10. Complex sizes
above 20 (yellow line) occur only once or twice.
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Fig 8. Steady-state statistics of one simulation run (with constraints); the convergence
criterion is satisfied after 269 steps (yellow line), and the simulation continues for the
same number of steps. Other simulations ran for comparable numbers of steps. Top:
edge density (number of interactions divided by total number of protein copies in the
simulation). Bottom: singleton fraction (number of singleton proteins divided by total
number of protein copies).

for different values of np on a single thread of an Intel Core i7-4790K processor at
4.00GHz with the time and memory requirements shown in Table 2. We see that even
large copy numbers can be handled in a resaonable amount of time and with an amount
of RAM that is typically available on today’s common desktop PCs.

We assessed whether the simulations generated reproducible results, both with and
without constraints. For this, we compared the complex abundances for different runs
against each other. We abstracted from network topology and multiplicity of proteins
within complexes, and only considered the sets of contained proteins. Fig 9 shows the
abundances of different complexes in different simulation runs, grouped by complex size.
Apart from singletons, most complexes did not occur often. Yet, complexes that
occurred in multiple runs tended to occur with similar frequency. Both with and
without constraints, our simulation produced reproducible complexes.
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Table 2. Time and memory requirements for the simulation of complex formation in
the extended adhesome network with 718 protein types and different copy numbers of
each protein. Numbers are given for a single run, averaged over 10 runs, on a single
thread of an Intel Core i7-4790K processor at 4.00GHz.

copies time [min:s] memory [GB]
1000 04:00 1.23
2000 08:30 2.33
3000 15:03 2.64
4000 21:02 3.80
5000 26:44 4.49
6000 32:05 5.16
7000 36:58 6.31
8000 44:27 7.49
9000 48:20 8.17

Table 3. Proteins chosen for perturbation simulations (5-fold overexpression and
complete knockout). For each protein, we list its number of interactors (proteins with at
least one interaction with the given protein), number of model domains (including
artificial unique domains, see “Construction of constrained protein interaction networks”
above), number of interactions (at least as high as the number of interactors), and the
number of constraints in which the protein participates.

protein interactors interactions domains constraints
CRK 124 135 22 122
YWHAG 119 119 6 114
ABAT 1 1 1 1

Complex sizes with and without constraints

To evaluate which effect the interaction dependencies have on the simulation, we
compared the simulation results with and without constraints.

For each set of constraints we did 100 simulation runs with the chosen parameters.
The complex size distributions at steady state are compared in Fig 10. As could be
expected, simulations without constraints lead to significantly larger complexes than
simulations with them.

The maximum complex size is 75 (averaged over runs) with constraints. All
simulations without constraints develop one large complex accumulating nearly all
different protein types in the network. This complex has an average size of 84 182 and
no biological relevance. Further, the simulations without constraints have fewer
singleton proteins at steady state than the simulations with constraints.

Characterization of perturbation effects

In order to illustrate the capability of our framework to estimate effects of
perturbations, we chose three proteins with different roles in the network, i.e. different
numbers of interactors and constraints (Table 3): CRK, YWHAG and ABAT. Both
CRK and YWHAG have a large number of interactors and interactions, but they differ
in the number of domains and additionally in their role in the network (Fig 5): CRK’s
interactors include several proteins which have themselves many interactors, while
YWHAG’s interactors frequently have no other interactors than YWHAG itself. In
contrast, ABAT is at the periphery of the network with a single interactor.

We simulated 50 runs for each of the selected proteins with five-fold overexpression
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Fig 9. Density plot of pairwise abundances of complexes over two runs. Abundances
are accumulated over the 4950 = (100 · 99)/2 unordered pairs of runs for 100 simulation
runs, both with (top row) and without constraints (bottom tow). For this comparison,
complexes are considered equal if their protein sets are equal (disregarding protein
multiplicities and interactions). Note the different scales; large complexes occur less
frequently than small complexes or singletons.

and with complete knockout of the protein, both with and without constraints.

