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Significance Statement 32	
Systems biology seeks to combine experiments with computation to predict complex biological 33	
behaviors. However, despite tremendous data and knowledge, most biological models make 34	
terrible predictions. By analyzing single-cell-single-molecule measurements of mRNA in yeast 35	
during stress response, we explore how prediction accuracy is controlled by experimental 36	
distributions shapes. We find that asymmetric data distributions, which arise in measurements of 37	
positive quantities, can cause standard modeling approaches to yield excellent fits but make 38	
meaningless predictions. We demonstrate advanced computational tools that solve this dilemma 39	
and achieve predictive understanding of many spatiotemporal mechanisms of transcription 40	
control including RNA polymerase initiation and elongation and mRNA accumulation, transport 41	
and decay.  Our approach extends to any discrete dynamic process with rare events and 42	
realistically limited data.  43	
 44	
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 47	
Abstract: Despite substantial experimental and computational efforts, 48	
mechanistic modeling remains more predictive in engineering than in systems 49	
biology. The reason for this discrepancy is not fully understood. Although 50	
randomness and complexity of biological systems play roles in this concern, we 51	
hypothesize that significant and overlooked challenges arise due to specific 52	
features of single-molecule events that control crucial biological responses. Here 53	
we show that modern statistical tools to disentangle complexity and stochasticity, 54	
which assume normally distributed fluctuations or enormous datasets, don't apply 55	
to the discrete, positive, and non-symmetric distributions that characterize 56	
spatiotemporal mRNA fluctuations in single-cells. We demonstrate an alternate 57	
approach that fully captures discrete, non-normal effects within finite datasets. As 58	
an example, we integrate single-molecule measurements and these advanced 59	
computational analyses to explore Mitogen Activated Protein Kinase induction of 60	
multiple stress response genes. We discover and validate quantitatively precise, 61	
reproducible, and predictive understanding of diverse transcription regulation 62	
mechanisms, including gene activation, polymerase initiation, elongation, mRNA 63	
accumulation, spatial transport, and degradation. Our model-data integration 64	
approach extends to any discrete dynamic process with rare events and 65	
realistically limited data.  66	
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The ultimate goal of modeling is to integrate quantitative data to understand, predict, or control 67	
complex processes. Useful models may be discovered through mechanistic or statistical 68	
approaches, but success is always limited by the quantity and quality of data and the rigor of 69	
comparison between models and experiments. These issues are largely solved in engineering, 70	
where computer analyses routinely enable the design of extraordinarily complex systems. Many 71	
would argue that predictive modeling in biology is far behind this capability due to limited 72	
experimental data, inescapable randomness or noise, and overwhelming biological complexity. 73	
These concerns have driven rapid single-cell experimental and computational advances, which 74	
have enabled measurement and modeling of individual biomolecules (i.e., DNA, RNA, and 75	
protein) in single cells with outstanding spatiotemporal resolution1-12. Such experiments have 76	
allowed the characterization of many intriguing aspects of biological complexity and variation13, 77	
while capturing these phenomena with stochastic gene regulation models has improved 78	
understanding of mechanisms and their parameters14-18.  79	
 80	
Despite experimental and computational advances, most biological models still underperform 81	
expectations. While it is tempting to attribute this failure to “poor models” or “insufficient data,'' 82	
an alternative and often overlooked explanation is that combinations of sufficient data and good 83	
models may fail because they haven't been integrated properly. Many standard engineering 84	
techniques exist to integrate models with continuous-valued data, but unlike most engineered 85	
systems, biological fluctuations are dominated by discrete events. A single molecule of DNA, 86	
RNA, or protein can change the fate of an organism19-22. The resulting positive and discrete 87	
distributions violate the most basic assumption of most model inference approaches (i.e., that 88	
measurement errors are continuous Gaussian random variables). Moreover, this violation is 89	
compounded by the fact that datasets for single-cell imaging and sequencing are usually too 90	
small to invoke the central limit theorem (CLT). Consequently, standard data-model integration 91	
procedures can fail dramatically. We hypothesize that more exact treatment of discrete biological 92	
fluctuations could solve the data-model integration dilemma and enable precise quantitative 93	
predictions. 94	
 95	
To test this hypothesis, we explore the effects of experimental data distribution shapes on the 96	
uncertainty, bias, and resulting predictive capabilities of single-cell gene regulation models. We 97	
examine the evolutionary conserved Stress Activated Protein Kinase (p38 / Hog1 SAPK) signal 98	
transduction pathway (Figs. 1 and S1), and we quantify its control of transcription mechanisms 99	
including RNA polymerase transcription initiation and elongation on target genes as well as 100	
mature mRNA export and degradation in Saccharomyces cerevisiae during adaptation to hyper-101	
osmotic shock (Fig. 1A)23. We quantify the number of individual mRNA primary transcripts at 102	
the site of transcription, in the nucleus, and in the cytoplasm for multiple genes using single-103	
molecule fluorescence in situ hybridization (smFISH) (Fig. 1B,C)1,2. We collect high-resolution 104	
data from more than 65,000 cells, and we quantify single-cell spatiotemporal mRNA 105	
distributions that are demonstrably non-normal and non-symmetric (Figs. S2-S3). For such 106	
distributions, huge data sets would be needed to justify application of the CLT as we discuss 107	
below. We use computational analyses to integrate these data with a discrete stochastic 108	
spatiotemporal model24 (Fig. 1A), and we show how different computational analyses of the 109	
same experimental data and same models can yield vastly different parameter biases and 110	
uncertainties which cause predictive accuracy to vary by many orders of magnitude (Fig. 1D).  111	
 112	
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We discover that standard single-cell modeling approaches, which assume continuous and 113	
normally distributed fluctuations or enough data to invoke the CLT24, are not always valid to 114	
interpret finite datasets for single-cell transcription responses. We find that these standard 115	
approaches can yield surprising errors and poor predictions (Fig. 1D), especially when mRNA 116	
expression is very low. In contrast, we show that improved computational analyses of full single-117	
cell RNA distributions can yield far more precisely constrained, less biased, and more 118	
reproducible models (Fig. 1D). We also discover new and valuable information contained in the 119	
intracellular spatial locations of RNA (Figs. 1B, S4-S5), enabling quantitative predictions for 120	
novel dynamics of gene regulation, including transcription initiation and elongation rates, 121	
fractions of actively transcribing cells, and the average number and distribution of polymerases 122	
per active transcription site, which could not otherwise be measured simultaneously in 123	
endogenous cell populations (Figs. 1D, 4). 124	
 125	
Results  126	
 127	
Under osmotic stress, the high osmolarity glycerol kinase, Hog1, is phosphorylated and 128	
translocated to the nucleus, where it activates several hundred genes23. For two of these genes 129	
(STL1, a glycerol proton symporter of the plasma membrane and CTT1, the Cytosolic catalase 130	
T), we quantified transcription at single-molecule and single-cell resolution (Figs. 1B,C, S2, and 131	
S3), at temporal resolutions of one to five minutes, at two osmotic stress conditions (0.2M and 132	
0.4M NaCl), and in multiple biological replicas. We built histograms to quantify the marginal 133	
and joint distributions of the nuclear and cytoplasmic mRNA (Figs. 2D,E and S2-S5).  134	
 135	
We extended a bursting gene expression model14,25 to account for transcriptional regulation and 136	
spatial localization of mRNA (Fig. 1A)24. We considered four approaches to fit this model to 137	
gene transcription data: First, we used exact analyses of the first moments (i.e., population 138	
means) of mRNA levels as functions of time. Second, we added exact analyses of the second 139	
moments (i.e., variances and covariances). Third, we extended the moments analyses to include 140	
the third and fourth moments. Finally, we used the finite state projection (FSP26) approach to 141	
compute the full joint probability distributions for nuclear and cytoplasmic mRNA. All four 142	
approaches provide exact solutions of the same model, but at different levels of statistical 143	
detail24. We used each analysis to compute the likelihood that the measured mRNA data would 144	
match the model, and we maximized this likelihood24. As was the case for previous studies17,27, 145	
we note that the moments-based likelihood computations assume either normally distributed 146	
deviations (first and second methods) or sufficiently large sample sizes such that the moments 147	
can be captured by a normal distribution as guaranteed by the CLT (third method)24. In contrast, 148	
the FSP approach (fourth method) makes no assumptions on the distribution shape and has no 149	
requirement for large sample sizes. 150	
 151	
Different exact analyses of the same model and same data yield dramatically different results. 152	
The four likelihood definitions were maximized by different parameter combinations (Tables S3 153	
and S4), and the fit and prediction results are compared to the measured mean, variance, ON-154	
fraction (i.e., fraction of cells with more than 3 mRNA / cell), and distributions versus time for 155	
STL1 and CTT1 (Figs. 2, S2, and S3). The different analyses used the same model, and they were 156	
fit to the exact same experimental data, but they yielded dramatically different results. When 157	
identified using the average mRNA dynamics (Fig. 2A, left), the model failed to match the 158	
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variance, ON-fractions, or distributions of the process (Fig. 2B-E, left). Fitting the response 159	
means and variances simultaneously (Fig. 2A-B, center) failed to predict the ON-fractions or 160	
probability distributions (Fig. 2C-E, center). In contrast, parameter estimation using the full 161	
probability distribution (Fig. 2, right column and Figs. S2 and S3) matched all measured 162	
statistics. Importantly, key parameters identified using the FSP approach agree well with 163	
previous studies18, such as STL1 and CTT1 mRNA transcription and degradation rates. This 164	
agreement indicates strong reproducibility of both experiments and analyses (Tables S3 and S4) 165	
and provides more confident predictions for new transcriptional mechanisms as discussed below. 166	
In contrast, the moment-based analyses overestimated these rates by multiple orders of 167	
magnitude.  168	
 169	
Standard modeling identification procedures fail due to bias in moment estimation. We 170	
considered three explanations for the failure of moment-based parameter estimation approaches: 171	
(i) the model parameters could be unidentifiable from the considered moments; (ii) the 172	
parameters could be too weakly constrained by those moments; or (iii) the moments analyses 173	
could have introduced systematic biases due to a failure of the CLT. To eliminate the first 174	
explanation, we computed the Fisher Information Matrix (FIM) defined by the moments-based 175	
analyses24. Because the computed FIM has full rank, we conclude that the model should be 176	
identifiable. If the second explanation were true (i.e., if the moments-analyses had produced 177	
weakly constrained models), then changing the parameters to those selected by the FSP analysis 178	
should have only a small effect on the moment-based likelihood. In such a case, the FSP 179	
parameters would lie within large parameter confidence intervals identified by the moments-180	
based analyses. However, using the experimental STL1 data, we computed that the FSP 181	
parameter set was 102,750 less likely to have been discovered using means, 1014,500 less likely to 182	
have been discovered using means and variances, and 10664 less likely to have been discovered 183	
using the extended moments analysis (Table S5). Thus, we conclude that failure of the moments-184	
based analyses to match the distributions in Figs. 2, S2, and S3 cannot be explained by 185	
uncertainty alone. 186	
 187	
To test the third explanation for parameter estimation failure (i.e., systematic bias), we used the 188	
FSP parameters and generated simulated data for the mean (Fig. 3A), standard deviation (Fig. 189	
3B), and the ON-fraction (Fig. 3C) versus time for STL1 mRNA under an osmotic shock of 0.2M 190	
NaCl. As shown in Fig. 3A,B, the median of the simulated data sets (magenta) matches the 191	
experimental data (red and cyan) at all times, but at later times (>20 minutes) both are 192	
consistently less than the theoretical values (black). This mismatch is due to finite sampling from 193	
asymmetric distributions especially at later time points (Fig. 3D). The Gaussian assumption 194	
applied to the first two moments analyses24, which does not account for asymmetry, imposes 195	
narrow and nearly symmetric likelihood functions for the sample mean and sample variance 196	
(cyan lines in Fig. 3E,F, respectively). These moment-based likelihood functions are inconsistent 197	
with the actual sample statistic distributions (Fig. 3F, compare cyan and black lines). Because the 198	
mRNA distributions are very broad at late time points (Fig. 3D), one would need to measure 105 199	
or 107 cells to estimate the variance within 10% or 1%, respectively (Fig. 3G). Furthermore, 200	
because the mRNA distributions are highly asymmetric, measurements are likely to repeatedly 201	
underestimate the summary statistics. As a result, the moment-based likelihood functions were 202	
deleteriously overfit to underestimated mRNA expression at late time points, and resulted in 203	
excessively confident overestimation of the mRNA degradation rate (Table S3). In principle, the 204	
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extended moments analysis could better capture the correct likelihood function for the sample 205	
statistics (Figs. 3E,F magenta lines), but this requires a prior knowledge of the exact third and 206	
fourth moments. In practice, because those higher order statistics must be estimated using the 207	
model, the resulting extended moments analysis was less biased but more uncertain.  208	
 209	
Full distribution analyses substantially reduce model uncertainty and bias. To confirm the 210	
tradeoff between uncertainty and bias, we applied the Metropolis Hastings algorithm (MHA) to 211	
analyze parameter variation for the different likelihood functions and to estimate parameter 212	
uncertainty and bias (Fig. 4A-C)24. Comparing the parameter variations for the transcription 213	
initiation rate, ki3, and the mRNA degradation rate, g, illustrates that extending the analysis from 214	
the means to means and variances can affect the parameter identification bias much more than 215	
the parameter uncertainty (Fig. 4A). Moreover, this effect is not always advantageous; inclusion 216	
of variances in the analysis led to substantially increased parameter bias for STL1 (compare red 217	
and blues ellipses in Fig. 4A,C and see Fig. S9) and relatively little change for CTT1 (Figs. S10 218	
and S11). In contrast, analyses using the FSP consistently reduced both uncertainty and bias for 219	
both STL1 and CTT1 analyses (Figs. 4A-C and S9-S11).  220	
 221	
Using spatial fluctuations improves model identification. Having established that different 222	
stochastic fluctuation analyses attain different levels of uncertainty and bias, we asked if more 223	
information could be extracted from spatially-resolved data. Using a nuclear stain, we quantified 224	
the numbers of STL1 and CTT1 mRNA in the nucleus and cytoplasm24 (Fig. 1B). We then 225	
extended the model and our analyses to consider the joint cytoplasmic and nuclear mRNA 226	
distributions (Fig. S4 and S5). From these analyses, we observed that spatial data reduced 227	
parameter bias for the models, despite the addition of new parameters and model complexity 228	
(Fig. 4A-C and S9-11).  229	
 230	
Measuring and predicting transcription site dynamics. We next explored how well the identified 231	
models could be used to predict the elongation dynamics of nascent mRNA at individual STL1 or 232	
CTT1 transcription sites (TS, Fig. 1B,C). We quantified the TS intensity for CTT1, and we used 233	
an extended FSP model for CTT1 regulation to estimate the Polymerase II elongation rate to be 234	
63±13 nt/s24, a value consistent with published rates of 14-61 nt/s28,29. We assumed an identical 235	
rate for the STL1 gene, and we used the FSP model for STL1 gene regulation to predict the STL1 236	
TS activity (Figs. 1D, 4D). The spatial (non-spatial) FSP model predicts an average of 7.0 (9.3) 237	
full length STL1 mRNA per active TS, a value that matches well to our measured value of 4.2-238	
7.5 STL1 mRNA per active TS. However, predictions using parameters identified from 239	
moments-based analyses were incorrect by several orders of magnitude (Fig. 1D). In addition to 240	
predicting the average number of nascent mRNA per active TS, the FSP model also accurately 241	
predicts the fraction of cells that have an active STL1 TS versus time as well as the distribution 242	
of nascent mRNA per TS (Figs. 4E). 243	
 244	
Discussion 245	
 246	
Integrating stochastic models and single-molecule and single-cell experiments can provide a 247	
wealth of information about gene regulatory dynamics14. In previous work, we discussed the 248	
importance to choose the right model to match the single-cell fluctuation information and 249	
achieve predictive understanding18. Here we have shown how important it is to choose the right 250	
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computational analysis with which to analyze single-cell data. We showed how model 251	
identification based solely upon average behaviors can lead to substantial parameter uncertainty 252	
and bias, potentially resulting in poor predictive power (Figs. 1-4). We showed how single-253	
molecule experiments often yield discrete, asymmetric distributions that are demonstrably non-254	
Gaussian (Figs. 2D,E, 3, S2, and S3), and how model extensions to include hard-to-measure 255	
variances and covariances may exacerbate biases (Fig. 4C) leading to greatly diminished 256	
predictive power (Figs. 1D). By taking into account the full distribution shapes, one can correct 257	
these deleterious effects and obtain parameter estimates and predictions that are improved by 258	
many orders of magnitude, even when applied to the same model and same data (Figs. 1D, 2, 4). 259	
We stress that this concern occurs even for models for which exact equations are known and 260	
solvable for the statistical moment dynamics. For more complex and nonlinear models, where 261	
approximate moment analyses are required, these effects are likely to be exacerbated further. 262	
This issue is expected to be even more relevant in mammalian systems, which exhibit greater 263	
bursting1,2,21 and for which data collection may be limited to smaller sizes (e.g., by increased 264	
image processing difficulties for complex cell shapes or by small numbers of cells, as available 265	
from an organ, a tissue from a biopsy, or for a rare cell type population).  266	
 267	
Because most single-cell modeling investigations to date have used only means or means and 268	
variances from finite data sets to constrain models, it is not surprising that many biological 269	
models fail to realize predictive capabilities. Conversely, our full consideration of the single-270	
molecule distributions enabled discovery of a comprehensive model that quantitatively captures 271	
transcription regulation with biologically realistic rates and interpretation for transcription 272	
initiation, transcription elongation, and mRNA export and nuclear and cytoplasmic mRNA 273	
degradation (Fig. 1A). We argue that the solution is not to collect increasingly massive amounts 274	
of data, but instead to develop computational tools that utilize the full, unbiased spatiotemporal 275	
distributions of single-cell fluctuations. By addressing the limitations of current approaches and 276	
relaxing requirements for normal distributions or large sample sizes, our approach should have 277	
general implications to improve mechanistic model identification for any discipline that is 278	
confronted with non-symmetric datasets and finite sample sizes. 279	
 280	
Methods and Materials 281	
 282	
Yeast strain and growth condition. Saccharomyces cerevisiae BY4741 (MATa; his3∆1; 283	
leu2∆0; met15∆0; ura3∆0) was used for time-lapse microscopy and FISH experiments.  Cells 284	
