
Neuronal tracing and analysis by multispectral tracing in densely labeled 1 

mouse brain 2 

 3 

Authors 4 

Douglas H. Roossien1, John M. Webb2,8, Benjamin V. Sadis1,8, Yan Yan1,8, Lia Y. Min1,3,4, Aslan 5 

S. Dizaji1, Robert S. Huth1, Johanna S. Stecher1, Luke J. Bogart5, Cristina Mazuski2, Jeff W. 6 

Lichtman6,7, Takao K. Hensch5,6,7, Erik D. Herzog2, Dawen Cai1,* 7 

Affiliations 8 

1Department of Cell and Developmental Biology, University of Michigan Medical School, Ann 9 

Arbor, MI, USA 10 

2Department of Biology, Washington University in St. Louis, St. Louis, MO, USA 11 

3Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA 12 

4School of Art and Design, University of Michigan, Ann Arbor, MI, USA 13 

5Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 14 

USA 15 

6Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA 16 

7Center for Brain Science, Harvard University, Cambridge, MA, USA 17 

8These authors contributed equally to this work. 18 

*Correspondence should be addressed to D.C (dwcai@umich.edu)  19 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 7, 2017. ; https://doi.org/10.1101/230458doi: bioRxiv preprint 

https://doi.org/10.1101/230458


Abstract 20 

Accurate and complete neuronal wiring diagrams are necessary for understanding brain function 21 

at many scales from long-range interregional projections to microcircuits. Traditionally, light 22 

microscopy-based anatomical reconstructions use monochromatic labeling and therefore 23 

necessitate sparse labeling to eliminate tracing ambiguity between intermingled neurons. 24 

Consequently, our knowledge of neuronal morphology has largely been based on averaged 25 

estimations across many samples. Recently developed second-generation Brainbow tools 26 

promise to circumvent this limitation by revealing fine anatomical details of many 27 

unambiguously identifiable neurons in densely labeled samples. Yet, a means to quantify and 28 

analyze the information is currently lacking. Therefore, we developed nTracer, an ImageJ plug-29 

in capable of rapidly and accurately reconstructing whole-cell morphology of large neuronal 30 

populations in densely labeled brains.  31 
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Introduction 49 

Despite neural circuits being of wide interest to neuroscientists, there are few technologies 50 

that fully dissect these complex networks. Automated serial electron microscopy techniques are 51 

one means of obtaining the full details of networks, but the volumes that can be studied are limited 52 

by the throughput or other physical constrains of the techniques being employed, therefore 53 

currently limited to smaller vertebrates1. While light microscopy is easy to implement and allows 54 

for imaging large volumes of genetically labeled neurons, the inability to distinguish processes 55 

between labeled neurons is a considerable limitation, such that reliable anatomical neuronal 56 

reconstruction results can only be obtained from samples in which labeled neurons occupy unique 57 

volumes with little to no overlap, or, alternatively, singly labeled neurons2–7. Generating such 58 

samples can be cumbersome and increases the number of samples needed to obtain statistically 59 

relevant results. One approach to overcome the limitation of light microscopy is to differentially 60 

label neighboring neurons with distinct colors. Brainbow does so by expressing random ratios of 61 

three or more fluorescent proteins (FPs) through Cre/Lox recombination in specific populations of 62 

neurons within a single brain 8,9. These unique colors make identifying multiple neurons in a 63 

densely-labeled sample possible. In addition, because FPs from second generation Brainbow 64 

reagents are membrane bound and compatible with immunofluorescence amplification they allow 65 

visualization of fine morphological details such as dendritic spines and axonal boutons. In turn this 66 

permits identification of putative synaptic locations and can uncover anatomical constraints on 67 

neuronal circuitry. However, a lack of tools for quantitative analysis has limited Brainbow 68 

application.  69 

Currently, popular commercial software such as Neurolucida and iMaris allow either 70 

manual tracing or user-guided tracing algorithms, but none handle multispectral images6. We thus 71 

wrote nTracer, a java-based program to facilitate post-acquisition processing and user-guided 72 

semi-automated tracing of Brainbow multispectral images. We then trace a variety of different 73 

neuronal subtypes including cholinergic neurons in the striatum, granule cells in the dentate gyrus, 74 

vasoactive intestinal polypeptide (VIP) expressing neurons in the suprachiasmatic nucleus and 75 

parvalbumin (PV) expressing basket cells in the hippocampus and visual cortex. We found tracing 76 

results with nTracer can be generated at an average rate of a few hours per neuron. Together this 77 

suggests nTracer produces rapid and accurate tracing of densely labeled Brainbow samples.  78 