Changes in complex sizes We investigated how perturbations change the complex
size distributions (Fig 11). As may be expected, perturbations of ABAT did not
detectably influence the complex size distribution, neither with nor without constraints.
A plausible explanation is that ABAT only has a single interactor, so its influence on
the network is limited.

Similar to ABAT perturbation of CRK had no visible global effect on larger
complexes. However, singleton fractions differed with the type of perturbation
(overexpression vs. knockout) and whether constraints were included in the model or
not. In addition to being a central hub in the network, CRK is also a limiting factor
with a small singleton fraction (i.e., most copies were bound) in the unperturbed
simulations (with constraints: 0.011, without: 0.0), so a noticeable effect was to be
expected. If CRK is knocked out, it can no longer act as a hub, and we observe more
singleton complexes; this is true both with and without constraints. After
overexpression of CRK, we observe fewer singleton complexes.

Although YWHAG and CRK are comparable concerning their number of interactors
and constraints, perturbing YWHAG has different effects than perturbing CRK. With
constraints, overexpression of YWHAG has little effect on larger complexes. The reason
is that YWHAG does not occur in a dense region of the network, and most interaction
partners can only interact with YWHAG itself while inhibiting each other, such that
complex size is limited (Fig 5). On the other hand, a knockout leads to a slight increase
in complex sizes. An explanation is that the few interaction partners that connected
YWHAG to the rest of the network are now free to enlarge other complexes.
Importantly, these effects are only visible when considering interaction dependencies.
Without them, knockout leads to a major drop in complex sizes. The reason is that the
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Fig 10. Left: Complementary cumulative distribution functions (ccdf, log scale) of
protein complex sizes at steady state for 100 simulation runs with constraints (blue) and
without constraints (green). The bold line depicts the mean; the shaded area depicts
minimum and maximum. Right: Cumulative distribution function (cdf, linear scale) of
the same runs for complex sizes ≤ 35.

0 5 10 15 20 25 30 35 40
Complex size [Number of proteins]

10 4

10 3

10 2

10 1

100

Av
er

ag
e 

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 c
om

pl
ex

es

Perturbation of CRK
unperturbed with
overexpression with
knockout with
unperturbed without
overexpression without
knockout without

0 5 10 15 20 25 30 35 40
Complex size [Number of proteins]

10 4

10 3

10 2

10 1

100

Av
er

ag
e 

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 c
om

pl
ex

es

Perturbation of ABAT
unperturbed with
overexpression with
knockout with
unperturbed without
overexpression without
knockout without

0 5 10 15 20 25 30 35 40
Complex size [Number of proteins]

10 4

10 3

10 2

10 1

100

Av
er

ag
e 

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 c
om

pl
ex

es

Perturbation of YWHAG
unperturbed with
overexpression with
knockout with
unperturbed without
overexpression without
knockout without

with without
Constraints

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Fr
ac

tio
n 

of
 P

ro
te

in
s

Frequency of singletons
perturbation of CRK

unperturbed
overexpression
knockout

with without
Constraints

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Fr
ac

tio
n 

of
 P

ro
te

in
s

Frequency of singletons
perturbation of ABAT

unperturbed
overexpression
knockout

with without
Constraints

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Fr
ac

tio
n 

of
 P

ro
te

in
s

Frequency of singletons
perturbation of YWHAG

unperturbed
overexpression
knockout

Fig 11. Impact of perturbations on the complex size distribution for CRK (left),
ABAT (middle), YWHAG (right) under constraints (blue) and without constraints
(green). Top row shows the mean complementary cumulative distribution functions
(ccdf, 100 runs each with and without constraints). Solid lines depict unperturbed state,
dashed lines overexpression and dotted lines knockout. The bottom row shows the
numbers for singletons (unbound proteins).

family of larger complexes around YWHAG that are only possible when ignoring
interaction dependencies disappears. With overexpression, there are more smaller
complexes and fewer complexes of size ≥ 10. The reason is that a higher presence of
YWHAG increases the probability that one of its interaction partners chooses a free
YWHAG instead of increasing the size of an already existing larger complex around
YWHAG.
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Fig 12. Left: Relation between number of interactors and singleton fraction for each
protein. The values are averaged over 100 runs with constraints. Right: Influence of
constraints on the singleton fraction distribution (averages over 100 runs with
constraints and 100 runs without constraints).