are grown in complete synthetic media (CSM, Formedia, UK) to an optical density (OD) of 0.5.  285	
Nuclear enrichment of YFP C-terminus tagged Hog1 was measured in single cells over time in 286	
response to osmotic stress30,31.  287	
 288	
Microscopy setup for time-lapse and single molecule RNA FISH imaging. Cells were imaged 289	
with a Nikon Ti Eclipse epifluorescent microscope equipped with perfect focus (Nikon), a 100x 290	
VC DIC lens (Nikon), fluorescent filters for YFP, DAPI, TMR and CY5 (Semrock), an X-cite 291	
120 fluorescent light source (Excelitas), and an Orca Flash 4v2 CMOS camera (Hamamatsu).  292	
The microscope was controlled by Micro-Manager program32.  293	
 294	
Image acquisition for time-lapse and single molecule RNA FISH imaging. Constant focus 295	
mode live cell time-lapse microscopy was performed by taking bright field images every 10 s 296	
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and YFP fluorescent images every minute.  Single molecule RNA-FISH microscopy was 297	
performed as z-stacks of 200nm between images from fixed yeast cells for bright field, DAPI, 298	
TMR and CY5. 299	
 300	
Sample preparation for live cell time-lapse microscopy. Hog1-YFP tagged yeast cells are 301	
loaded into a flow chamber33.  CSM or CSM with 0.2M or 0.4M NaCl was passed through the 302	
flow chamber using a syringe pump (New Era Pump Systems) at a pump rate of 0.1 ml/minute.  303	
 304	
Image analysis for time-lapse microscopy. The bright field and YFP images are background 305	
corrected and smoothed.  The YFP images are then thresholded and converted to a binary image 306	
resulting in a nuclear marker for cell segmentation.  The processed bright field and the binary 307	
YFP images were combined using morphological reconstruction, and cells were segmented with 308	
a watershed algorithm.  After segmentation, the centroid of each cell was computed and tracked 309	
over time to generate single cell time trajectories.  For each cell the Hog1 nuclear enrichment 310	
was then calculated as Hog1(t) = [(It(t) - Ib) / (Iw(t) - Ib)], with Iw (average per pixel fluorescent 311	
intensity of the whole cell), Ib (average per pixel fluorescent intensity of the camera background), 312	
and It (average per pixel fluorescent intensity of the 100 brightest fluorescent pixels).  The single 313	
cell traces were smoothed and subtracted by the Hog1(t) signal on the beginning of the 314	
experiment.  For cell volume measurements, volume change relative to the volume at the 315	
beginning of the experiment was calculated.  The median and the average median distance 316	
(standard deviation of the median) from single cell time traces of Hog1- YFP and cell volume 317	
was computed.  The final time-lapse microscopy data set consist of 246 (0.2M NaCl) and 167 318	
(0.4M NaCl) cells.  Each time course was measured in duplicates or triplicates.  319	
 320	
Sample preparation for single-molecule RNA-FISH. Yeast cells (OD = 0.5) was concentrated 321	
tenfold through a filter system, then exposed to NaCl concentration of 0.2 M and 0.4 M NaCl, 322	
and then fixed in 4 % formaldehyde at time points 0, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 323	
50, 55 minutes after osmotic stress.  After fixation, cells are spheroplasted with 2.5 mg/ml 324	
Zymolyase (US Biological) until cells turn from an opaque to a black color.  Cells are stored in 325	
70 % ethanol at +4C for at least 12 hours.  Hybridization and RNA-FISH probe preparation 326	
conditions were applied as published18.  Table S1 contains the RNA-FISH probes for STL1 and 327	
CTT1.  Each time course was measured in duplicate or triplicate.  328	
 329	
Image analysis for single-molecule RNA-FISH. Each DAPI image stack was maximum 330	
intensity projected, thresholded, converted into a binary image, and individual connected regions 331	
of biologically relevant size was segmented resulting in individually labeled nuclei.  For each 332	
cell, the entire DAPI image stack was converted into a binary image stack using cell specific 333	
DAPI thresholds resulting in 3D thresholded nucleus and cytoplasm.  The last 5 images of the 334	
bright field image stack were maximum projected to generate the cell outlines.  This image was 335	
background corrected and combined with the threshold DAPI image using morphological 336	
reconstruction and cells were segmented with a watershed algorithm.  To identify RNA spots, a 337	
fluorescent intensity threshold was determined for each dye, and each field of view imaged.  For 338	
a specific time course experiment, the average fluorescent threshold was determined from the 339	
average of all the individual thresholds.  After the thresholds had been determined each image in 340	
the stack was Gaussian filtered, filtered with a Laplacian of a Gaussian filter to detect punctuate 341	
in the image, converted into binary images using the previously determined threshold, and the 342	
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regional maxima was determined within the image stack.  A mask of segmented nucleus and 343	
cytoplasm was applied to the filtered RNA-FISH image stacks and the numbers of RNA spots 344	
were counted in each compartment for each cell in three dimensions.  To determine the number 345	
of transcripts of each transcription site, we determined the total intensity of each RNA spot in the 346	
cell.  We also fitted each RNA spot with a 2D Gaussian function to determine the RNA spot 347	
intensity and found very good agreement between the fitted and the total RNA spot intensities.  348	
The total RNA-FISH data set consists of a total of 65454 single cells (25511 at 0.2M NaCl and 349	
39943 at 0.4M NaCl).  350	
 351	
RNA-FISH data analysis. For each time point, a distribution of mRNA molecules in single cells 352	
was determined as the marginal distribution of total STL1 and CTT1 mRNA or as the joint 353	
probability distribution of nuclear and cytoplasmic RNA.  The distributions were also 354	
summarized in a binary data set of ON-cells and OFF-cells.  Cells with three or more mRNA 355	
molecules were considered ON-cells for quantification of the ON-fraction.  The population 356	
average was computed as the mean marginal cytoplasmic or nuclear RNA for each mRNA 357	
species.  To quantify transcription site intensities, we recorded the intensity of all spots in the 358	
nuclei for all cells.  The brightest nuclear spots of each cell were labeled as potential 359	
transcription sites, and were temporarily removed from the data set.  We then computed the 360	
median intensity for the remaining nuclear spots, and we used this median value to define the 361	
equivalent mature nuclear mRNA fluorescence intensity.  Next, we re-examined the brightest 362	
RNA spot in each nucleus (i.e., the potential transcription sites), and we computed the 363	
fluorescence intensity in units of mature mRNA intensities.  Potential transcription sites that had 364	
intensities greater than the equivalent of two mature mRNA molecules were labeled as active 365	
transcription sites.  This approach was applied to all cells from a single experiment.  From this 366	
analysis, we computed the fraction of cells with an active transcription site as a function of time, 367	
the single-cell distributions of full length RNA transcripts per transcription site as a function of 368	
time, and the average number of full length RNA transcripts per transcription site as a function 369	
of time.  370	
 371	
Hog1-Kinase Model. To model the temporally-varying Hog1p localization signal, we adopt the 372	
model from18, and we fit parameters of this model to the measured Hog1p nuclear enrichment 373	
levels as functions of time, and osmolyte concentrations (see Table S2 and Fig. S1). This time-374	
varying signal has been used as an input to the gene regulation models. 375	
 376	
Gene Regulation Model.  To capture the spatial stochastic expression of STL1 or CTT1 mRNA, 377	
the four-state Hog1p- activated gene expression model identified in Ref. 18 was extended to 378	
account for spatial localization of mRNA in the nucleus or cytoplasm (see Fig. 1A). In total, 379	
there are 13 non-spatial or 15 spatial parameters in the model.  380	
 381	
Computation of Moments. Moment dynamics were analyzed using sets of coupled linear time-382	
varying ordinary differential equations.  Theses ODEs provide exact expressions for the 383	
dynamics of the model’s means, variances, covariances and higher moments34. Because the 384	
reaction rates are all linear, these moment equations are closed, and the moments can be 385	
computed with no assumption on the distribution shape.  386	
 387	
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Computation of Full Distributions. Distributions were computed using the Finite State 388	
Projection approach26 to approximate the exact solution of the Chemical Master Equation.  389	
 390	
Computation of Moment-Based Likelihood Functions. To compare computed moments to 391	
measured experimental data required computation of the likelihood that the measured moments 392	
(e.g., means or covariance matrix) would have been observed by chance given that the model 393	
were correct. Three different approaches were derived to compute the likelihood of the observed 394	
moments given the model.  First, to estimate the likelihood that the average data could come 395	
from the model, fluctuations were assumed to be Gaussian, with the model-generated means and 396	
the measured sample (co)variances. Second, to compute the likelihood to observe both the 397	
measured sample variance (non-spatial) or covariance matrix (spatial), the chi-squared 398	
distribution (non-spatial) or Wishart distribution (spatial) were used to approximate the 399	
likelihood to obtain the measured sample means and variances, given the model35.  Third, the 400	
approach from Ref. 17 (based upon application of the central limit theorem) was used to 401	
approximate the joint likelihood to simultaneously measure the join sample means and sample 402	
covariance matrix in which the co-variance of the first two moments was assumed to depend 403	
upon the first four moments of the model at each condition and point in time.  404	
 405	
Computation of the Full Distribution Likelihood. The likelihood of the full distribution data 406	
was computed using the FSP approach, similar to the approach taken in Refs. 18,36. 407	
 408	
Parameter Searches to Maximize Likelihood. Iterative combinations of simplex based 409	
searches and genetic algorithm based searches were used to maximize likelihood functions. All 410	
parameters were defined to have positive values, and searches were conducted in logarithmic 411	
space. The searches are run multiple times from different starting parameter guesses leading to 412	
many tens of millions of function evaluations (>4 × 107 evaluations of the means and moments 413	
analyses, >5 × 106 evaluations of the non-spatial FSP distributions, and >5 × 105 evaluations for 414	
the more computationally expensive analyses of extended moments and the spatial FSP 415	
distributions). Parallel fits were conducted on clusters of more than 128 processors at a time 416	
allowing for the consideration of several millions of model/parameter/experiment combinations 417	
per day.  418	
 419	
Quantification of Parameter Uncertainties. The Metropolis Hastings algorithm37 was used to 420	
quantify the parameter uncertainties. All MCMC parameter explorations were conducted in 421	
logarithmic parameter space, and all analyses (i.e., means, means and variances, or distributions, 422	
both spatial and non-spatial) used the same proposal distribution for the MCMC chains. This 423	
proposal distribution was a symmetric normal distribution (in logarithmic space) with a variance 424	
of 0.005 (also in logarithmic space). For each parameter proposal, a random selection of 425	
parameters was selected to change, where each parameter had a 50% chance to be perturbed. The 426	
first half of each chain was discarded as an MCMC burn-in period, and all chains were thinned 427	
by 90%.  MCMC chains for the means and simpler moments analyses were run for MH chains 428	
with lengths of 1,000,000 parameter evaluations. MCMC analyses for the more computationally 429	
expensive extended moment analyses were run for at least 120,000 parameter evaluations. 430	
MCMC analyses for the non-spatial distribution analyses were run for at least 250,000 parameter 431	
evaluations. MCMC analyses for the most computationally expensive spatial distribution 432	
analyses were run for at least 15,000 parameter evaluations. To evaluate convergence of the 433	
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MCMC analyses, multiple MCMC chains were run for each analysis. To illustrate the achieved 434	
convergence, Fig. S8 shows the similarity of distributions of likelihood values for two 435	
independent MCMC runs for each analysis and for STL1 and CTT1. The total bias and total 436	
uncertainty, shown in Figs. 4B, 4C, S11B and S11C, were computed as described in the 437	
supplemental material. 438	
 439	
Predictions of Transcription Site Activity. Two different analyses were developed to predict 440	
transcription site (TS) activity: a simplified theoretical analysis of average active TS activity and 441	
an extended FSP analysis of distributions of polymerases on a given TS. In the simplified 442	
analysis, it was assumed than an active TS would correspond to one gene at steady state with the 443	
maximum transcription rate, ki-max. Under this assumption, the average number of elongating 444	
polymerases is given by <npol> = ki-maxtelong= ki-maxL/kelong.  The average nascent mRNA was 445	
assumed to be half the length of a mature mRNA, and since smFISH probes were equally 446	
distributed along the length of the gene, the average nascent mRNA was assumed to exhibit half 447	
the brightness of a mature mRNA. An extended FSP approach similar to that in (38) was also 448	
used to compute the distribution for the number of polymerases at the TS. Under the assumption 449	
that each partially transcribed mRNA was at a random location in the gene, its effective intensity 450	
was approximated to be uniformly distributed between zero and the equivalent of one mature 451	
mRNA. The distribution of TS spot intensities with Npoly polymerases was found through the 452	
convolution of Npoly independent random variables, each with a uniform distribution between 453	
zero and one. The FSP analysis was confirmed using an adapted form of the Stochastic 454	
Simulation Algorithm39 but with a modification40 to allow for time varying reaction rates (Fig. 455	
S12). For both experimental and computational analyses, TS sites were labeled as ON if their 456	
predicted or measured intensities were greater than twice the intensity of a single mature mRNA.  457	
 458	
Identification of mRNA Elongation Rate. The transcription elongation rate was found by 459	
computing the TS intensity distribution for CTT1 at each point in time for 0.2M and 0.4M NaCl 460	
osmotic shock using the previously identified parameters (Table S4) and one free constant to 461	
describe the average elongation rate, kelong. The probability that the observed distributions of 462	
CTT1 TS intensities could have originated from this model was computed for all time points and 463	
conditions, and as a function of kelong. This likelihood was maximized for the different biological 464	
replicas and NaCl concentrations to determine the uncertainty in this parameter. The simplified 465	
theoretical model, which does not account for transitions between active and inactive periods, 466	
provided an upper bound on the CTT1 elongation rates to be 91±9Nt/s. The more detailed spatial 467	
FSP approach determined the CTT1 elongation rates to be 63±14Nt/s. For both cases, the 468	
uncertainty is given as the standard error of the mean using the five experimental replicas (two 469	
for 0.2M NaCl and three for 0.4M NaCl). The elongation rate was then fixed to be 63Nt/s, and 470	
this rate was used in conjunction with the previously identified parameters to predict the TS 471	
intensity distributions for CTT1 and STL1 as functions of time in both osmotic shock conditions 472	
(Figs. 1D, 4D,E and S11D-H).  473	
 474	
Codes. All computational results presented in this paper can reproduced using the provided 475	
Matlab codes. The codes also include a simple GUI interface to generate additional figures: to 476	
make predictions with changes to the identified parameters, to produce confidence ellipses for 477	
new combinations of parameters, etc. 478	
 479	
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 587	
Figure 1.  Discovering stochastic models to predict single-cell gene regulation. (A) Scope of 588	
the model to be identified, including quantitative analysis of MAPK induction and translocation, 589	
chromatin reorganization, polymerase initiation and elongation, and mRNA transcription, export, 590	
nuclear and cytoplasmic degradation. (B) Collection of single-cell spatiotemporal RNA 591	
transcription data to constrain the model (Fitting). Cytoplasmic and nuclear transcription 592	
quantification for expression of two mRNA species (CTT1 in red and STL1 in green). DAPI 593	
stained nucleus in blue. White line is the nuclear border, and the grey line is the cell boundary 594	
after automated segmentation. Representative images of cells exposed to 0.2M NaCl. 65454 cells 595	
in total have been imaged at 16 time points. Scale bar: 5µm. (C) Single-gene transcription site 596	
(TS) data used to validate the model (Prediction). Intensely bright spots within some cell nuclei 597	
are identified as transcription sites (TS). Scale bar: 1µm. (D) Validation of the model by 598	
comparing measured (solid red line) to predicted average number of nascent transcripts at active 599	
transcription sites using the same model and same data but under different modeling 600	
assumptions. Non-spatial analyses (blue) use the statistics (means, means and variances, or 601	
distributions) of the total number of RNA per cell. Spatial analyses (yellow) use the joint 602	
statistics of nuclear and cytoplasmic number of RNA per cell.  603	
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 604	
Figure 2. Different computational analyses result in matches to different data statistics. (A) 605	
Mean number, (B) standard deviation, (C) ON-fraction (cells with >3 mRNA), and (D,E) 606	
distributions of STL1 mRNA copy number. In panels A-C, data for 0.2M NaCl (circles, two 607	
biological replica) and 0.4M NaCl (triangles, three biological replica) are shown in magenta, 608	
cyan, and violet, and model results are shown in black. Temporal distributions are measured at 609	
(D) 0.2M NaCl and (E) 0.4M NaCl (cyan, violet, and magenta are biological replica). The left 610	
column corresponds to the best fit to the measured mean; the center column corresponds to the 611	
best fit to the measured means and variances; and the right column corresponds to the best fit to 612	
the full measured distributions. 613	
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 615	
Figure 3. Discrete positive distributions introduce uncertainty and bias in parameter 616	
estimation. (A) Mean, (B) standard deviation, (C) ON-fraction, and (D) full distributions 617	
of STL1 mRNA versus time for an osmotic shock of 0.2M NaCl applied at time t = 0. Theoretical 618	
values are in black, representative simulated samples of 200 cells each are in gray, median statistics 619	
of the simulated samples are in magenta; and experimental biological replica data are in red and 620	
cyan. (E,F) Expected distribution of sample mean (E) and sample variance (F) for STL1 at 35 621	
minutes computed using the CLT using Gaussian approximation (cyan), an extended moment 622	
analysis (magenta), or exact sampling from the FSP (black) for population sizes of 1, 100, 300, 623	
1000, and 3000 cells. (G) Expected number of cells required to estimate the mean (top) or variance 624	
(bottom) within standard errors of 10% (red) or 1% (black). The dependence on time is due to the 625	
changing distribution shapes shown in Panel D.  626	
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 627	
 628	
Figure 4.  Stochastic and spatial fluctuation information improve parameter estimation to 629	
enable precise quantitative predictions. (A) Ninety percent confidence ellipses for the 630	
degradation rate (g) and the maximal transcription initiation rate (ki3) using the means only (µ(t), 631	
red), means and variances (µ(t),S(t) blue), extended moment analyses (4th, magenta), or the full 632	
FSP distributions (P(t), black). Arrows show the effect of adding spatial information to the 633	
analyses. The dashed black lines show the fit parameters for the spatial FSP STL1 model. (B) Total 634	
parameter uncertainty and (C) bias for the four analyses using non-spatial (blue) and spatial 635	
(yellow) analyses. The red regions show the difference between independent MHA chains. (D) 636	
Predicted (black) and measured (magenta, green and blue crosses) fractions of cells with active 637	
STL1 TS versus time at 0.2M (top) NaCl and 0.4M (bottom) NaCl osmotic shock.  (E) Predicted 638	
(black) and measured (magenta, green and blue) distributions of nascent STL1 mRNA per TS at 639	
different times following 0.2M (top) NaCl and 0.4M (bottom) NaCl osmotic shock. Magenta, 640	
green and blue horizontal lines correspond to the minimum detection limit (1/Nc, where Nc is the 641	
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1 Materials and Methods – Experimental