Overall, nTracer is an important tool that will allow neuroscience researchers to analyze 79 
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morphology and anatomy of large populations of neurons within single samples using the light 80 

microscope. 81 

 82 

Methods 83 

Stereotaxic injection 84 

The two Brainbow AAV (AAV9.hEF1a.lox.TagBFP.lox.eYFP.lox.WPRE.hGH-InvBYF and 85 

AAV9.hEF1a.lox.mCherry.lox.mTFP1.lox.WPRE.hGH-InvCheTF) were obtained from the 86 

UPenn Vector Core and mixed to equal titer (8 x1012). All surgeries were performed in accordance 87 

with the institutional animal guidelines and approvals of the University of Michigan, Harvard 88 

University, University of Washington at St. Louis and the Massachusetts Institute of Technology. 89 

Mice were anesthetized with either a mixture of ketamine (90mg/kg) and xylazine (9mg/kg) or 90 

Avertin (250mg/kg) or continuously delivered isoflurane and mounted on a stereotaxic frame (WPI 91 

#502600). Craniotomies were performed using a small dental drill and injections were performed 92 

using a 30 gauge stainless steel needle inserted directly through the dura10.  93 

Final Brainbow virus volume (µL) x titers (in GC/mL) and stereotaxic coordinates (in mm 94 

from Bregma/dura AP, ML, DV) used in this study are as follows: ChAT-Cre (Chattm2(cre)Lowl 95 

Jackson Laboratory No 006410; Rossi et al 2011 – Cell Metab 13(2):195-204) 1µL x 8x1011, (+1.1, 96 

-2.0, -3.4); POMC-Cre (hypothalamus) (Tg(Pomc1-cre)16Lowl Jackson Laboratory No 005965; 97 

Balthasar et al 2004 – Neuron 42(6):983-91) 1µL x 1x1012, (-2.2, -0.25, -5.4); POMC-Cre (dentate 98 

gyrus) 1µL x 1.6x1012, (-2.0, -1.6, -2.0); PV-Cre (V1) (Pvalbtm1(cre)Arbr Jackson Laboratory No 99 

008069; Hippenmeyer et al 2005 – PLoS Biol 3(5):e159) 1uL x 3x1012 (-3.0, ±2.0, -0.4), PV-Cre 100 

(CA1) 1µL x 8x1011, (-2.0, -1.8, -1.6); VIP-Cre (SCN) (Viptm1(cre)Zjh/J Jackson Laboratory No 101 

010908; Taniguchi et al 2011 Neuron 71:995-1013) 1µL x 1x1012 or 2.5x1011, (+0.4, -0.2, -5.5); 102 

Wildtype CD1 (CA2) AAV.Brainbow 1µL x 1.6x1012 + AAV.CaMKII-Cre  1x1011 (-1.1, -1.0, 103 

-1.9). At least 3-4 weeks after injection, mice were perfused under heavy anesthesia with cold PBS 104 

followed by cold 4% paraformaldehyde (PFA). Brains are dissected immediately following 105 

perfusion and post-fixed in 4% PFA at 4°C with gentle shaking for 24 hours.  106 

Immunohistology 107 

We chose non-cross-reactive primary antibodies raised from 4 distinct animal species to 108 

specifically recognize the 4 FPs expressed by Brainbow AAV9: rat anti-mTFP1, chicken anti-109 
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EGFP, rabbit anti-mCherry, and Guinea Pig anti-mKate2 (available from Kerafast, Boston MA). 110 

The mouse anti-GAD65 primary was obtained from the Developmental Studies Hybridoma Bank 111 

