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ABSTRACT 

Background: Immunotherapies such as checkpoint inhibitors have become a major success in 
treating patients with late-stage cancers [1], yet the minority of patients benefit [2]. PD-L1 
staining and mutation burden are the leading biomarkers associated with response, but each is 
an imperfect predictor. We seek to address this challenge by developing a multifactorial model 
for response to anti-PD-L1 therapy. 
Methods: We train a model to predict fine-grained immune response in patients after treatment 
based on 36 clinical, tumor, and circulating molecular features of each patient collected prior to 
treatment. Our predicted immune response is then used to anticipate durable clinical benefit 
(DCB) of treatment. We analyze the bladder cancer patient data of Snyder et al. [3] using the 
elastic net high-dimensional regression procedure [4] and assess accuracy using leave-one-out 
cross-validation (LOOCV). 
Results: In held-out patients, the elastic net procedure explains 80% of the variance in immune 
response as measured by the log number of T cell clones in the tumor that expand in the blood 
post-therapy. Moreover, if patients are triaged according to held-out predicted expansion, only 
34% of non-DCB patients need be treated to ensure that 100% of DCB patients are treated.  In 
contrast, using PD-L1 staining or mutation load alone, one must treat at least 75% of non-DCB 
patients to ensure that all DCB patients receive treatment. The final elastic net model fit to the 
entire patient cohort retains 20 of the 36 input features, a mix of clinical, tumor, and circulating 
patient attributes. In addition, each class of features contributes significantly to the estimated 
accuracy of the procedure: when tumor features are excluded as inputs, the variance explained 
in held-out patients drops to 26%; when circulating features are excluded, the explained 
variance drops to 13%; and when clinical features are excluded, the explained variance drops to 
0%. 
Conclusions: In a multifactorial model, tumor, circulating, and clinical features all contribute 
significantly to the accurate prediction of fine-grained immune response.  Moreover, the 
accurate prediction of this immune response may improve our ability to anticipate clinical 
benefit. 
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Introduction 
Immunotherapies such as checkpoint inhibitors have become a major success in treating 
patients with late-stage cancers [1], in many cases leading to durable responses [2]. The basis 
for this success is that, in some cases, the somatic mutations present in cancer cells allow the 
immune system’s T cells to distinguish cancer from normal cells, in part because mutations may 
lead to the presentation of neoantigens on the cancer cell surface by the major 
histocompatibility complex. However, many cancers develop mechanisms for suppressing the 
immune system, e.g., by expressing checkpoint molecules. The promise of checkpoint inhibitors 
is predicated on counteracting checkpoint molecules to unleash the immune system to 
selectively kill cancer cells. 
 
Despite checkpoint inhibitors’ unprecedented successes, there is an urgent need to improve 
prediction of patient response to checkpoint inhibitor immunotherapy. Response rates vary 
across patients, and known biomarkers for response such as high mutation load [5,6] are not 
predictive for every patient [7]. Thus, predicting response is critical for identifying patients who 
are likely or unlikely to benefit, anticipating adverse responses to treatment [8], and accelerating 
the development of new treatments. Further, effective models for predicting response may point 
to molecular features that can be measured and monitored through non-invasive treatments. 
 
A key challenge for predicting response is modeling features of the immune system and cancer 
simultaneously. Recently, clinicians have begun to collect a wealth of molecular tumor and 
immune system data before and during immunotherapy, but researchers have yet to model how 
molecular and clinical features interact to affect response. 
 
To address this challenge, we develop a multifactorial model for response to checkpoint 
inhibitors. Our approach uses the elastic net [4] -- a machine learning method for regression that 
automatically selects informative features from the data -- and models clinical, tumor, and 
immune system features simultaneously. We applied our model to data of Snyder et al. [3], who 
measured mutations and gene expression in the tumor and T cell receptor (TCR) sequences in 
the tumor and blood in 29 urothelial cancers treated with anti-PD-L1. Rather than model the 
clinical response of each patient directly, we modeled the response of each patient’s immune 
system and used the predicted immune responses to stratify patients based on expected clinical 
benefit. By modeling the immune response, we have the advantage of predicting fine-grained, 
molecular measurements that are predictive of clinical response.  
 