1.1 Yeast strain and growth conditon

Saccharomyces cerevisiae BY4741 (MATa; his3∆1; leu2∆0; met15∆0; ura3∆0) was used for time-lapse
microscopy and FISH experiments. Three days before the experiment, yeast cells from a stock of cells
stored at -80◦C were streaked out on a complete synthetic media plate (CSM, Formedia, UK). The day
before the experiment, a single colony from the CSM plate was inoculated in 5 ml CSM medium (pre-
culture). After 6-12h, the optical density (OD) of the pre-culture was measured and the cells were diluted
into new CSM medium to reach an OD of 0.5 the next morning.To assay the nuclear enrichment of Hog1
in single cells over time in response to osmotic stress, a yellow-fluorescent protein (YFP) was tagged to
the C-terminus of endogenous Hog1 in BY4741 cells through homologous DNA recombination [1] [2].

1.2 Microscopy setup for time-lapse and single molecule RNA FISH imaging

Cells were imaged with a Nikon Ti Eclipse epifluorescnet microscope equipped with perfect focus (Nikon),
a 100x VC DIC lens (Nikon), fluorescent filters for YFP, DAPI, TMR and CY5 (Semrock), an X-cite 120
fluorescent light source (Excelitas), and an Orca Flash 4v2 CMOS camera (Hamamatsu). The microscope
was controled by Micro-Manager program [3].

1.3 Image aquisition for time-lapse and single molecule RNA FISH imaging

For live cell time-lapse microscopy the microscope was operated in constant focus mode. Bright field
images were taken every 10 s with an exposure time of 10 ms and the YFP fluorescent images are taken
every 1 minute with an exposure time of 20 ms. For single molecule RNA-FISH microscopy, z-stacks of
images from fixed yeast cells for bright field, DAPI, TMR and CY5 were taken with each image in the
z-stack separated by 200 nm. For each sample, muliple positions on the slide were imaged to ensure large
numbers of cells.