(Gad-6) and used at 1:500 dilution. The mouse anti-PV antibody was obtained from Swant (#235) 112 

and used at a 1:500 dilution. Four non-cross-reactive secondary antibodies, conjugated with 113 

spectrally well-separated fluorophores, were chosen for the Brainbow primaries to allow optimal 114 

recording of enhanced fluorescence in each spectral channel throughout the brain sections: anti-115 

Rat Alexa594 (Life Technologies #A21209), anti-Chicken Alexa488 Jackson ImmunoResearch 116 

Inc #703-545-155), anti-Rabbit Alexa546 (Life Technologies #A10040), and anti-Guinea Pig 117 

Alexa647 (Jackson ImmunoResearch Inc #706-605-148). The GAD65 and PV stains were 118 

visualized with anti-mouse 405. 119 

  Sections were first blocked and permeabilized in StartingBlock-PBS (ThermoFisher) with 120 

0.5% Triton X-100 for 2-4 h at room temperature (RT) with gentle shaking. After wash, sections 121 

were incubated in all four primary antibodies each with a dilution of 1:500 in PBS with 0.25% 122 

Triton X-100 (PBST) and 0.2% sodium azide for 7-10 days at 4°C with gentle shaking. Primary 123 

antibodies were washed out of sections with three changes of 0.25% PBST for 1 hr each at RT. 124 

Secondary antibodies were mixed and diluted to a final concentration of ~3-4 ug/mL in 0.25% 125 

PBST with 0.2% sodium azide and added to sections for 3-5 days at 4°C with gentle shaking. After 126 

secondary incubation, two washes in 0.25% PBST for 2 h each followed by a final 2 h wash in 127 

PBS were performed. Sections were either mounted in Vectashield (Vector Labs #H-1000) or 128 

treated with a gradient of fructose solution up to a final concentration of 70% (w/w) for refractive 129 

index matching11. 130 

Imaging 131 

Sections were imaged on a Zeiss LSM 780. Optimal separation of fluorophores was 132 

achieved using a 488nm laser for Alexa488, a 543nm laser for Alexa546, and a 633nm laser for 133 

both Alexa594 and Alexa647 together with a fixed 488/543/647 dichroic mirror. Alexa488, 134 

Alexa594 and Alexa647 were imaged simultaneously and fluorescence was collected in 3 separate 135 

channels. Alexa546 was imaged in a subsequent scan with fluorescence collected in a 4th channel. 136 

Objectives were either 20x W Plan APOCHROMAT NA 1.0 water or 40x C Plan 137 

APOCHROMAT NA 1.3 oil objective. While these settings are optimized for spectral separation, 138 

due consideration has also been given to scan time. For example, better spectral separation could 139 
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be obtained by imaging Alexa594 with a 594 laser on a separate track. However, this would 140 

significantly increase scan time due not only to the need for an additional independent scan, but 141 

also for the need to switch the dichroic between twice for each frame. The setting we used here 142 

was much faster, but results in significant Alexa594 emission being collected in channel 3 as well 143 

as channel 2. Therefore, linear unmixing was performed to separate these two fluorescent 144 

emissions12. The laser intensity correction in depth function was used in the Zen software was used 145 

to compensate for light scattering and photobleaching. 146 

 147 

Results 148 

Development of post-acquisition processing functions 149 

Reliable tracing of Brainbow labeled neurons depends on obtaining high contrast and 150 

chromatic error-free 3D images. In other words, image stacks need to contain neurons labeled in 151 

distinct and consistent color in three dimensions. Here we define color (or color signature) as the 152 

composite of intensity values from each channel for every given pixel. For example, a specific 153 

neuron in 8-bit may have a color signature of Ch1:156, Ch2:005, Ch3:255, Ch4:073. In biological 154 

terms this amounts to the ratio of FP expression in each neuron. Due to the scattering nature of the 155 

brain and the inherent optical aberrations of confocal microscopy, however, Brainbow images 156 

often decrease in quality and contain color defects when imaging deep into the tissue. We therefore 157 

first developed post-acquisition processing functions in nTracer that correct for these color defects 158 

and facilitate analysis of neuronal networks through >100m thick tissue sections. These have 159 

been assembled into one convenient ImageJ User Interface called AlignMaster included in the 160 

nTracer software package. Figure 1 illustrates an optimized general workflow for Brainbow 161 