Changes in singleton fractions We also examined the influence of perturbations
on the singleton fraction of each protein. Fig 12 left shows the relation between the
number of interactors and the singleton fraction of a protein in the constrained network.
More interactors mean more interaction possibilities, which lead to more bound copies
and thus fewer singleton copies of a protein. The right side of Fig 12 shows the
distribution of singleton fractions for the constrained network versus the unconstrained
network. Without constraints, more interactions are possible, and therefore singleton
fractions are lower overall than with constraints.

We examined the average singleton fraction of each protein in unperturbed
simulations as well as with overexpression and knockout of specific proteins (CRK,
YWHAG, ABAT) in comparison to the unperturbed experiment. In Fig 13, the
difference in singleton fraction is shown for each protein for overexpression (y-axis) and
knockout (x-axis) of CRK, YWHAG and ABAT separately. We may expect that direct
interactors of the perturbed protein (purple dots) are in the bottom right quadrant
(more singletons after knockout and fewer singletons after overexpression of direct
interactor) and that most of the other dots appear near the center with only small
changes.

As expected, perturbations of ABAT have no strong effect for all proteins regardless
of the distance to ABAT.

For perturbations of CRK, we observe the expected result in the network without
constraints. However, in the constrained network, several direct interactors can be seen
in the bottom left quadrant, meaning that those proteins have fewer singletons after
knockout of CRK. A possible explanation is that some direct interactors of CRK may
also interact with each other. In the presence of CRK, its direct interactors compete
with each other. Once CRK is gone, they are free to form complexes with other
proteins, especially other direct interactors of CRK. Importantly, this effect is not seen
without considering interaction dependencies: Without constraints, purple dots are
exclusively observed in the lower right quadrant and near the center.

Perturbations of YWHAG have a similar, but overall stronger effect than
perturbations of CRK. In the unconstrained network, the majority of direct interactors
can be found in the bottom right quadrant as expected, but in the constrained network,
the majority shifts to the bottom left quadrant.

In summary, as CRK and YWHAG illustrate, consideration of constraints yields
qualitatively and quantitatively different effects than considering the plain interaction
network. Additionally, perturbations of numerically comparable proteins may lead to
different results under constraints because of the local network topology: Considering
interaction dependencies only of the perturbed protein and its immediate interactors
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may still be insufficient for foreseeing the outcome of the perturbation. Therefore, a
simulation of the complete system, as our approach performs, is essential to ensure all
the interactions, interaction dependencies and topological features are taken into
account.

Discussion

We have proposed a simple but powerful framework based on propositional logic for
formalizing dependencies between protein interactions. As far as we are aware, this is
the first such framework able to incorporate complex higher-order dependencies beyond
direct competitions together with multiple copies per protein. We have shown that
interaction dependencies or constraints have a direct effect on complex sizes, and
additionally that they interact with local network topology. In fact, our simulations
suggest that perturbations may have complex and hard-to-predict effects when taking
constraints into account. The simulations are efficient in the sense that networks with a
total of over a million protein copies can be simulated within under ten minutes to
steady state. Compared to straightforward simulations, we achieved high speed-ups by
using the bit vector techniques described in “An efficient algorithm for checking
constraints” that transformed the running time from hours to minutes. The size of the
network that can be simulated is thus primarily limited by the available random access
memory (see Table 2).