1.4 Sample preparation for live cell time-lapse microscopy

1.5 ml of yeast cells with Hog1-YFP in log-phase growth (OD=0.5) were pelleted by centrifugation,
resuspended in 20 µl CSM medium, and loaded into a flow chamber as described in [4]. The media
passing through the flow chamber was removed through a syringe (New Era Pump Systems) connected
to a pump (pump rate 0.1 ml/minute) at the exit of the flow chamber. On the input of the flow chamber,
a two-way valve was connected to switch between a beaker with CSM media and a beaker with CSM
medium with a fixed concentration of NaCl (0.2M or 0.4M).

1.5 Image analysis for time-lapse microscopy

Each image from the fluorescent tagged Hog1-kinase (Hog1-YFP) was used to generate a background
image by running a disk smoothing filter over the image. The background image was subtracted from
the orginial YFP image to enhance contrast. This image was then smoothed twice with a median filter.
From this image the mean pixel intensity for pixels above 50 counts was computed. This value serves
as a threshold to convert the YFP image into a binary image in which high intensity YFP signal that is
enriched in the nucleus, is used as a nuclear marker. The bright field image was smoothed with a disk
filter to generate a background image. The background image was subtracted from the orginial brightfield
image to enhance contrast. The processed YFP image and the processed brightfield image were combined
using morphological reconstruction, and cells were segmented with a watershed algorithm. Cells that
are too small, too big, or too close to the image borders were removed. This process was repeated for
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each image. After segmentation, the centroid of each cell was computed and stored. Next, the distance
between each centroid for each of the two consecutive images was compared. The cells in the two images
that have the smallest distance were considered the same cell at two different time points. This whole
procedure was repeated for each image resulting in single cell trajectories. For each cell the average
per pixel fluorescent intensity of the whole cell (Iw) and of the top 100 brightest fluorescent pixels (It)
was recorded as a function of time. In addition, fluorescent signal per pixel of the camera background
(Ib) was reported. The Hog1 nuclear enrichment was then calculated as Hog1(t) = [(It(t) - Ib) / (Iw(t) -
Ib)]. The single cell traces were smoothed and subtracted by the Hog1(t) signal on the beginning of the
experiment. Next, each single cell trace was inspected and cells exhibiting large fluctuations due to poor
cell segmentation and cell tracking were removed. During the time points when no fluorescent images were
taken, the fluorescent signal from the previous time point was used to segment the cell. Taking images
every 10 s with an exposure time of 10 ms using bright field imaging did not result in photobleaching of
the fluorescent signal and resulted in better tracking reliability because cells had not moved significantly
since the previous image. For cell volume measurements, each time trace was removed of outlier points
that resulted from segmentation uncertainties. Volume change relative to the volume at the beginning of
the experiment was calculated to compare cells of different volumes. For both, the single-cell volume and
Hog1(t) fluorescent traces, the median and the average median distance (standard deviation of the median)
was computed to put less weight on sporadic outliers due to the image segmentation process. The final
time-lapse microscopy data set consist of 246 (0.2M NaCl) and 167 (0.4M NaCl) cells. Each time course
was measured in duplicates or triplicates.

1.6 Sample preparation for single-molecule RNA-FISH

Yeast cell culture (BY4741 WT) in log-phase growth (OD = 0.5) was concentrated 10X (OD = 5) by a glass
filter system with a 0.45 µm filter (Millipore). Cells were exposed to a final osmolyte concentration of 0.2
M and 0.4 M NaCl, and then fixed in 4 % formaldehyde at time points 0, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55 minutes. At each time point, cells (5 ml) in the corresponding beaker were poured into a 15
ml falcon tube containing formaldehyde, resulting in cell fixation. Cells were fixed at +20C for 30 minutes,
then transferred to +4C and fixed overnight on a shaker. After fixation, cells are centrifuged at 500 xg for 5
minutes, and then the liquid phase was discarded. The cell pellet was resuspended in 5 ml ice-cold Buffer
B (1.2 M sorbitol, 0.1 M potassium phosphate dibasic, pH 7.5) and centrifuged again. After discarding
the liquid phase, yeast cells were resuspended in 1 ml Buffer B, and transferred to 1.5 ml centrifugation
tubes. Cells were then centrifuged again at 500 xg for 5 minutes and the pellet was resuspended in 0.5
ml Spheroplasting Buffer (Buffer B, 0.2 % βmercaptoethanol, 10 mM Vanadyl-ribonucleoside complex).
The OD of each sample was measured and the total cell number for each sample was equalized. 10 µl of
2.5 mg/ml Zymolyase (US Biological) was added to each sample on a +4C block. Cells were incubated
on a rotor for 20-40 minutes at +30C until the cell wall was digested. The cells turn from an opaque
to a black color if they are digested. Cells were monitored under the microscope every 10 minutes after
addition of Zymolyase and when 90 % of the cells turned black, cells were transferred to the +4C block to
stop Zymolyase activity. Cells were centrifuged for 5 minutes, then the cell pellet was resuspended with 1
ml ice-cold Buffer B and spun down for 5 minutes at 500 xg. After discarding liquid phase, the pellet was
gently re-suspended with 1 ml of 70 % ethanol and kept at +4C for at least 12 hours or stored until needed
at +4C. Hybridization and RNA-FISH probe preparation conditions were applied as published [5]. Table
S1 contains the RNA-FISH probes for STL1 and CTT1. Each time course was measured in duplicate or
triplicate.
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1.7 Image analysis for single-molecule RNA-FISH

To segment cells and to define the cells nuclear and cytoplasmic compartment the following steps were
taken. For each DAPI image stack, a maximum intensity projection was generated. A DAPI intensity
threshold was picked by eye to identify the maximum number of nuclei in the image. Based on this
threshold, the image was then converted into a binary image. Connected regions (nuclei) that were too
big or too small were removed. Connected regions in the image were then labeled by individual numbers
resulting in individual numbered nuclei. Next, for each connected region three individual DAPI thresholds
were computed as 40 (low threshold ) and 50 (middle threshold) % of the difference between the maximum
DAPI signal minus the background DAPI signal. Through this iterative and cell specific thresholding,
cell-to-cell differences in nuclei DNA concentration and DAPI staining were taken into account. For
the transcription site analysis, the low threshold was used. For the determination of the nuclear and
cytoplasmic joint probability mRNA distribution, the middle threshold was used. For each cell, the entire
DAPI image stack was converted into a binary image stack using the cell specific DAPI thresholds resulting
in 3D thresholded nucleus and cytoplasm. After the nucleus had been segmented, the last 5 images of the
bright field image stack were maximum projected to generate the cell outlines. A background image was
generated by running a disk smoothing filter over this image. The background image was subtracted from
the maximum projected image to enhance contrast. This image was then combined with the thresholded
DAPI image using morphological reconstruction and cells were segmented with a watershed algorithm.
Cells that were too small, too big, or too close to the image borders were removed.

To identify RNA spots, fluorescent thresholds for RNA-FISH images were determined for each dye
based on a single image plane, for each position imaged and for each sample. For a given dye, the mean
threshold value was calculated based on the thresholds identified from each image in the data sets. This
threshold was very reproducible from image to image and from person to person. After the threshold
had been determined for each dye, each image in the stack was Gaussian filtered to remove noise, and
then filtered with a laplacian of a Gaussian filter to detect punctuate in the image. These filtered images
were then converted into binary images using the previously determined threshold. For each pixilated
signal, the regional maxima was determined, which identifies the xyz-position of the RNA spot within
each 3D image stack. This processes was repeated for each of the TMR and CY5 image stacks. The
number of RNA spots for each cell in the cytoplasm or the nucleus was determined by applying the mask
of segmented nucleus and cytoplasm on the filtered RNA-FISH image stacks in 3D. The numbers of RNA
molecules in the nucleus and cytoplasm were counted for each individual cell.

In order to determine the number of transcripts of each transcription site, we determined the total
intensity of each RNA spot in the cell. We also fitted each RNA spot with a 2D Gaussian function to
determine the RNA spot intensity and found very good agreement between the fitted and the total RNA
spot intensities. The total RNA-FISH data set consists of a total of 65454 single cells (25511 at 0.2M
NaCl and 39943 at 0.4M NaCl).

1.8 RNA-FISH data analysis

For each time point, a distribution of mRNA molecules in single cells was determined as the marginal dis-
tribution of total STL1 and CTT1 mRNA or as the joint probability distribution of nuclear and cytoplasmic
RNA. The distributions were also summarized in a binary data set of ON and OFF cells. Cells with three
or more mRNA molecules were considered ON-cells for quantification of the ON-fraction. The population
average was computed as the mean marginal cytoplasmic or nuclear RNA for each mRNA species.

To quantify transcription site intensities, we recorded the intensity of all spots in the nuclei for all cells.
The brightest nuclear spots of each cell were labeled as potential transcription sites, and were temporarily
removed from the data set. We then computed the median intensity for the remaining nuclear spots, and
we used this median value to define the equivalent mature nuclear mRNA fluorescence intensity. Next,
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we re-examined the brightest RNA spot in each nuclei (i.e., the potential transcription sites), and we
computed the fluorescence intensity in units of mature mRNA intensities. Potential transcription sites
that had intensities greater than the equivalent of two mature mRNA molecules were labeled as active
transcription sites. This approach was applied to all cells from a single experiment. From this analysis,
we computed the fraction of cells with an active transcription site as a function of time, the single-cell
distributions of full length RNA transcripts per transcription site as a function of time, and the average
number of full length RNA transcripts per transcription site as a function of time.

2 Methods–Computational

All computational analyses have been performed using Mathworks MATLAB. All analysis codes are
downloadable at XXX and required data sets are available at YYY1. Once the files have been downloaded,
all results and Figures (2-4 and S1-S11) can be generated by (1) opening MATLAB and navigating to
the main directory, and running the function MUNSKY 2017 MAIN.M. This function will open a simple
interface that allows the user to generate all figure and to manipulate system parameters.

2.1 Parameterizing the Hog1p signal

To model the temporally-varying Hog1p localization signal, we adopt the empirical model from [5]. In
this model, the level for Hog1p(t) enrichment is assumed to have the form:

Hog1p?(t) ≡
(

Hog1p(t)

1 +Hog1p(t)/M

)η
= A

 (1− e−r1t) e−r2t

1 +
(1−e−r1t)e−r2t

M

η

, (1)

where A and M define the saturation height and midpoint and are the same for all salt levels. See the
supplemental information of [5] for the derivation of this function.

The parameters {r1, α, η, A,M} have been fit to match the newly measured Hog1p nuclear enrichment
levels as functions of time, and osmolyte concentrations. The parameters are given in Table S2, and the
corresponding fits to the new experimental data are shown in Fig. S1. This time-varying signal has been
used as an input to the gene regulation models below.

2.2 Gene regulation model

To capture the spatial stochastic expression of STL1 or CTT1 mRNA, we extend the four-state Hog1p-
activated gene expression model identified in [5] to account for spatial localization of mRNA in the nucleus
or cytoplasm (see Fig. 1A, 1B). The model consists of a single gene that can occupy one of four different
transcriptional states (S1, S2, S3, S4) and two chemical species: nuclear mRNA (mnuc), and cytoplasmic
mRNA (mcyt). The gene can transition between the four possible states (Sj → Sk) with the rates, {kjk}.
The rate of the state transition S2 → S1 depends on the level of Hog1p according to the simple saturated
linear form,

k21 ≡ max
{
0, k

(0)
21 − k

(1)
21 Hog1p (t− t0)

}
, (2)

where t is the time following the addition of NaCl, and t0 is a time delay required to capture the short
period between transcription initiation and dispersion of mature mRNA2. All other state transition rates
are constant in time. Each state Sj allows transcription of mRNA in the nucleus with rate, kij . For
the spatial model, nuclear mRNA are transported to the cytoplasm with rate, ηr. mRNA are assumed to

1A GITHUB download page will be created upon acceptance of this manuscript.
2The time offset parameter t0 is only necessary for the non-spatial model and is identified as nearly zero for the spatial model.
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degrade at the rate γ. For the spatial model, a second degradation rate γnuc is assumed for the nuclear
region.

In total, there are 13 non-spatial or 15 spatial parameters in the model:

Λ ≡
[
k12, k

(0)
21 , k

(1)
21 , k23, k32, k34, k43, ki1 , ki2 , ki3 , ki4 , γ, t0, ηr, γnuc

]
. (3)

For parameter uncertainty quantification, we assume an independent, log-uniform prior on all parameters,
and all parameter searches are conducted in logarithmic space.

2.3 Computation of statistical moments of gene regulation fluctuations

In this section, we provide the sets of ordinary differential equations (ODE’s) that describe the moments
of the proposed model.

2.3.1 First and second moments

The analysis of the first two moments (i.e., the means, variances and covariances) are a special case of the
general form for the higher order moments described below in Section 2.3.2. Let x(t) denote the state of
the system at any given time:

x(t) ≡ [S1(t), S2(t), S3(t), S4(t),mnuc(t),mcyt(t)]
T . (4)

For this study, x is a vector of five (non-spatial) or six (spatial) discrete, non-negative integers. Chemical
reactions are random events that take the system from one state to another: xi → xj . Each µth reaction can
be described by its stoichiometry vector, sµ, which describes the state change that occurs for that reaction
(i.e., sµ = xj − xi if the µth reaction goes from xi to xj) and its propensity function wµ(x, t)dt, which
describes the probability that such a reaction would occur in the infinitesimally small time step, dt.