labeling with second-generation Brainbow reagents9, imaging, post-acquisition processing and 162 

neuronal tracing (Fig. 1).  163 

There are two major sources of color defects when imaging Brainbow samples. The first is 164 

due to absorption, scattering and photobleaching, which causes a gradual decrease in fluorescence 165 

intensity when imaging deeper into the tissue. Although gradually increasing excitation power 166 

and/or detection gain can partially compensate this intensity drop, it becomes practically 167 

impossible to maintain constant intensity throughout the image stack. Compounding this is the fact 168 

that the intensities of each FP will decrease at different rates/amounts, resulting in inconsistencies 169 

in color signature at different z-positions (Suppl. Fig. 1a). To address these concerns, we added a 170 
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histogram matching correction to nTracer to normalize signal intensity while maintaining the 171 

intensity ratios between channels. The user is asked to select a reference image slice to which 172 

nTracer matches the histogram (see below) of each slice in the image stack. While the reference 173 

slice can be chosen from any channel or focal plane, the optimal reference will contain an evenly 174 

distributed histogram with minimal pixel values greater than 95% of the maximum bin (Suppl. 175 

Fig. 1c). This ensures that FP intensity remains constant in any depth of the 3D stack while 176 

minimizing amplification of background noise (Suppl. Fig. 1c). The reference image’s cumulative 177 

probability distribution function CDFref() of its histogram Href() is calculated. For each target image 178 

slice in all channels of the whole 3D stack, a new histogram Htar() is applied, which satisfies the 179 

condition that for each gray scale level Gref a Gtar is determined to satisfy CDFref(Gref) = 180 

CDFtar(Gtar). After intensity equalization, we found the histogram of all image slices to be similar 181 

to that of the reference image. 182 

The second source of color defects results from imperfect optical alignments and chromatic 183 

aberrations in the microscope system. Such defects cause spatial misalignment between spectral 184 

channels that creates inconsistent color along the edge of many neuronal processes (Suppl. Fig.  185 

1b). We also corrected for this in the nTracer package, by designing a channel registration function. 186 

In brief, the user makes a point selection on the image where a neuronal feature appears in all 187 

spectral channels; and then nTracer determines the translational shifts that correspond to the 188 

greatest masked-intensity correlations between each channel and the selected channel. Eliminating 189 

highly correlated background pixels, the masking function increase the sensitivity of correlating 190 

the fluorescent neurons. This correction is particularly useful for microscope systems with large 191 

chromatic aberration, whose severe par-focal problem normally causes large shifts between short 192 

and long wavelength channels (Suppl. Fig. 1d). 193 

In addition to these corrections, nTracer provides a 3D stitching function that allows rapid 194 

merging from overlapping Brainbow image tiles to create a single image stack that covers a large 195 

tissue volume. While the size of datasets can vary dramatically depending on the biological 196 

application, the size of the datasets used throughout this report varies from hundreds of megabytes 197 

to hundreds of gigabytes.  198 

Both the intensity correction and channel alignment can be done in batch mode on all 199 

images (e.g. all stacks if a multi-tile image was taken for stitching) in a selected folder. For 200 

stitching, easily identifiable features in overlapping regions are selected by the user and local area 201 
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is used to calculate the translation parameters needed to stitch the tiles together. To minimize 202 

processing time, which can be considerable with larger data sets, both the alignment and stitching 203 

functions rely on a local area to perform initial translation calculations and previews to proof the 204 

result prior to applying the translation. The data sets in this study were first processed with the 205 

intensity correction, followed by channel alignment, then stitching. We found it important to do 206 

batch processing of color intensity prior to stitching to obtain uniform signal-to-noise and intensity 207 

across all tiles. Additional downstream processing steps can be performed as needed. For example, 208 

deconvolution using the Richardson-Lucy algorithm in DeconvolutionLab13 was performed on the 209 

images shown in Fig. 2c. 210 

 211 

Tracing function and data structure 212 

The current bottleneck in fully automated tracing algorithms is proof reading and error 213 

correcting (refs 6-8). Because of this, combined with the lack of any ground-truth Brainbow tracing 214 

results for validation, we developed nTracer as a user-guided semi-automated tracing software 215 

which allows for “on-the-fly” editing of tracing results. Our approach was to design a system where 216 

user-defined anchor points on a neurite are joined by a rapidly generated skeletal tracing. To make 217 

this tool widely available and easy to use we configured it as an ImageJ plug-in14.  218 