In its current form, our model makes several simplifying assumptions. For example,
we check constraints only during the association phase but not during the dissociation
phase. This decision is never a problem with competitions (most of the constraints in
the model), and as we argue in “Simulation of protein complex formation” using the
Vinculin/Talin example, we think that it captures important real effects. However, for
other examples, reality might be different. By having two sets of constraints, one that
has to be maintained during dissociation and one that does not, the model can be easily
adapted.

Currently, our model ignores the spatial distribution of the proteins, and we have
worked with uniform protein copy numbers (or concentrations) as well as uniform
association and dissociation probabilities (corresponding to kinetic coefficients). Clearly,
this is not realistic if the goal is to completely simulate the real biological processes
happening within a cell. However, such a simulation would require much more
knowledge about localization, concentrations and kinetics than is available today (late
2017). When this information becomes available, it is straightforward to scale our model
accordingly. For example, association and dissociation probabilities can be chosen per
interaction without causing a performance penalty and protein concentrations can
already be arbitrarily parameterized in the current implementation. The spatial
location of each protein copy can be considered by adding diffusion and movement rules.

Since our knowledge of constraints is currently incomplete, the biological relevance of
the simulated complexes is limited. However, note that this is a problem with the
available data, not with the model or simulation framework itself. Only few databases
so far systematically include minable constraints, and most of them are competitions
based on overlapping binding domains, as annotated in the DOMINO database [43], or
data records from the IntAct database [46], which one may query with the search term
pbiorole:competitor to obtain information on interactions where one interaction
partner is a competitor. In the coming years, emerging technologies however suggest a
rapid increase in the availability of the needed information, e.g., via the large scale
generation of libraries of cell lines having two or more endogenously tagged fluorescent
proteins [47], and recent high-throughput and multiplexed implementations of
fluorescence correlation spectroscopy which allow us to systematically measure
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endogenous concentrations, binding constants and high-order complexes in such libraries
of cell lines [48–53].

For our examples, we chose a network with a high density of known constraints.
Unfortunately, the set of proteins in our network only has a small overlap with protein
sets in databases of known complexes, such as CORUM [45], so we cannot directly
compare predicted and real complexes. We would currently expect a number of false
positive predictions, but we may also expect that the biological relevance of the
simulation results will increase jointly with more complete knowledge of constraints.

We believe that our results offer important insights already today, as we
demonstrated by the difference in shift of singleton fractions of direct and indirect
interactors after perturbation, when comparing simulations with constraints and
without constraints, but also when comparing perturbations of proteins with different
network roles (with constraints); cf. Fig 13.

In the future, we will consider more realistic concentrations (or proxies for more
realistic concentrations, such as setting the simulated protein copy number proportional
to its number of interactors), more complete dependency data, spatial resolution, and
more detailed kinetics. Moreover, we plan to extend our model to incorporate
post-translational modifications such as phosphorylation, since these can also play a role
in interaction dependencies. When modeling these as interactions with a special type of
node, they can likewise be used within constraints.

Overall, we believe that constrained networks are a useful and versatile tool for
interactomics studies that will improve and scale with increasing knowledge and data
about real interaction dependencies.
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13. Crépieux P, Poupon A, Langonné-Gallay N, Reiter E, Delgado J, Schaefer MH,
et al. A Comprehensive View of the beta-Arrestinome. Front Endocrinol
(Lausanne). 2017;8:32. doi:10.3389/fendo.2017.00032.

14. Kiel C, Verschueren E, Yang JS, Serrano L. Integration of protein abundance and
structure data reveals competition in the ErbB signaling network. Sci Signal.
2013;6(306):ra109. doi:10.1126/scisignal.2004560.

15. Itzhaki Z. Domain-domain interactions underlying herpesvirus-human
protein-protein interaction networks. PLoS One. 2011;6(7):e21724.
doi:10.1371/journal.pone.0021724.