For the non-spatial model, there are six unique state transition stoichiometries, one transcription re-
action, and one degradation reaction, for a total of eight unique stoichiometry vectors. These can be
combined into the stoichiometry matrix:

Snonspatial ≡


−1 1 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0
0 0 1 −1 −1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

 , (5)

in which each row corresponds to one of the state variables, and each column corresponds to a reaction.
The corresponding propensity functions can also be written in matrix-vector form for the nonspatial mod-
els as:

wnonspatial(x, t)dt =



k12 0 0 0 0

0 k
(0)
21 + k

(1)
21 Hog1p(t) 0 0 0

0 k23 0 0 0
0 0 k32 0 0
0 0 k34 0 0
0 0 0 k43 0
ki1 ki2 ki3 ki4 0
0 0 0 0 γ




S1(t)
S2(t)
S3(t)
S4(t)
m(t)

 dt (6)

= W1(t)x(t)dt, (7)
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Similarly, the spatial model has an additional two reactions corresponding to transport from the nucleus
to the cytoplasm and an extra degradation term for the nuclear mRNA. The stoichiometry matrix for the
spatial model can be written:

Sspatial ≡


−1 1 0 0 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0
0 0 0 0 0 0 0 0 1 −1

 , (8)

and the corresponding propensity functions can also be written as:

wspatial(x, t)dt =



k12 0 0 0 0 0

0 k
(0)
21 + k

(1)
21 Hog1p(t) 0 0 0 0

0 k23 0 0 0 0
0 0 k32 0 0 0
0 0 k34 0 0 0
0 0 0 k43 0 0
ki1 ki2 ki3 ki4 0 0
0 0 0 0 γnuc 0
0 0 0 0 ηr 0
0 0 0 0 0 γ




S1(t)
S2(t)
S3(t)
S4(t)
mnuc(t)
mcyt(t)

 dt (9)

= W1(t)x(t)dt, (10)

With these definitions, the time-varying means µ(t) = E{x(t)} of all species and the corresponding
covariance matrix Σ(t) = E{[x(t) − µ(t)][x(t) − µ(t)]T} can be computed by integrating the linear
ordinary differential equations:

d

dt
µ(t) = SW1(t)µ(t) (11)

d

dt
Σ(t) = SW1(t)Σ(t) + Σ(t)W1(t)

TST + Sdiag(W1µ(t))S
T . (12)

This integration has been performed using Mathworks MATLAB.

2.3.2 Higher moments of gene regulation fluctuations

In order to compute the likelihood to observe the first two moments of gene regulation fluctuations, it is
necessary to compute the third and fourth moments of the fluctuations as well. These higher moments can
also be described by a set of linear ODEs as follows. Let E{xβ} denote a higher order uncentered moment
of the random vector x:

E{xβ} ≡ E{xβ11 · x
β2
2 · · · x

βN
N }. (13)

With this definition the dynamics of E{xβ} can be shown to evolve according to the differential equation
[6, 7]:

d

dt
E{xβ} = d

dt
E{xβ11 · x

β2
2 · · · x

βN
N } = E

{
M∑
µ

wµ(x, t)

(
N∏
i

(xi + Si,µ)
βi −

N∏
i

xβii

)}
. (14)

In the special case where all propensity functions are first order, then Eqn. 14 represents a closed system
of equations, which can be integrated to solve for the first four uncentered moments.
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2.4 FSP computation of probability densities of gene regulation fluctuations

To compute the full time varying probability distributions, we use a slightly different notation. Let y(t) =
[i, j, k] denote the state of the system where i is the index of the current gene state, Si, j is the number of
nuclear mRNA, and k is the number of cytoplasmic mRNA. Let P (y(t)|Λ,P0) denote the probability of
the state y at time t conditioned upon the model Λ and the initial probability distribution at t = 0, given
by the vector P0. For the 4-state model examined in this study, the index i can take four different values,
i ∈ {1, 2, 3, 4}, and mnuc and mcyt could be any non-negative integer value, {0, 1, 2, . . .}. The chemical
master equation [8] can be written:

d

dt
P (y, t) = −

∑
µ

wµ(y, t)P (y, t) +
∑
µ

wµ(y − sµ, t)P (y − sµ, t), (15)

where the sum is over all possible reactions.
We enumerate all possible states in the set {y1,y2, . . .}, and we define the corresponding probability

density mass vector as: P(t) = [P1(t), P2(t) . . .]
T . Using the Finite State Projection analysis [9, 10], we

truncate the full probability mass vector to a finite set where the number of mRNA in the nucleus and
cytoplasm are each bounded by finite numbers, Nnuc and Ncyt. We utilize use a nested enumeration, given
by yI(i,j,k) = [i, j, k], where I(i, j, k) = Nstates(Nnuc + 1)k +Nstatesj + i.

With this enumeration, the Chemical Master Equation can be written in vector form as: d
dt

P(t) =
Q(t)P(t). We solve this equation in MATLAB using the stiff ODE solver, ODE15S. For comparison of
the model to the experimental mRNA distributions, it is necessary to convert the P(t) into a marginal
distribution of nuclear and cytoplasmic mRNA numbers. This is relatively easy to do, since

ρnuc,cyt(t) ≡ P (mRNAnuc = j,mRNAcyt = k|t) =
Nstates∑
i=1

PI(i,j,k)(t). (16)

The FSP approach and moments analyses were verified to match all moments up to fourth order, each
within 0.002%.

Now with this definition, we can compare model predictions and experimental data as described below.

2.5 Computation of Likelihood Functions – Moments Analyses

For a population sample of NS cells in which the mRNA has been measured as {x1, x2, . . . xNS}, the
measured sample mean (µS) and unbiased sample variance estimate (σ2

S) are:

µS(t) ≡
1

NS

NS∑
i=1

xi(t) (17)

σ2
S(t) ≡

1

NS − 1

NS∑
i=1

(xi(t)− µS(t))2. (18)

2.5.1 Application of Central Limit Theory

The moment analyses discussed in this article (i.e., Eqns. 12 and 14) provide exact expressions for the
dynamics of the model’s means, variances, covariances and higher moments. Because the reaction rates
are all linear, these moment equations are closed, and the moments can be computed with no assumption
on the distribution shape. To compare these computed moments to measured experimental data requires
computation of the likelihood that the measured moments (e.g., means or covariance matrix) would have
been observed by chance given that the model were correct. The standard practice for such a computation
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is either to assume Gaussian deviations or to apply the Central Limit Theorem (CLT) as follows. Let x̃i be
a set of independent and identically distributed random variables with finite mean, µ, and finite variance,
σ2, and let ỹ be the average of NS such random numbers.

According to the CLT, as NS becomes very large, the distribution of ỹNS will approach a normal
distribution with a mean of µ and a variance of σ2/NS . The CLT allows us to estimate the likelihood of
the observed moments as discussed in the following sections. We note that if x̃i is normally distributed,
then ỹNS would be normally distributed for any number of cells. However, in the case where x̃i is very far
from normally distributed (e.g., when its distribution has a very long asymmetric tail) then a larger number
of cells will be required before the CLT becomes valid. Such is the situation observed for the later time
points in Fig. 3, which result in poor estimation of the moments-based likelihood function.

2.5.2 Likelihood to observe measured means

2.5.2.1. Univariate Case – Non-Spatial Model
Assuming a finite variance, σ2(t), and a large numbers of cells, NS , the CLT states that the sample mean
of a population of cells will have a distribution that can be approximated by a normal distribution with
mean µm and variance σ2(t)/NS:

P (µS|M) =

√
NS

2πσ2
exp

(
− (µS − µM)2

2σ2/NS

)
, (19)

whereM denotes the model under consideration. Taking the logarithm of this likelihood function yields:

logP (µS|M) =
1

2

(
logNS − log(2π)− log(σ2)

)
− (µS − µM)2

2σ2/NS

. (20)

We can now compute the log likelihood of the averaged data given our model (up to a constant, C1),
provided that: (1) we can compute the mean, and (2) the variance is known:

logP (µS|M) = C1 −
1

2
log(σ2)− (µS − µM)2

2σ2/NS

. (21)

In the case where we are only using the average measurements to constrain the model, we replace the
variance with the sample variance estimate:

logP[µ only](µS|M) ≈ C1 −
1

2
log(σ2

S)−
(µS − µM)2

2σ2
S/NS

(22)

= Ĉ1 −
(µS − µM)2

2σ2
S/NS

. (23)

In this expression, all terms that do not depend upon the model mean, µM, have been lumped into the
constant Ĉ1.

2.5.2.2. Multivariate Case – Spatial Model
The spatial model has n = 2 observables: nuclear and cytoplasmic mRNA levels, but the analysis is
quite similar. When the number of cells in each sample, NS , is large, the distribution of the sample mean
vector, µS , given the model can be approximated by a multivariate normal distribution with mean, µM,
and covariance (1/NS)Σ. The likelihood of observing the measured mean at a given time point can be
written

P (µS|M) =

√
Nn
S

(2π)n|Σ|
exp

(
−NS

2
(µS − µM)T Σ−1 (µS − µM)

)
, (24)
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where the notation |Σ| denotes the determinant of the covariance matrix, Σ. Taking the logarithm of this
likelihood and collecting terms that do not depend on µM orΣ into a constant yields:

logP (µS|M) = C2 −
1

2
log |Σ| − NS

2
(µS − µM)T Σ−1 (µS − µM) . (25)

To attempt to identify the model without computation of the second moments, we must approximate Σ
with the measured sample covariance estimate:

Σ ≈ ΣS =
1

NS − 1

NS∑
i=1

(xi − µS)(xi − µS)T . (26)

For this special case, the likelihood reduces to:

logP[µ only](µS|M) ≈ C2 −
1

2
log |ΣS| −

NS

2
(µS − µM)T Σ−1S (µS − µM) . (27)

= Ĉ2 −
NS

2
(µS − µM)T Σ−1S (µS − µM) . (28)

As in the previous case, all terms that do not depend upon the model mean, µM, have been lumped into
the constant Ĉ2.

2.5.3 Likelihood to observe measured (co)variances

To estimate model parameters using the gene expression variance, it is necessary to compute the likelihood
that we would observe the measured sample variance given the model. For a single observable variable
(e.g., non-spatial model for a single mRNA species), the sample variance, σ2

S , will be a random variable
that depends upon the distribution of the number of mRNA per cell at the corresponding time-point.

In this work, we consider two different CLT-based approaches to approximate the likelihood to ob-
serve the measured sample variances. The first method assumes that the likelihood of the observed sample
variance can be well approximated by a χ-squared distributed random variable, which is independent of
the sample mean. This approximation would be exact if the underlying distribution had a Gaussian dis-
tribution. This approximation of the likelihood depends only upon the model’s computation of the first
two moments. The second method approximates the sample mean and sample (co)variances as multivari-
ate Gaussian random variables [7], whose covariance depends upon the first four moments of the analysis
(thus the need for the extended moments analysis described in Section 2.3.2). These analyses are described
in greater detail as follows:

2.5.3.1. Univariate Case – χ2 distribution approximation.
Using the assumption that the sample population is sufficiently large that

∑NS
i=1 xi has a normal distri-

bution, one could approximate the probability of observing the measured sample variance using the χ-
squared distribution with κ = NS − 1 degrees of freedom:

P (ξ) =
1

2κ/2Γ
(
κ
2

)ξ κ2−1e− ξ2 , (29)

where ξ = (NS − 1)σ2
S/σ

2
M, and κ = NS − 1. Or by change of variables, this can be written:

P
(
σ2
S|M

)
=

(NS − 1)

σ2
M

1

2(NS−1)/2Γ
(

(NS−1)
2

) ((NS − 1)σ2
S

σ2
M

) (NS−1)

2
−1

e
−
(

(NS−1)σ2S
2σ2M

)
(30)

=
1

2(NS−1)/2σ2
SΓ
(

(NS−1)
2

) ((NS − 1)σ2
S

σ2
M

) (NS−1)

2

e
−
(

(NS−1)σ2S
2σ2M

)
(31)
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The logarithm of the likelihood of the observed sample variance (σ2
S) given the model variance (σ2

M)
is:

logP[µ and σ2]

(
σ2
S|M

)
= C3 −

NS − 1

2
log(σ2

M)− (NS − 1)σ2
S

2σ2
M

, (32)

where C3 is the collection of all terms that do not depend upon µ or σ2
M.

2.5.3.2. Multivariate Case – Wishart distribution approximation.
To estimate the likelihood function for the observed variance and covariances in the multivariate case, we
use a generalization of the χ-squared distribution (Eqn. 31), known as the Wishart distribution [11]. To
define this likelihood function, let ΣM represent the covariance matrix generated by the model. Let XS

represent an NS by n centered matrix of the measured data for NS different independent measurements of
n distinct chemical species:

XS =


x1,1 − µ1 x1,2 − µ2 . . . x1,n − µn
x2,1 − µ1 x2,2 − µ2 . . .