We incorporated two algorithms into nTracer to accurately trace neurites from specific 219 

neurons. The first prevents user error by not allowing anchor points to be assigned to different 220 

neurons, and the second prevents the skeletal trace from jumping to the wrong neuron when joining 221 

anchor points. To start a tracing, the user identifies a neuron to be traced and uses a mouse click 222 

to suggest a start point on its process and to measure the neuron’s color signature around the start 223 

point. In most cases, the mouse clicks hardly land onto the “right” spot, which results in inaccurate 224 

color sampling. nTracer solves this problem by applying a mean-shift algorithm to automatically 225 

refine the user input and settle the start point onto the center or membrane wall of the targeted 226 

neurite with high labeling intensity15 (Suppl. Fig. 2). The end point is defined in a similar way 227 

with additional constraints set by the color signature sampled around the start point. The user can 228 

therefore avoid setting an end point onto a different neuronal process due to human visual or 229 

computer display limitations, in particular with Brainbow images composing of more than 3 230 

spectral channels (see main text and Suppl. Fig. 3). To generate a smooth track along the neuronal 231 

process, nTracer utilizes the A* algorithm16 to connect the two anchor points with a least-cost path, 232 
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similar to that implemented in “Simple Neurite Tracer”, which was designed for tracing 233 

monochromic images17. nTracer defines the A* cost at voxel 𝑖 as a weighted sum of the normalized 234 

spectral and intensity difference between the start point 𝑝 and voxel point 𝑖, which can be 235 

formulated as:  236 

𝐺𝑖 = α × √∑ (
𝐼𝑝,𝑛

𝐼�̅�
−

𝐼𝑖,𝑛

𝐼�̅�
)2

𝑛
2

+ 𝛽 × |
𝐼�̅�−𝐼�̅�

𝐼�̅�+𝐼�̅�
| , with  α + 𝛽 = 1 , 237 

where 𝑛 denotes the ntn spectral channel. 𝐼�̅� and 𝐼�̅� are the total intensities in all spectral channels 238 

at start point 𝑝 and voxel point 𝑖, respectively. By constraining the pathfinding range to the voxels 239 

enclosing the two anchor points and by choosing optimized heuristic values calculated based on 240 

windowing-smoothed voxels, nTracer creates an optimal minimal path almost instantaneously, 241 

while variance thresholds ensure that any path containing large intensity or color gaps will be 242 

rejected. In addition, the tracing process with nTracer is iterative, reducing user burden by only 243 

requiring one click per trace after the initial trace on a neurite.  244 

Because nTracer must record multiple neurons to reconstruct complex circuits in the same 245 

image, it uses a data structure that differs from software approaches that focus on tracing single 246 

neurons from one image at a time. nTracer utilizes the generic JTree structure of JAVA to allow 247 

flexible storage and modification of tracing points of multiple neurons in the computer memory. 248 

Three JTrees are built for each traced cell to store the tracing points of the somas, processes and 249 

spines independently (Fig. 1d and Fig. 2c). The soma tree contains parallel nodes, each of which 250 

stores soma tracing points on a Z plane. The process tree contains parallel nodes, each of which is 251 

a bifurcated branching tree that stores connected branches of an axon, or a dendrite. The soma 252 

contour or neurite branch is composed of connected tracing points, each of which is a 7-element 253 

data array containing the type of the tracing point (Soma, Dendrite, Axon, Spine etc.), x, y, z 254 

coordinates, radius at the point (0 for a soma point or for where the process radius is not 255 

determined), whether or not a synapse, and its connection status. Spines can also be traced off from 256 

a dendrite or soma point (has a type of Spine) and stored as parallel non-branching nodes in the 257 

third tree-structure database. Each spine tracing point is a 6-element data array that stores the type 258 

(Spine), x, y, z coordinates, radius at the point, and its locale information (soma or dendrite name). 259 