Our model predicts immune response with high accuracy, and that predicted immune response 
is associated with durable clinical benefit (DCB). In held-out patients, our model explains 80% of 
the variance in the immune response as measured by the log number of T cell clones in the 
tumor that expand in the blood post-therapy. The magnitude of the predicted expansion is 
associated with DCB, as 100% of held-out patients with DCB have predicted scores above the 
median score of held-out patients without DCB. Notably, mutation load alone does not 
demonstrate significant association with DCB. We also evaluated the importance of the tumor, 
immune system, and clinical features to our model. Our model requires all three feature classes 
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to make accurate predictions and can explain at most 26% of the held-out patient variance 
when any one of the classes is removed. Taken together, these results show that models for 
immune response may be useful for predicting clinical response to immunotherapy and that 
non-invasive TCR sequencing in the blood may be an effective way to monitor patient response. 
 

Methods 
All of our analyses were conducted in Python 3, and Jupyter notebooks that replicate our 
experiments will be made publicly available. 

Patient Data 
We used the patient data collected by Snyder et al. [3]. For the data collection details and the 
Institutional Review Board approval see [3]. 

Multifactorial modeling of clonal expansion 
In our first analysis, we develop a predictive model of the log number of tumor-infiltrating 
lymphocyte (TIL) clones that expanded in the blood three weeks after each patient’s initial 
immunotherapy treatment.  We chose to model TIL clone expansion, as it is a finer-grained and 
more immediate measurement of patient response than standard clinical, and, yet still exhibits 
positive association with durable clinical benefit [3].  Our analysis is based on the 21 patients in 
which this clonal expansion was recorded. 
 
Nineteen features of each patient collected prior to treatment were used as inputs to the 
predictive model: Age, Albumin < 4, Baseline neutrophil to lymphocyte ratio, Time since last 
chemotherapy, missense snv count, expressed missense snv count, neoantigen count, 
expressed neoantigen count, T-cell fraction, Clonality, Diversity, Productive Unique TCRs (cnt), 
T-cell fraction tumor, Clonality tumor, Diversity tumor, Top Clone Freq(%), Number of chemo 
regimens total, Prior BCG, and 5-factor score.  For the one patient who did not have a 5-factor 
score recorded, we substituted the patient’s 2-factor score.  We encoded Prior BCG and 
Albumin < 4 as binary features, with values in {0,1}.  For each of the remaining input variables, 
we provided both the raw feature value, x, and a log(1+x) transform of the feature value as 
inputs to our models to capture nonlinear relationships between inputs and the target. 
 
We trained two machine learning models to predict log clonal expansion from our input features: 
the elastic net [4], a high-dimensional linear regression procedure designed to reduce overfitting 
and be robust to irrelevant features, and random forests [9], a highly-nonlinear regression 
procedure based on averaging the predictions of many randomly constructed decision trees.  
We fit the elastic net using the Python scikit-learn [10] ElasticNetCV function with feature 
normalization, candidate L1 ratio hyperparameters [.1, .5, .7, .9, .95, .99], hyperparameters 
selected using leave-one-out cross-validation, and a maximum number of iterations of 100000.  
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We fit the random forest model using the Python scikit-learn  RandomForestRegressor with 
1000 decision trees.  Prior to fitting each regression model, missing input feature values were 
imputed using the median non-missing feature value in the training set. 

Leave-one-out error analysis of expansion predictions 
To estimate the effectiveness of our learning pipelines at predicting the clonal expansion of 
previously unseen patients, we conducted a leave-one-out cross-validation (LOOCV) analysis.  
Specifically, for each of the 21 patients in turn, we withheld that individual’s data from the 
training set, fit each of our learning pipelines on the remaining 20 patients, and formed a 
prediction of the held-out patient’s log clonal expansion using each of the learned models.  We 
then compared each learned model’s predictions with the observed log clonal expansion for the 
held-out patient and computed the squared error. By computing the average of this held-out 
squared error across all patients, we obtain an unbiased estimate of each learning pipeline’s 
error in predicting previously unseen patient expansion. Saria et al. [11] use a similar leave-one-
out analysis to assess predictive models of pre-term infant illness.  We moreover compute a 
measure of variance explained in held-out patients by computing one minus the ratio of LOOCV 
mean squared error (MSE) to empirical variance of log clonal expansion.  Finally, following [12], 
we conduct a permutation test of whether the LOOCV error is significantly larger when patient 
immune responses are permuted in our cohort uniformly at random. 