...
...

... . . . ...
xNS ,1 − µ1 x2,2 − µ2 . . . xNS ,n − µn

 (33)

Define SS as the n × n scatter matrix of the data, SS = XT
SXS . With these definitions, the Wishart

distribution over the range of possible S can be written:

P (SS|M) =
1

2κn/2Γ n

(
κ
2

) |SS|κ−n−1
2

|ΣM|
κ
2

exp

(
−
trace

(
Σ−1MSS

)
2

)
, (34)

where κ = NS − 1 is the degrees of freedom.
Taking the logarithm of Eqn. 34 and collecting all terms that are independent ofΣM yields:

logP[µ andΣ] (SS|M) = C4 −
κ

2
log |ΣM| −

trace
(
Σ−1MSS

)
2

. (35)

Using the relationship ΣS = (NS − 1)−1SS , this reduces to a form analagous to that for the univariate
case in Equation 32:

logP[µ andΣ] (ΣS|M) = C4 −
NS − 1

2
log |ΣM| −

(NS − 1)trace
(
Σ−1MΣS

)
2

. (36)

2.5.3.3. Likelihood to observe measured means and (co)variances using the χ-squared/
Wishart approximation.
Assuming a (multivariate) normal distribution for the number of nuclear and cytoplasmic mRNA, the
sample means and the sample variances (covariance matrix) would be statistically independent. Therefore,
the log-likelihood to match both statistics for the univariate case is the sum of Eqns. 21 and 32 over all
time points k = {1, 2, . . . , K}:

logP[µ and σ2]

(
µS, σ

2
S|M

)
= C −

K∑
k=1

(
Nk − 2

2
log σ2

M(tk) +
Nk

2

(µS(tk)− µM(tk))
2

σ2
M(tk)

. . .

+
(Nk − 1)σ2

S(tk)/σ
2
M(tk)

2

)
. (37)
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Similarly, in the multivariate case, the log-likelihood to match both the measured sample mean vector, µS ,
and the measured sample covariance matrix,ΣS , can be found from the sum of Eqns. 28 and 36:

logP[µ andΣ] (µS ,ΣS |M) = C −
K∑
k=1

(
Nk − 2

2
log |ΣM|+

Nk
2

(µS − µM)
T
Σ−1M (µS − µM) . . .

+
(Nk − 1)trace

(
ΣSΣ

−1
M
)

2

)
. (38)

Naturally, Eqn. 38 reduces to Eqn. 37 in the case of a single chemical species.

2.5.3.4. Likelihood to observe measured means and (co)variances using a multivariate
Gaussian approximation.
For strongly skewed distributions (e.g., those measured in this study), the sample mean and sample vari-
ance both depend strongly upon the experimental sampling of the distribution tails. As a result, these
statistics are not statistically independent. To account for this interdependence, the CLT may be used to
approximate the joint likelihood of the sample means and sample (co)variances as a multivariate normally-
distributed random vector. For two measured species (e.g., nuclear and cytoplasmic mRNA), this vector
has five elements (z ≡ [µ1, µ2, σ11, σ12, σ22]), and its probability distribution can be written in the form [7]:

P (zS|M) = (2π)−5/2 |QM|−1/2 exp
(
−1

2
(zS − zM)TQ−1M(zS − zM)

)
(39)

where zS is the vector of measured means, variances and covariances; zM is the corresponding model-
predicted average of those statistics; and QM is the model-predicted covariance matrix for those statistics.
The matrix QM can be defined in terms of the second through fourth order moments as follows [7]:

QM ≡
1

NS


σ11 σ12 σ111 σ112 σ122
σ12 σ22 σ112 σ122 σ222
σ111 σ112 σ1111 − NS−3

NS−1σ
2
11 σ1112 − NS−3

NS−1σ11σ12 σ1122 − NS−3
NS−1σ11σ22

σ112 σ122 σ1112 − NS−3
NS−1σ11σ12 σ1122 − NS−2

NS−1σ
2
12 +

1
NS−1σ11σ22 σ1222 − NS−3

NS−1σ12σ22
σ122 σ222 σ1122 − NS−3

NS−1σ11σ22 σ1222 − NS−3
NS−1σ12σ22 σ2222 − NS−3

NS−1σ
2
22


M

, (40)

where σβ1...βN is used to denote the (
∑
βi)

th centered moment:

σβ1...βN ≡ E

{
N∏
i=1

(xi − E{xi})βi
}
. (41)

Under this approximation, the logarithm of the the likelihood can be written:

log(P (zS|M)) = C − 1

2
log |QM| −

1

2
(zS − zM)TQ−1M(zS − zM), (42)

and the log-likelihood for all time points, k = 1, . . . , K can be written:

logPMV−Gaussian ({z(tk)}|M) = C − 1

2

K∑
k=1

(
log |QM(tk)|+ (zS(tk)− zM(tk))

TQ−1M (tk)(zS(tk)− zM(tk))
)
. (43)

2.5.4 Comparison of the χ2/Wishart distributions and multivariate Gaussian approaches for the likelihoods
of the first two moments.

For the analysis of CTT1 mRNA, the extension of the moments analyses to include the third and fourth
moments led to identification of parameters that were 1093,900 times less likely to account for the full
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measured mRNA distributions compared to the analysis using the FSP analysis (Table S5 and Section
2.8). Moreover, this result was 1063,300 times less likely to account for the distribution data than was the
model identified by the much simpler χ2 approach (Table S5). Similar deleterious effects were observed
for the spatial STL1 and CTT1 analyses, although inclusion of the third and fourth moments led to some
improvement in the case of non-spatial STL1 analysis, for which the skewness had the greatest effect as
shown in Figs. 3 and S7.

Recall from the main text that the model is unable to fit the means and variances exactly due to the
difficulty to estimate those statistics due to high skewness. In order to compensate for this mismatch,
the extended first-four moments approach identifies very large 3rd and 4th moments. However, these
higher moments are not directly constrained by the data, and they are severely over-estimated (as opposed
to under estimated as they were in the χ2 and Wishart distribution based approaches). As a result, the
extended model provided excelent fits to the means, but fits to all other statistics are much worse as shown
in Fig. S6. In principle, this could be corrected by using data from the 3rd and 4th moments to add
additional constraints to the model, but such an approach would be problematic for two reasons: (1) the
measurement of the 3rd and 4th moments are prone to even greater sampling error than are the first two
moments; and (2) in order to compute the likelihood to observe the third and fourth moments requires
computation of even higher moments, which increases the computational complexity and makes such
analysis impractical for the current model.

Because the extended moments analysis requires greater computational effort to compute while pro-
viding worse predictions to the full distributions in most cases, we have restricted the majority of our
discussion to the simpler moments-based analyses.

2.6 Likelihood to observe measured distributions

Because the FSP approach provides a direct computation of the model’s probability distribution, the FSP-
based computation of the likelihood of the measured data is much more straightforward, and it does not
require any assumptions of the distributions’ shapes. To define this likelihood function, suppose that nc
cells, c = [1, 2, . . . , nc], were measured for a given experiment and time point, and each cell was found to
have exactly mnuc(c) copies nuclear mRNA and mcyt(c) copies cytoplasmic mRNA. Suppose that a model
with parameter set Λ, predicts that for each time and experiment, the probability that a given cell has
exactly mnuc(c) nuclear mRNAs and mcyt(c) in the corresponding conditions is p(mnuc(c),mcyt(c)|Λ).
The total likelihood of all observations, L(D|Λ), is the product over every cell, or

L(D|Λ) =
nc∏
c=1

p(mnuc(c),mcyt(c)|Λ). (44)

Now that we know how likely it is that the data comes from a model and a given set of parameters, Λ,
our goal is to find the parameter set, ΛFit, which maximizes this likelihood (or equivalently the logarithm
of this likelihood):

ΛFit = argmaxΛ log(L(D|Λ)) (45)

= argmaxΛ

nc∑
c=1

log p(mnuc(c),mcyt(c)|Λ). (46)

Under the assumption that cells are independent, and because each cell is measured only once using the
smFISH technique, the log-likelihood that the model matches all experiments at all time points is the sum
of the log-likelihoods of the individual experiments and time points.
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2.7 Parameter searches to maximize likelihood

In order to conduct parameter searches, we use iterative combinations of simplex based searches (e.g.,
MATLAB’s “fminsearch” function) and genetic algorithm based searches. All parameters were defined to
have positive values, and searches were conducted in logarithmic space. The searches are run multiple
times from different starting parameter guesses leading to many tens of millions of function evaluations
(> 4 × 107 evaluations of the means and moments analyses, > 5 × 106 evaluations of the non-spatial
FSP distributions, and > 1×106 evaluations for the more computationally expensive analyses of extended
moments and the spatial FSP distributions). Parallel fits were conducted on clusters of more than 128
processors at a time allowing for the consideration of several millions of model/ parameter/ experiment
combinations per day.

2.8 Comparison of results for different likelihood functions (Table S5)

Table S5 shows the relative log-likelihood values for different likelihoods that compare the means, means
and variances, extended moments, or full distributions. Each row corresponds to a different combination
of gene and identification strategy. Each column corresponds to a different likelihood function (i.e., means,
means and (co)variances, extended moments, or full distributions). Values presented are log10 of the actual
likelihoods relative to the best value found for that specific objective function.

The ‘Distributions’ column of Table S5 quantifies the relative log-likelihood that the identified param-
eter set matches all data of that type (i.e., spatial or nonspatial). More negative numbers denote worse
matches to the full data. For example, in the non-spatial analysis of CTT1, the χ2 and extended moments-
based approaches were respectively 1030,600 and 1093,900 times less likely to account for the full data than
was the model identified by the FSP approach. In other words, the full data was 1063,300 times less likely
to have come from the model identified using the extended moments than it was to have come from the
simpler χ2-based analysis.

The Full FSP distributions row of Table S5 shows the relative likelihood of the Full FSP Distribu-
tion parameters when compared to the best fit for each of the different likelihood functions. This quantity
provides an estimate of the probability that each likelihood function would have discovered the FSP param-
eters by chance. One interesting observation from this perspective is that although the extended moments
analyses produce worse fits to the full data, this effect is somewhat mitigated by the fact that the extended
analysis yields greater uncertainties (see also Figs. 4B, S8-S10). In other words, the extended analysis
leads to worse fits to the full data, but this is coupled with lower confidence in these poor results.

2.9 Metropolis Hastings algorithm to quantify parameter uncertainties

To quantify the parameter uncertainties, we used the Metropolis Hastings algorithm [12], which is a stan-
dard Markov Chain Monte Carlo (MCMC) algorithm for parameter uncertainty estimation. All MCMC pa-
rameter explorations were conducted in logarithmic parameter space, and all analyses (i.e., means, means
and variances, or distributions, both spatial and non-spatial) used the same proposal distribution for the
MCMC chains. This proposal distribution was a symmetric normal distribution (in logarithmic space)
with a variance of 0.005 (also in logarithmic space). For each parameter proposal, a random selection of
parameters were selected to change, where each parameter had a 50% chance to be perturbed. The first
half of each chain was discarded as an MCMC burnin period, and all chains were thinned by 90%.

2.9.1 Convergence

MCMC chains for the means, simpler moments analyses, and non-spatial FSP analyses were run for
MH chains with combined lengths of >25,000,000 parameter evaluations. MCMC analyses for the more
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computationally expensive extended moment analyses were run for combined lengths of >1,500,000 pa-
rameter evaluations. MCMC analyses for the most computationally expensive spatial distribution anal-
yses were run for a combined length of >3,700,000 parameter evaluations. To evaluate convergence of
the MCMC analyses, we have split the multiple MCMC chains into two disjoint sets. To illustrate the
achieved convergence, Figures S8 shows the distributions of likelihood values for these two independent
MCMC compilations for each analysis and for STL1 and CTT1. Thus, all 32 MHA analyses (2 replicas ×
2 genes× 4 statistical analyses× 2 spatial analyses) were confirmed to have sampled similar distributions
of log-likelihood space.

2.9.2 MCMC Results

Figures S9 and S10 summarize the biases and pairwise parameter uncertainties for the STL1 and CTT1
analyses and for each of the eight different analyses (means, means and variances, extended moments, and
distributions)×(spatial and non-spatial).

The vectors in Figs. S9 and S10 represent the fold over- or under-estimation bias for the corresponding
parameter. The matrices in Figs. S9 and S10 represent the variances (diagonal entries) and covariances
(off-diagonal entries) of the parameter estimation uncertainty, as estimated using the Metropolis Hastings
algorithm. For example, the figure shows that non-spatial means analysis overestimates the ki3 and γ
parameters (‘+’ symbols in the corresponding biases), is highly uncertain in the estimate of ki3 (yellow
box in the covariance matrix diagonal corresponding to that parameter), and the uncertainties in parameters
ki3 and γ are positively correlated (‘+’ symbol in corresponding off-diagonal entries of the covariance
matrix). The open red ellipse plotted in Figs. 4A visually depicts the same information by plotting the 90%
confidence parameter interval, assuming a lognormal posterior distribution with the MCMC-estimated
pairwise covariance matrix.