The tracing results (including connectivity information), raw image information and nTracer 260 

setting parameters can be saved in files of custom format and exported as line art image stacks for 261 

volume rendering (Suppl. Fig. 4 and Video 5-10). Tracing results of each neuron can also be 262 
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exported as separate files in standard SWC format18 for morphology analysis and rendering with 263 

other software, such as L-measure19.  264 

 265 

Mapping projection patterns of a complete population of neurons from a single Brainbow 266 

sample 267 

We next sought to demonstrate the utility of nTracer. We chose to focus on the vasoactive 268 

intestinal polypeptide-expressing (VIP) neurons in the hypothalamic suprachiasmatic nucleus 269 

(SCN). These neurons project dorsally to form synaptic terminals in the paraventricular and sub-270 

paraventricular nuclei (PVN and sub-PVN, respectively20), although it is not known whether 271 

individual VIP neurons project to multiple PVN targets or send convergent inputs onto single PVN 272 

targets. We injected Brainbow AAVs into the SCN of one hemisphere of mice expressing Cre 273 

under control of the VIP promoter (VIP-Cre21). We found that injection of virus at 1:5 (~1x1012 274 

GC/ml; n=2 brains) to 1:20 dilution (~2.5x1011 GC/ml; n=2 brains) resulted in labeling of similar 275 

numbers of axons projecting dorsally with 1:20 producing discriminable colors and 1:5 producing 276 

saturated labeling. We therefore present results from the brains injected with the more diluted virus 277 

(Fig. 4). In both brains, we found many axons and a small number of cell bodies labeled in the 278 

SCN contralateral to the side of injection. We used nTracer to trace all of the individual dorsal 279 

projections in the bilateral sub-PVN and PVN, an area of more than 1.3 mm x 0.6 mm, and 280 

performed further analysis of neurites with at least one terminal in the PVN or sub-PVN (Fig. 4b-281 

c). We found that the large majority of neurites (~75%) bifurcate only 0 to 1 times while only a 282 

few VIP neurons had processes with up to 10 branch points outside the SCN. These results indicate 283 

that individual SCN VIP neurons each target a small population of cells in the PVN or sub-PVN.  284 

 285 

Discussion 286 

Included in the nTracer package are image processing tools designed to optimize tracing 287 

including correction of intensity drifting in depth due to uneven illumination, scattering, and 288 

photobleaching; correction of channel misalignment due to hardware misalignments and optical 289 

aberrations in the microscopy system; and intensity normalization and merging of overlapping 290 

adjacent image tiles. The key advantage of nTracer is its ability to trace neurons based on color 291 

signature, making it compatible with densely labeled Brainbow samples and to fully actualize this 292 

powerful neuronal labeling technique.  293 
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For this study we chose mouse Cre lines and injection sites in order to label regions with a 294 

variety of gross anatomical features. For example, the hippocampus and cortex have distinct 295 

laminar cellular organization whereas the hypothalamus and striatum do not. Labeling an entire 296 

Cre+ population of neurons in a region of interest is attainable with a wide titer range of Brainbow 297 

AAVs (from ~1x1010 to 1x1013 GC/ml), however higher (~1013 GC/ml) or lower titers (~5x1010 298 

GC/ml) resulted in more neurons labeled in saturated colors (white cells) or simple colors 299 

(expressing only one species of FP), respectively. This is directly dependent on the density of the 300 

neuronal subtype in the region of interest and the strength and fidelity of the Cre driver. Therefore, 301 

a limitation to our overall approach is the need to determine injection coordinates and viral titers 302 

empirically for each sample type. However, because we rely on immunolabeling of samples our 303 

approach is compatible with other standard histological techniques. For example, cell-type specific 304 

markers can be used in combination with Brainbow staining to trace multiple cell types within a 305 

circuit or, alternatively, axonal or dendritic markers can be used to distinguish neurite type in 306 

neurons with unknown or less stereotypic morphologies.  307 

Because nTracer is user-guided and not fully automated, it requires significant man-hours to 308 

trace complete data sets. While semi-automated tracing algorithms used in other software, such as 309 