16. Srihari S, Yong CH, Patil A, Wong L. Methods for protein complex prediction
and their contributions towards understanding the organisation, function and
dynamics of complexes. FEBS letters. 2015;589(19 Pt A):2590–602.
doi:10.1016/j.febslet.2015.04.026.

17. Drew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of
over 9,000 mass spectrometry experiments builds a global map of human protein
complexes. Mol Syst Biol. 2017;13(6):932.

18. Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J. Protein complex
prediction via dense subgraphs and false positive analysis. PLoS One.
2017;12(9):e0183460. doi:10.1371/journal.pone.0183460.

19. Ma X, Gao L. Discovering protein complexes in protein interaction networks via
exploring the weak ties effect. BMC Syst Biol. 2012;6 Suppl 1:S6.
doi:10.1186/1752-0509-6-S1-S6.

20. Pellegrini M, Baglioni M, Geraci F. Protein complex prediction for large protein
protein interaction networks with the Core&Peel method. BMC Bioinformatics.
2016;17(Suppl 12):372. doi:10.1186/s12859-016-1191-6.

20

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2017. ; https://doi.org/10.1101/229435doi: bioRxiv preprint 

https://doi.org/10.1101/229435
http://creativecommons.org/licenses/by/4.0/


21. Jung SH, Hyun B, Jang WH, Hur HY, Han DS. Protein complex prediction
based on simultaneous protein interaction network. Bioinformatics.
2010;26(3):385–391. doi:10.1093/bioinformatics/btp668.

22. Ozawa Y, Saito R, Fujimori S, Kashima H, Ishizaka M, Yanagawa H, et al.
Protein complex prediction via verifying and reconstructing the topology of
domain-domain interactions. BMC Bioinformatics. 2010;11:350.
doi:10.1186/1471-2105-11-350.

23. Ma W, McAnulla C, Wang L. Protein complex prediction based on maximum
matching with domain–domain interaction. Biochimica et Biophysica Acta (BBA)
- Proteins and Proteomics. 2012;1824(12):1418–1424.
doi:10.1016/j.bbapap.2012.06.009.

24. Will T, Helms V. Identifying transcription factor complexes and their roles.
Bioinformatics. 2014;30(17):i415–i421. doi:10.1093/bioinformatics/btu448.

25. Hughey JJ, Lee TK, Covert MW. Computational modeling of mammalian
signaling networks. Wiley Interdisciplinary Reviews: Systems Biology and
Medicine. 2010;2(2):194–209. doi:10.1002/wsbm.52.

26. Kholodenko BN. Cell-signalling dynamics in time and space. Nature Reviews
Molecular Cell Biology. 2006;7(3):165–176. doi:10.1038/nrm1838.

27. Le Novère N. Quantitative and logic modelling of molecular and gene networks.
Nat Rev Genet. 2015;16(3):146–58. doi:10.1038/nrg3885.

28. Im W, Liang J, Olson A, Zhou HX, Vajda S, Vakser IA. Challenges in structural
approaches to cell modeling. J Mol Biol. 2016;428(15):2943–64.
doi:10.1016/j.jmb.2016.05.024.

29. Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. Computational modeling of
the dynamics of the MAP kinase cascade activated by surface and internalized
EGF receptors. Nat Biotechnol. 2002;20(4):370–5. doi:10.1038/nbt0402-370.

30. Ma W, Trusina A, El-Samad H, Lim WA, Tang C. Defining network topologies
that can achieve biochemical adaptation. Cell. 2009;138(4):760–73.
doi:10.1016/j.cell.2009.06.013.

31. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based
models for the analysis of cell signaling networks. Biochemistry.
2010;49(15):3216–3224. doi:10.1021/bi902202q.

32. Kiel C, Beltrao P, Serrano L. Analyzing protein interaction networks using
structural information. Annu Rev Biochem. 2008;77:415–41.
doi:10.1146/annurev.biochem.77.062706.133317.