The total bias shown in Figs. 4C and S11C was defined by the euclidean distance in logarithmic space
according to the expression:

dbias ≡ 10

√∑[
log10

(
λi
λ̃i

)]2
, (47)

where {λi} is the average of the ith estimated parameter, and {λ̃i} is the corresponding ‘true’ parameters
(i.e., the maximum likelihood estimate using all data and the spatial FSP analysis). The summation is
taken over all parameters except k(0)21 and k(1)21 , which provide a non-unique determination of the Hog1p
saturation effect, ki1 , which is nearly zero and therefore highly uncertain in logarithmic space, and t0
whose interpretation is different for the spatial and non-spatial models. Conceptually, the value dbias
provides a quantification of the overall ± fold changes for the collective parameters compared to their
‘true’ values.

The total uncertainty shown in Figs. 4B and S11B was defined by the trace of the covariance matrix.
As was the case for the total bias quantification, the trace is taken over all parameters except k(0)21 , k(1)21 , ki1 ,
and t0.

2.10 Fisher Information analysis

The Fisher Information Matrix (FIM), I(Λ), and its inverse, the Cramér-Rao bound, is an analysis tech-
nique that describes the lower bound on the variance of an unbiased estimator. Recent works [7, 13, 14]
have applied this tool in a biological context, looking at model sensitivity, robustness, identifiability, and
experiment design. Here, we are concerned with the ability to identify models, which (1) only consider the
means or the means and variances, and (2) assume a Gaussian likelihood function for the sample means
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and variances. The FIM is defined for the parameter vector Λ ≡ [λ1, λ2, ..., λp] and likelihood L(D|Λ) as

I(Λ) = E
{(
∇Λ logL(D|Λ)

)T(
∇Λ logL(D|Λ)

)}
. (48)

In this work, we have compared parameter uncertainties using posterior distributions of the parameters.
The Cramér-Rao inequality states that the variances of these distributions must be less than or equal to
the inverse of the FIM, I(Λ)−1. A model is unidentifiable if I(Λ)−1 does not exist, i.e. if the FIM is
singular [15].

For the models that consider means µ, means and variances, µ andΣ, we have assumed Gaussian
forms of the likelihood function, Eqns. 28 and 38. Under this assumption, the FIM is well-known. For a
model which only describes the mean of the distribution, it is given by

I(Λ)µi,j = E
(
∂µ

∂λi

)T
Σ−1S

(
∂µ

∂λj

)
, (49)

and when both means and variances are to be estimated with the model, the FIM is

I(Λ)µ,Σi,j = E

{(
∂µ

∂λi

)T
Σ−1M

(
∂µ

∂λ j

)
+

1

2
trace

(
Σ−1M

∂ΣM

∂λi
ΣM

−1∂ΣM

∂λj

)}
. (50)

Given a set of independent samples at each experimentally measured time point, the FIM can be con-
structed at each time point by integrating Eqns. 11 and 12, and the total information is the sum over all the
time points. For models of µ and µ andΣ, we computed the FIM and found that them to be invertible,
indicating that the parameters are in principle able to be identified.

2.11 Predictions of Transcription Site activity

We developed two analyses to predict transcription site (TS) activity: a simplified theoretical analysis of
average active TS activity and an extended FSP analysis of distributions of polymerases on a given TS.
These are described below. For both the data and the model, TS sites were considered to be ON if their
predicted or measured intensities were greater than twice the intensity of a single mature mRNA.

2.11.1 Simplified theoretical model of average TS polymerase loading

Using the mRNA distribution analyses described above, we identified transcription initiation rates,
{ki1 , ki2 , ki3 , ki4} for the CTT1 and STL1 mRNA. For an elongation rate of kelong and an mRNA length of
L, each polymerase takes a time of τelong = L/kelong to complete transcription. Thus, polymerases that
initiate transcription in the time window (t−τelong, t) will be present at the TS at time t. For each gene, we
selected the fastest identified transcription rate ki−max = max{ki1 , ki2 , ki3 , ki4}. Assuming that an active
TS is in the state with the maximum transcription rate, the average number of polymerases per active TS,
〈npol〉, can be computed as:

〈npol〉 = ki−maxτelong =
ki−maxL

kelong
. (51)

In practice, L was chosen as the length from the first smFISH probe on the 5’ end of the mRNA to the
transcription termination site. In light of the fact that the smFISH probes are nearly equally distributed
along the mRNA, we assume that nascent mRNA are on average half the length of their mature counter-
parts. Under this assumption we related npol = 2nnascent, which allows us to relate the elongation rate to
the observed spot intensities (in terms of mature mRNA) as:〈

ITS

Imature

〉
= 〈nnascent〉 =

ki−maxL

2kelong
. (52)
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2.11.2 Extended FSP model of nascent transcription

Next, we extended Finite State Projection approach in a form similar to that in [16]. To compute the
distribution for the number of polymerases at the TS, we first compute the distribution of the gene states
at the earlier time, t − τelong. Using this distribution of gene states at t − τelong and ignoring previous
initiation events and excluding degradation of partially described mRNA, we use the FSP analysis derived
above (but with no degradation or transport) to solve for the distribution of elongating polymerases per TS
at the time t. We assume that each partially transcribed mRNA is at a random location in the gene, and it
therefore has an effective intensity uniformly distributed between zero and the equivalent of one mRNA.
To find the distribution of TS spot intensities with Npoly polymerases, we take the convolution of Npoly

independent random variables, each with a uniform distribution between zero and one.
To confirm the FSP analysis, we also simulated the identified models using an adapted form of the

Stochastic Simulation Algorithm (SSA, [17]) but with a modification similar to that proven in [18]. In
each run of the SSA, we recorded the times of every simulated transcription initiation event. With this
simulated information and an assumption of deterministic mRNA elongation with a given elongation rate,
we compute the distance traveled by each polymerase as a function of time. If that length is longer than
the length of the gene, then that polymerase is assumed to have completed transcription, in which case
the mRNA is assumed to have dissociated from the TS. Otherwise, the length of the elongating mRNA
and the known smFISH probe placements (Table S1) are used to determine how many probes are located
along the partially transcribed nascent mRNA for that particular polymerase. The total TS intensity is then
computed as the sum of the intensities for all polymerases on the gene in that cell and at that point in time.

The standard SSA approach [17] assumes constant propensity functions. In order to allow for time
varying rates in the propensity functions (i.e., Eqn. 2), we added a fast reaction to the system. The stoi-
chiometry of this reaction was zero, such that each firing of this null reaction does not affect the state of
the system [18], but it does allow for frequent updates to the propensity functions. The rate of this reaction
was set to 1s−1, which is more than two orders of magnitude faster than the characteristic rates of the
Hog1p fluctuations in Eqn. 1. Figure S12 shows excellent agreement between the FSP and SSA analysis
of the TS activity for STL1 and CTT1 transcription under 0.2M and 0.4M NaCl osmotic shock conditions.

2.11.3 Identification of mRNA elongation rate

In order to identify the transcription elongation rate, we computed the TS intensity distribution for CTT1
at each point in time for 0.2M and 0.4M NaCl osmotic shock using the previously identified parameters
(Table S4) and one free constant to describe the average elongation rate, kelong. We then computed the
probability that the observed distributions of CTT1 TS intensities could have originated from this model
at all time points and conditions. We then maximized this likelihood with respect to the rate kelong for
the different experimental replicas and NaCl concentrations to determine the uncertainty in this parameter.
Using the simplified theoretical model, which does not account for transitions between active and inactive
periods, we found an upper bound on the CTT1 elongation rates to be 91±9Nt/s. Using the more detailed
spatial FSP approach, we found the CTT1 elongation rates to be 63±14Nt/s. For both cases, the uncertainty
is given as the standard error of the mean using the five experimental replicas (two for 0.2M NaCl and
three for 0.4M NaCl). We then fixed the elongation rate to be 63Nt/s, and we used this rate in conjunction
with the previously identified parameters to predict the TS intensity distributions for CTT1 and STL1 as
functions of time in both osmotic shock conditions (Figs. 4D and S11D-H).
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Figure S1: Normalized Hog1 nuclear enrichment after activation of the HOG-pathway with different NaCl con-
centrations. Solid lines denote the model (Eqns. 1) fit to the data points (symbols) for the two different osmolyte
concentrations.
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Figure S2: Experimental and model-generated distributions for the number of STL1 per cell versus time for 0.2M
NaCl (left) and 0.4M NaCl (right) osmotic shocks. Distributions have been generated using the models identified
using means only (top row), means and variances using the χ2 approach (second row), means and variances using
the extended moments analysis (third row) or full distributions (bottom row). Model results are shown in black.
Experimental data replicates shown in colors. Limits of all x-axes are 0 to 150 copies of mRNA. Limits of all y-axes
are probability mass of 0 to 0.04.
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Figure S3: Experimental and model-generated distributions for the number of CTT1 per cell versus time for 0.2M
NaCl (left) and 0.4M NaCl (right) osmotic shocks. Distributions have been generated using the models identified
using means only (top row), means and variances using the χ2 approach (second row), means and variances using
the extended moments analysis (third row) or full distributions (bottom row). Model results are shown in black.
Experimental data replicates shown in colors. Limits of all x-axes are 0 to 150 copies of mRNA. Limits of all y-axes
are probability mass of 0 to 0.04.
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Figure S4: Experimental (top) and model-generated (bottom) joint distributions for STL1 versus time for 0.2M NaCl
(left) and 0.4M NaCl (right) osmotic shocks. Distributions have been generated using the model identified from the
full joint distributions (row 2), the means and covariances (row 3) or the joint means (row 4). Limits of all x-axes
are 0 to 200 copies of cytoplasmic mRNA. Limits of all y-axes are 0 to 10 copies of nuclear mRNA. All plots use
the same contour levels (see legend to right). See Table S3 for the corresponding parameter sets.
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Figure S5: Experimental (row 1) and model-generated (rows 2-4) joint distributions for CTT1 versus time for 0.2M
NaCl (left) and 0.4M NaCl (right) osmotic shocks. Distributions have been generated using the model identified
from the full joint distributions (row 2), the means and covariances (row 3) or the joint means (row 4). Limits of all
x-axes are 0 to 200 copies of cytoplasmic mRNA. Limits of all y-axes are 0 to 10 copies of nuclear mRNA. All plots
use the same contour levels (see legend to right). See Table S4 for the corresponding parameter sets.
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Figure S6: Best fit to the means and variances using the extended moments analysis for STL1 and CTT1 for 0.2M
NaCl (left, 2 biological replica) and 0.4M NaCl (right, three biological replica) osmotic shock. Error bars denote the
expected errors of one standard error above and below the estimated value for the corresponding statistic. According
to the likelihood function defined in Section 2.5.3.4, the standard error of the sample mean is given by

√
σ11/NS ,

and the standard error of the sample variance is given by
√
(σ1111 − NS−3

NS−1σ
2
11)/NS , where NS is the sample size

corresponding to the total measured number of cells for that time point and condition). Experimental data replicates
are shown by the circles and triangles.
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Figure S7: Means (A,E,I), standard deviations (B, F, J), ON-fractions (C, G, K) and probability distributions (D, H,
L) for STL1 at 0.4M NaCl osmotic shock (A-D), CTT1 at 0.2M NaCl osmotic shock (E-H), and CTT1 at 0.4M NaCl
osmotic shock (I-L). In all panels, theoretical values from the fitted model are in black, representative simulated
samples of 200 cells apiece are in gray, median statistics of the simulated samples are in magenta; and experimental
data are in red and cyan (and blue for 0.4M NaCl). See also Figure 3 in the main text.
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Figure S8: Distributions of log10-likelihoods that have been sampled by the Metropolis Hastings analysis for STL1
(left) and CTT1 (right) using non-spatial (top) or spatial (bottom) analyses. All likelihoods values are relative to the
most likely model under the corresponding analysis. To illustrate convergence, multiple MH chains have been run
for each analysis using means only (red, > 1.2 × 106 MH samples per chain), means and variances using the χ2