Neurolucida, do not require as much user attention to generate the tracing result, there remains a 310 

bottleneck in the need for proofing the results due to the propensity for tracing errors22,23. Since 311 

the error rate increases substantially with more neurons and greater density, eventually the effort 312 

spent on proofing and post-tracing editing outweighs the benefit gained from semi-automated 313 

tracing. With nTracer, the tracing results are displayed immediately and therefore proofing and 314 

editing is done “on-the-fly”.  315 

In the samples that all VIP-neurons were labeled, we were not able to map connectivity within 316 

the SCN or to follow the projections back to the cell body due to color blending between neuronal 317 

processes that are close to each other. This is due to the optical resolution limitations of confocal 318 

microscopy. Combining Brainbow labeling with emerging super-resolution light microscopy 319 

techniques, such as Expansion Microscopy24 and its variant protein-retention ExM25,26, is an 320 

exciting possibility for producing images at the spatial resolutions that are suitable to distinguish 321 

the closely positioned synapses and neuronal processes. Going forward, we expect the combination 322 

of Expansion Brainbow Microscopy and nTracer will allow full tracing of complete neurons in 323 

SCN. 324 
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Nonetheless, we are currently working on developing additional semi-automated and 325 

automated tracing algorithms for nTracer27. The tracing results developed with the current nTracer 326 

described here will serve as a ground-truth for their development. nTracer will also benefit from 327 

adapting the more versatile data structure of the ImageJ2 platform currently under development28. 328 

 329 

  330 
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Figure 1. Flow chart for Brainbow labeling, imaging and tracing for neural circuit 331 

reconstruction.  332 

 333 
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Figure 1. Flow chart for Brainbow labeling, imaging and tracing for neural circuit 334 

reconstruction.  335 

(a) To accurately reconstruct the projections from many neuronal somata to their terminals, we 336 

used second generation Brainbow reagents, including adeno-associated viruses (Brainbow AAVs) 337 

and transgenic mouse lines (Brainbow3.x) because their farnesylated fluorescent proteins (FPs) 338 

label homogenously throughout the whole neuron including the finest dendritic spines and 339 

neuronal processes. (b) Four non-cross-reactive secondary antibodies conjugated with spectrally 340 

well-separated fluorophores allow optimal recording of enhanced fluorescence in each spectral 341 

channel throughout the brain sections. (c) To correct imaging defects in post-acquisition 342 

processing, nTracer package provides functions to automatically 1) normalize image intensity 343 

across all spectral channels and z-depths; 2) perform channel registration to correct optical 344 

misalignment and chromatic aberration of the microscopy system and 3) rapidly stitch image tiles 345 

to create a final image in which each neurons are labeled by rich and consistent colors throughout 346 

the image stack. (d) nTracer as an ImageJ plugin package allows user-guided tracing of neurons 347 

in distinct colors in densely labeled samples. (e) The tracing results are exportable in various 348 

formats for 3D line art rendering, single cell morphology and connectivity analysis. 349 
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 351 

 352 

 353 

Figure 2. nTracer basic functionality and data structure.  354 

(a) To start tracing, a mouse-click is placed in the vicinity of the neurite to be traced. nTracer 355 

utilizes the color profile and a “mean-shift” algorithm to accurately reposition this mouse-input 356 

onto the neurite as the start point (red box). The tracing end point (cyan box) is determined in the 357 

same way with additional constrains to make sure that the end point has a similar color profile. A 358 

keyboard hotkey is then used to trace as a neurite/spine in 3D. (b-b’) Two sets of RGB composite 359 

images (best color separation for human tri-chromatic vision) can be toggled in nTracer to display 360 

4 spectral channels taken from the 4-FP Brainbow AAV labeled samples. As not all the spectral 361 

information is displayed at the same time, it is possible that neurites appearing the same color 362 

actually belong to different neurons (compare green to yellow and yellow to pink arrowheads in b 363 

and b’). Regardless of how the images are displayed, nTracer uses information from all four 364 

channels to prevent tracing errors arising from human vision limitations. (c) Diagram of nTracer 365 

results data structure as detailed in Methods. Scale bar is 5 μm. 366 
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 369 

Figure 3. Morphological analysis of single cells in densely labeled samples by nTracer. 370 