33. Kiel C, Serrano L. Challenges ahead in signal transduction: MAPK as an
example. Curr Opin Biotechnol. 2012;23(3):305–14.
doi:10.1016/j.copbio.2011.10.004.

34. Sánchez Claros C, Tramontano A. Detecting mutually exclusive interactions in
protein-protein interaction maps. PLoS One. 2012;7(6):e38765.
doi:10.1371/journal.pone.0038765.

35. Park H, Lee H, Seok C. High-resolution protein-protein docking by global
optimization: recent advances and future challenges. Curr Opin Struct Biol.
2015;35:24–31. doi:10.1016/j.sbi.2015.08.001.

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2017. ; https://doi.org/10.1101/229435doi: bioRxiv preprint 

https://doi.org/10.1101/229435
http://creativecommons.org/licenses/by/4.0/


36. Vakser IA. Protein-protein docking: from interaction to interactome. Biophys J.
2014;107(8):1785–93. doi:10.1016/j.bpj.2014.08.033.

37. Mosca R, Pons C, Fernández-Recio J, Aloy P. Pushing structural information into
the yeast interactome by high-throughput protein docking experiments. PLoS
Computational Biology. 2009;5(8):e1000490. doi:10.1371/journal.pcbi.1000490.

38. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, et al. The
ClusPro web server for protein-protein docking. Nat Protoc. 2017;12(2):255–278.
doi:10.1038/nprot.2016.169.

39. Wass MN, Fuentes G, Pons C, Pazos F, Valencia A. Towards the prediction of
protein interaction partners using physical docking. Molecular systems biology.
2011;7:469. doi:10.1038/msb.2011.3.

40. Mendelson E. Introduction to Mathematical Logic. Discrete Mathematics and Its
Applications. Taylor & Francis; 1997. Available from:
https://books.google.de/books?id=ZO1p4QGspoYC.

41. Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J. Mechanical activation of
vinculin binding to talin locks talin in an unfolded conformation. Sci Rep.
2014;4:4610. doi:10.1038/srep04610.

42. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M.
BioGRID: a general repository for interaction datasets. Nucleic acids research.
2006;34(Database issue):D535–D539. doi:10.1093/nar/gkj109.

43. Ceol A, Chatr-aryamontri A, Santonico E, Sacco R, Castagnoli L, Cesareni G.
DOMINO: a database of domain-peptide interactions. Nucleic Acids Research.
2007;35(Database):D557–D560.

44. Das J, Yu H. HINT: High-quality protein interactomes and their applications in
understanding human disease. BMC Systems Biology. 2012;6(1):92.
doi:10.1186/1752-0509-6-92.

45. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, et al.
CORUM: the comprehensive resource of mammalian protein complexes – 2009.
Nucleic acids research. 2010;38(suppl 1):D497–D501.

46. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al.
The MIntAct project–IntAct as a common curation platform for 11 molecular
interaction databases. Nucleic Acids Research. 2014;42(Database issue):D358—63.
doi:10.1093/nar/gkt1115.

47. Boutros M, Heigwer F, Laufer C. Microscopy-Based High-Content Screening.
Cell. 2015;163(6):1314–25. doi:10.1016/j.cell.2015.11.007.
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Fig 13. Differences in singleton fractions for perturbations (x-axis: knockout vs.
unperturbed; y-axis: overexpression vs. unperturbed) of CRK (top row), ABAT
(middle row) and YWHAG (bottom row) in simulations with constraints (left column)
and without constraints (right column), averaged over 50 runs. Each dot represents one
protein; colors show the distance (shortest path) to the perturbed protein in the
interaction network. Since the perturbed protein (red dot) is not always visible, its
values are given in the legend. Direct interactors (purple) are mainly expected in the
lower right quadrant (more singletons after knockout, fewer singletons after
overexpression). Note the different scales for the different proteins.
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