Feature importance 
To assess the degree to which different classes of features contribute to the predictive accuracy 
of our learning pipelines, we assigned each input feature to a category (‘Clinical’, ‘Circulating’, or 
‘Tumor’) and, for each category, repeated our LOOCV analysis with features from that category 
excluded from the model.   

Implications for durable clinical benefit 
Snyder et al. [3] previously demonstrated a positive association between the number of TIL 
clones that expanded in the blood two weeks after treatment and the durable clinical benefit of 
cancer immunotherapy.  Here, a treatment is said to have durable clinical benefit (DCB) for a 
patient if the patient experiences progression free survival for at least six months after 
treatment.  To assess whether our learning pipelines are also predictive of durable clinical 
benefit for previously unseen patients, we compare the distribution of held-out expansion 
predictions for those patients who did and did not experience DCB. 
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Results 

Leave-one-out error analysis of expansion predictions 
The multifactorial elastic net model explained 80% of variance in held-out patients with a 
LOOCV mean squared error of 0.173.  The variance of log number of TIL clones expanded in 
our dataset was 0.88, and this number is equivalent to the mean-squared error achieved by the 
baseline of predicting the mean log clonal expansion for all patients.  A scatter plot of elastic-
net-predicted versus ground-truth log expansion for each held-out patient can be found in Figure
1.  Figure 2 displays the results of our permutation test: after conducting 1000 random 
permutations of patient responses, we obtained a Monte Carlo p-value of less than 0.001.  The 
random forest model performed far worse with a LOOCV mean-squared error (0.886) that 
exceeded the baseline MSE, indicating severe overfitting.  For this reason, we focus on the 
elastic net model in the remainder of our analyses. 
 

 

Figure 1: Predicted log 
TIL expansion versus 
ground-truth log TIL 
expansion for patients 
held out using LOOCV.  
Predictions are formed 
using the elastic net. 

 

re 
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Figure 2: Distribution of 
LOOCV error when 
patient responses are 
permuted uniformly at 
random 1000 times.  The 
overlaid dotted line 
displays the LOOCV 
error obtained on the 
original dataset. 

Feature importance 
The elastic net procedure automatically performs feature selection by setting the coefficients of 
some input variables to zero.  The final elastic net model fit to the entire training set retains 20 of
the 36 input features, a mix of clinical, tumor, and circulating patient attributes (see Table 1).  
When we repeat our LOOCV error analysis using only clinical and circulating features (that is, 
excluding all tumor features), the variance explained in held-out patients drops from 80% to 
26%.  When we repeat the LOOCV error analysis using only clinical and tumor features 
(excluding all circulating features), the explained variance drops to 13%.  Finally, when we 
repeat the LOOCV error analysis using only circulating and tumor features (excluding all clinical 
features), the explained variance drops to 0%; that is, the model performs worse than the 
baseline in this scenario.  These findings indicate that clinical, tumor, and circulating features 
are all contributing significantly to the predictive accuracy of the elastic net learning pipeline. 
 

Table 1: Learned elastic net coefficients and feature types 

Feature name Elastic net coefficient Feature type 

expressed_neoantigen_count 0.682021 Tumor 

log_neoantigen_count  -0.647034 Tumor 

Top Clone Freq(%)  0.548716 Circulating 

Time since last 
chemotherapy  

-0.539601 Clinical 

 of 

al 
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Age -0.52979 Clinical 

log_Productive Unique TCRs 
(cnt) 

0.396964 Circulating 

Albumin < 4 -0.356917 Clinical 

T-cell fraction -0.322786 Circulating 

T-cell fraction_tumor  0.295661 Tumor 

log_factor score 0.223579 Clinical 

log_Number of chemo 
regimens total  

-0.212176 Clinical 

log_Diversity_tumor -0.18734 Tumor 

Prior BCG  0.147289 Clinical 

Diversity_tumor -0.125397 Tumor 

neoantigen_count  -0.100804 Tumor 

factor score 0.065281 Clinical 

log_Top Clone Freq(%)  0.062521 Circulating 

missense_snv_count  -0.054105 Tumor 

log_Baseline neutrophil to 
lymphocyte ratio  

0.027796 Clinical 

Clonality_tumor  0.011165 Tumor 

Clonality  0 Circulating 

Baseline neutrophil to 
lymphocyte ratio 

0 Clinical 

expressed_missense_snv_co
unt  

0 Tumor 

log_Clonality_tumor  0 Tumor 

log_T-cell fraction_tumor  0 Tumor 

log_expressed_neoantigen_c
ount  

0 Tumor 

Diversity 0 Circulating 

Productive Unique TCRs 0 Circulating 
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(cnt)  