 371 
 372 
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Figure 3. Morphological analysis of single cells in densely labeled samples by nTracer. 374 

(a-d) Paired maximum z-projections from AAV.Brainbow-injected data sets and subsequent 375 

nTracer results shows the versatility of nTracer for studying diverse cell types in multiple brain 376 

regions. Representative reconstructions of (a) cholinergic cells from ChAT-Cre mouse injected in 377 

dorsolateral striatum, (b) POMC neurons from POMC-Cre mouse injected in arcruate nucleus of 378 

the hypothalamus, (c) basket cells from PV-Cre mouse injected in visual cortex, and (d) granule 379 

cells from POMC-Cre mouse injected in dentate gyrus. (e) Individual granule cells from (d) were 380 

exported from tracing results and displayed with color-coded compartments (red = dendrites, blue 381 

= axons). Here, cells 1-4 were localized in the granule cell layer (GCL) while cells 5-6 were 382 

localized in the hilus. (f) Granule cells localized in the hilus had longer total dendrite length, more 383 

primary branches and bifurcations than those localized in GCL; but they all had the same 384 

maximum branch order.  Note that all granule cells used for analysis were taken from the same 385 

dentate gyrus section. All values displayed as mean ± SEM. * p < 0.05, ** p < 0.01 by unpaired 386 

two-tailed Student’s t-test. Detailed single-cell morphometric analyses of all of the cells in this 387 

figure can be found in Table 1. Scale bars are 50 μm.  388 
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 390 
 391 

Figure 4. Projection analysis of SCN VIP divergence in the sub-PVN and PVN. 392 

(a) Unilateral labeling of SCN VIP neurons using Brainbow AAVs reveals processes in the sub-393 

PVN and PVN (left panels). Using nTracer (right panels), more than 200 processes can be mapped 394 

from a single neuronal population in one brain section. Anatomical characteristics of these 395 

processes can be quantified: (b and c) show the number of terminal synapses (left panels) and 396 

bifurcations per process (right panels) of VIP processes entering PVN and sub-PVN, respectively. 397 

(d) A schematic details the number of VIP processes identified in the sub-PVN and PVN and the 398 

fraction that form terminals. Scale bar is 50 μm. 399 
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Table 1. Single cell morphometric analysis of dendritic trees.  401 

Neuron subtype: region (n) 
Primary 

branches 
Bifurcations 

Max. branch 

order 

Dendritic tree 

length (m) 

ChAT-Cre: CPu 13 3.62 +/- 0.39 18.0 +/- 4.71 9.23 +/- 2.16 3320.7 +/- 427.4 

PV-Cre: V1 9 6.67 +/- 0.50 9.2 +/- 3.15 3.78 +/- 1.01 1269.9 +/- 175.0 

POMC-Cre: Arc 11 2.91 +/- 0.30 4.3 +/- 1.74 2.91 +/- 1.13 610.5 +/- 89.1 

POMC-Cre: DG 

(normal) 
13 1.31 +/- 0.28 4.5 +/- 0.9 4.00 +/- 1.03 1123.8 +/- 267.2 

POMC-Cre: DG 

(ectopic) 
2 4.50 +/- 4.49* 9.5 +/- 18.3** 6.50 +/- 2.59 

2121.7 +/- 

461.3*** 

 402 

Morphological descriptors averaged from multiple cells in a single Brainbow-labeled tissue 403 

section. Rows are organized based on the Cre mouse line used for labeling (bold) and the brain 404 

region injected with Brainbow AAV (italics). All values were obtained by exporting individual 405 

cell traces from nTracer as SWC files and importing them into L-measure. n = number of neurons. 406 

Primary branches is a count of dendritic processes directly connected to the soma. Bifurcations is 407 

a count of the total dendritic branch points. Maximum branch order is a measure of branch order 408 

with respect to the soma and is recorded only once per neuron. Dendritic tree length is given in 409 

micrometers and is a sum of all dendritic processes per neuron. All values reported as mean +/- 410 

95% C.I. * p = 1.31x10-6, ** p = 0.002, ***p = 0.03 by unpaired two-tailed t-test (POMC-Cre 411 

normal vs. ectopic). 412 
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