log_T-cell fraction 0 Circulating 

log_Clonality  0 Circulating 

Number of chemo regimens 
total 

0 Clinical 

log_Age 0 Clinical 

log_Time since last 
chemotherapy 

0 Clinical 

log_missense_snv_count  0 Tumor 

log_expressed_missense_sn
v_count 

0 Tumor 

log_Diversity 0 Circulating 

 

Implications for durable clinical benefit 
Figure 3 compares the distributions of the predicted number of expanded TIL clones for held-out 
patients who did and did not experience durable clinical benefit (DCB).  This display should be 
contrasted with the DCB-stratified distributions of standard biomarkers like missense single-
nucleotide variant (SNV) count, expressed neoantigen count, and PD-L1 staining (Figures 4, 5, 
and 6 respectively).  Notably, 100% of patients who experienced durable clinical benefit have 
predicted expansion scores above the sixty-sixth percentile prediction for patients without 
durable clinical benefit.  This indicates that, if patients are triaged according to predicted 
expansion, only 34% of non-DCB patients need be treated to ensure that 100% of DCB patients 
are treated.  In contrast, using PD-L1 staining alone, one must treat at least 75% of non-DCB 
patients to ensure that all DCB patients receive treatment.  Using missense SNV count or 
expressed neoantigen count alone, one must treat at least 87.5% of non-DCB patients to 
ensure that all DCB patients are treated.  Each of these biomarkers is known to be associated 
with DCB in cancer immunotherapy patients [13].  However, in this dataset, each biomarker 
alone is a relatively poor discriminator of DCB and non-DCB patients.  Nevertheless, the elastic 
net learning pipeline is able to integrate missense SNV count, expressed neoantigen count, and 
several other patient features into a composite biomarker with greater DCB discriminating 
ability. 
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Figure 3: Distributions of 
predicted number of 
expanded TIL clones in 
patients with and without 
clinical benefit. 

 

 

Figure 4: Distributions of 
missense SNV count in 
patients with and without 
clinical benefit. 

 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 8, 2017. ; https://doi.org/10.1101/231316doi: bioRxiv preprint 

https://doi.org/10.1101/231316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 5: Distributions of 
expressed neoantigen 
count in patients with and 
without clinical benefit. 

 

 

 
Figure 6: Distributions of 
PD-L1 in patients with 
and without clinical 
benefit. 

Discussion 
We have introduced a multifactorial model for predicting response to checkpoint inhibitor 
immunotherapy. Our model integrates tumor, clinical, and immune features to predict a measure
of immune response. Notably, we train our model to predict a fine-grained intermediate measure
of immune response which is associated with the coarser-grained clinical response. 
 

re 
re 
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We demonstrate and evaluate our model on a dataset of urothelial cancers from Snyder et al. 
[3]. We find that our model can predict the number of tumor infiltrating T cell clones that expand 
in the blood post-therapy with high estimated accuracy. In addition, if the patients in our cohort 
are triaged according to held-out predicted expansion, only 34% of non-DCB patients need be 
treated to ensure that 100% of DCB patients are treated. Moreover, we find that our model 
achieves the highest LOOCV accuracy when tumor, circulating, and clinical features are all 
included, demonstrating that they provide complementary information. We next intend to 
validate our model fully out-of-sample, on a previously unseen cohort of bladder patients. 
 
We anticipate integrative models of tumor, immune system, and clinical features such as those 
introduced here will be increasingly useful as TCR sequencing becomes routine in the clinical 
practice. Non-invasive measurement of immune system activity in the blood has the potential to 
transform many areas of cancer care, including early detection, precision oncology, and 
monitoring response. Predictive models of the peripheral immune system, and predictive 
models of clinical response from peripheral immune system features, will be crucial to realizing 
these goals. 
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