or Wishart approach (blue, > 1.0× 106 MH samples per chain), means and variances using the extended moments
approach (magenta, > 3.0×105 MH samples per chain), or distributions (black, > 1.4×105 MH samples per chain
for non-spatial analyses and > 2.0× 104 MH samples per chain for spatial analyses).
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Figure S9: Bias and Uncertainty in the estimation of parameters for the STL1 mRNA transcription.
MCMC results are summarized for the means (top row), means and variances using the χ2 or Wishart approach (sec-
ond row), means and variances using the extended moments analysis (third row), or full FSP distributions (bottom
row) using non-spatial (left) or spatial (right) models. For each of the eight panels, the top row illustrates the pa-
rameter estimation biases, where the colors denote the fold-change magnitude of the estimation error (in logarithmic
scale). Blue boxes represent well estimated parameters and yellow boxes represent poorly estimated parameters. The
signs in each box denote whether the parameter is over estimated (+) or underestimated (-). The matrices at the bot-
tom of each panel illustrate the joint uncertainties in all parameter combinations. These are shown in a logarithmic
scale from low variance (blue) to high variance (yellow). The signs in each box denote whether the corresponding
parameter combination is positively or negatively correlated. The same color scale is used in all panels to illustrate
the relative effects of uncertainty and bias for the different analyses. The entries boxed in red correspond to the
parameter ellipses for ki3 and γ, which are shown in Fig. 4A.
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Figure S10: Bias and Uncertainty in the estimation of parameters for the CTT1 mRNA transcription.
MCMC results are summarized for the means (top row), means and variances using the χ2 or Wishart approach
(second row), means and variances using the extended moments analysis (third row), or full FSP distributions (bot-
tom row) using non-spatial (left) or spatial (right) models. For each panel, the top row illustrates the parameter
estimation biases, where the colors denote the fold-change magnitude of the estimation error (in logarithmic scale).
Blue boxes represent well estimated parameters and yellow boxes represent poorly estimated parameters. The signs
in each box denote whether the parameter is over estimated (+) or underestimated (-). The matrices at the bottom of
each panel illustrate the joint uncertainties in all parameter combinations. These are shown in logarithmic scale from
low variance (blue) to high variance (yellow). The signs in each box denote whether the corresponding parameter
combination is positively or negatively correlated. The same color scale is used in all six panels to illustrate the
relative effects of uncertainty and bias for the six different analyses. The entries boxed in red correspond to the
parameter ellipses for ki3 and γ, which are shown in Fig. S11A.
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Figure S11: Overall bias and uncertainty quantification for CTT1 transcription regulation. (A) Ninety percent con-
fidence ellipses for the degradation rate (γ) and the maximal transcription initiation rate (ki3) using the means only
(µ(t), red), means and variances (µ(t), σ(t), blue), extended moment analyses (4th, magenta), or the full FSP distri-
butions (P(t), black). Arrows show the effect of adding spatial information to the analysis. The dashed black lines
show the baseline parameter combination corresponding to the best fit parameters for the spatial CTT1 model. (B)
Total uncertainty in parameters for the four methods. (C) Total parameter bias for the four methods. For B and C, the
results for non-spatial and spatial analyses are shown in blue and yellow, respectively, and the red regions show the
convergence of two independent MHA samples. (D) Prediction for the average number of nascent mRNA per active
CTT1 transcription site using each of the identified models. (E,F) Prediction for the fraction of cells with active
CTT1 TS versus time at (E) 0.2M NaCl and (F) 0.4M NaCl osmotic shock. (G,H) Model fit (black) and biological
replicas (blue, orange, purple) for the distributions of nascent CTT1 mRNA per TS.
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Figure S12: Comparison of FSP-based predictions (black) and several representative sets of 16,000 SSA simulations
(red) for STL1 TS intensity distributions following (A) 0.2M or (B) 0.4M NaCl osmotic shock and CTT1 TS intensity
distributions following (C) 0.2M or (D) 0.4M NaCl osmotic shock. The FSP and SSA analyses both use the best
parameters found for the spatial FSP model (Table S3 for STL1 and S4 for CTT1), with an elongation rate of 63nt/s.

32

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/154401doi: bioRxiv preprint 

https://doi.org/10.1101/154401
http://creativecommons.org/licenses/by-nc-nd/4.0/


CTT1 Probe Placement
Probe # 3’ base relative to mRNA termination

1 1618
2 1578
3 1542
4 1507
5 1461
6 1428
7 1403
8 1378
9 1349
10 1320
11 1275
12 1245
13 1199
14 1171
15 1131
16 1091
17 1066
18 1044
19 1014
20 987
21 953
22 913
23 884
24 854
25 832
26 810
27 788
28 743
29 693
30 671
31 648
32 615
33 591
34 568
35 546
36 519
37 491
38 468
39 445
40 390
41 313
42 289
43 237
44 166
45 105
46 57
47 27
48 0

STL1 Probe Placement
Probe # 3’ base relative to mRNA termination

1 1630
2 1604
3 1577
4 1546
5 1518
6 1493
7 1449
8 1389
9 1364
10 1325
11 1282
12 1250
13 1200
14 1172
15 1144
16 1104
17 1078
18 1035
19 1001
20 971
21 913
22 884
23 856
24 830
25 805
26 768
27 743
28 702
29 670
30 635
31 610
32 574
33 545
34 509
35 472
36 435
37 396
38 356
39 324
40 287
41 250
42 223
43 184
44 138
45 113
46 86
47 59
48 24

Table S1: Locations for smRNA-FISH probes.
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Parameter Values
Osmotic Shock r1 r2 η A M

Condition (s−1) (s−1) - - -
0.2M NaCl 6.1× 10−3 6.9× 10−3 5.9 9.3× 109 2.2× 10−2

0.4M NaCl 6.1× 10−3 3.8× 10−3 5.9 9.3× 109 2.2× 10−2

Table S2: Parameterization of the Hog1p nuclear enrichment signal at 0.2M and 0.4M NaCl osmotic shock.
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STL1 Model Parameter Values – State Transition Rates
Statistics Spatial ∗k12

∗k(0)21 k
(1)
21

∗k23
∗k32

∗k34
∗k43

[5] No 1.3E+00 3.2E+03 7.7E+03 6.7E-03 2.7E-02 1.3E-01 3.8E-02
µ No 1.2E-03± 7.9E-04 1.6E+01± 8.2E+00 5.4E+05± 2.7E+05 1.2E-03± 7.9E-04 1.1E-08± 2.9E-06 5.2E-03± 9.5E-05 2.6E-07± 2.8E-06

µ, Σ (χ2) No 1.4E-03± 2.7E-05 3.0E+01± 7.4E-01 9.7E+05± 2.3E+04 5.6E-03± 2.8E-04 7.5E-03± 6.2E-05 5.7E-05± 2.4E-05 8.7E-09± 3.5E-06
Extended Moments No 5.6E-04± 2.5E-04 6.0E+02± 1.8E+02 7.3E+05± 1.7E+05 9.6E-04± 4.7E-04 4.2E-02± 3.3E-02 1.0E-08± 2.8E-06 4.4E-02± 2.5E-02

FSP No 3.4E-03± 4.6E-05 5.1E+00± 9.3E-01 1.1E+03± 2.2E+02 6.4E-03± 9.6E-05 1.5E+00± 1.7E+00 8.3E+00± 9.2E+00 3.7E-02± 2.9E-03
µ Yes 2.0E-03± 1.7E-04 2.6E+03± 4.1E+02 8.1E+05± 1.2E+05 1.1E-02± 2.1E-03 7.6E-03± 2.1E-03 8.6E-03± 5.2E-03 2.7E-02± 9.6E-03

µ, Σ (Wishart) Yes 1.6E-03± 2.5E-05 3.9E+00± 1.0E-01 7.4E+04± 1.7E+03 5.7E-03± 2.2E-04 6.2E-02± 1.4E-03 1.0E-01± 4.7E-03 1.9E-02± 6.6E-04
Extended Moments Yes 3.4E-03± 5.1E-04 8.2E+02± 1.2E+02 8.6E+05± 1.0E+05 5.2E-04± 7.8E-05 5.7E-03± 2.3E-04 3.5E-08± 9.9E-06 9.7E-03± 1.4E-03

FSP Yes 2.6E-03± 2.6E-05 1.9E+01± 3.0E+00 3.2E+04± 5.1E+03 7.6E-03± 1.6E-04 1.2E-02± 2.8E-04 4.0E-03± 1.6E-04 3.1E-03± 8.9E-05

STL1 Model Parameter Values – Transcription and Degradation Rates
Statistics Spatial ∗ki1

∗ki2
∗ki3

∗ki4
#γ t0

[5] No 7.8E-04 1.2E-02 9.9E-01 5.4E-02 4.9E-03 1.9E+02
µ No 1.6E-02± 1.1E-02 1.5E+02± 1.2E+02 3.3E+02± 2.5E+02 3.7E-02± 3.6E-02 1.3E+00± 1.1E+00 3.4E+02± 1.7E+00

µ, Σ (χ2) No 2.6E+01± 1.5E+01 3.8E+04± 2.3E+04 1.6E+04± 1.0E+04 7.1E+02± 4.4E+02 5.2E+02± 3.2E+02 3.6E+02± 8.8E-01
Extended Moments No 1.1E-04± 2.4E-05 3.9E-04± 8.8E-04 3.3E+01± 2.2E+01 2.1E+04± 2.4E+04 4.3E-03± 1.1E-04 1.0E+02± 4.7E+00

FSP No 9.0E-05± 1.2E-05 2.0E-02± 7.7E-04 1.1E+02± 1.2E+02 4.1E-02± 1.4E-02 5.3E-03± 5.9E-05 2.0E+02± 2.3E+00
µ Yes 2.0E-03± 1.1E-03 3.8E+00± 2.0E+00 1.5E-01± 3.1E-01 2.6E+01± 3.1E+01 4.5E-02± 6.2E-03 1.0E+00± 1.3E-01

µ, Σ (Wishart) Yes 6.1E-01± 5.0E-02 1.1E+03± 5.2E+01 3.4E+03± 1.9E+02 1.9E-02± 2.6E-03 3.2E-02± 7.9E-04 8.9E-01± 2.1E-02
Extended Moments Yes 1.2E-03± 4.3E-04 1.0E-01± 6.4E-02 1.8E+01± 5.9E+00 3.6E+03± 2.7E+03 2.4E-02± 2.5E-03 5.9E-01± 6.1E-02

FSP Yes 5.9E-04± 2.6E-05 1.7E-01± 4.4E-03 1.0E+00± 1.4E-02 3.0E-02± 1.1E-03 8.3E-03± 1.0E-04 2.6E-01± 4.0E-03

STL1 Model Parameter Values – Spatial Rates
Statistics Spatial #γnuc

#γcyt
#ktransport

µ Yes 7.5E-01± 9.6E-01 4.5E-02± 6.2E-03 1.0E+00± 1.3E-01
µ, Σ (χ2) Yes 5.2E+02± 2.5E+01 3.2E-02± 7.9E-04 8.9E-01± 2.1E-02

Extended Moments Yes 2.1E-01± 2.6E-01 2.4E-02± 2.5E-03 5.9E-01± 6.1E-02
FSP Yes 2.2E-06± 2.0E-05 8.3E-03± 1.0E-04 2.6E-01± 4.0E-03

Table S3: Parameter values (and uncertainty) for the final model for STL1. Each parameter set was identified using
a different fluctuation analysis: means (µ), means and (co)variances (µ and σ/Σ with χ2 or Wishart formulation),
the extended moments-based analysis using the means and covariances and a likelihood function defined by the
first four moments, or distributions; and a different assumption on the spatial fluctuations: non-spatial or spatial).
Parameter uncertainties were identified using the Metropolis Hastings algorithm on the corresponding likelihood
function and are listed as plus or minus one standard deviation. Units of all parameters denoted by (∗) are s−1. Units
of all parameters denoted by (#) are Molecules−1s−1. Units of k(1)21 are AUC−1s−1, where AUC is arbitrary units
of Hog1p concentration. Units of t0 are s.

35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/154401doi: bioRxiv preprint 

https://doi.org/10.1101/154401
http://creativecommons.org/licenses/by-nc-nd/4.0/


CTT1 Model Parameter Values – State Transition Rates
Statistics Spatial ∗k12

∗k(0)21 k
(1)
21

∗k23
∗k32

∗k34
∗k43

[5] No 1.3E+00 3.2E+03 7.7E+03 1.9E-02 1.8E-02 1.3E-01 8.3E-03
µ No 2.5E-05± 2.3E-05 2.0E+03± 1.2E+03 3.8E+04± 2.1E+04 2.6E-04± 2.3E-04 3.0E-03± 8.7E-04 8.2E-04± 3.3E-04 1.8E-03± 6.2E-04

µ, Σ (χ2) No 1.9E-03± 2.9E-05 7.1E-02± 9.5E-04 5.9E+00± 4.8E-01 5.3E-07± 6.8E-06 3.4E-03± 1.2E-03 3.1E-06± 7.7E-06 2.5E-03± 5.6E-04
Extended Moments No 7.2E-04± 5.2E-04 7.6E+02± 2.0E+02 2.9E+03± 6.6E+02 1.4E-03± 8.2E-04 1.4E-03± 5.2E-04 6.1E-08± 5.9E-06 6.1E-03± 1.5E-03

FSP No 3.8E-03± 4.9E-05 2.3E-01± 9.6E-03 3.5E+00± 3.7E-01 5.0E-03± 1.1E-04 4.0E-03± 1.2E-04 9.4E-03± 8.4E-04 4.4E-03± 3.1E-04
µ Yes 7.2E-06± 1.0E-05 1.6E+03± 7.2E+02 3.8E+03± 1.7E+03 1.5E-03± 2.1E-04 1.3E-03± 1.6E-04 2.1E-04± 9.3E-05 2.5E-03± 2.6E-04

µ, Σ (Wishart) Yes 1.5E-03± 1.6E-05 1.5E-01± 3.3E-03 1.2E+02± 4.3E+00 9.2E-04± 4.2E-05 3.8E+00± 1.7E+00 4.2E+02± 1.8E+02 1.0E-01± 8.5E-03
Extended Moments Yes 1.7E-04± 2.4E-05 2.7E+00± 1.0E+00 3.3E+03± 1.3E+03 4.5E-03± 9.7E-04 7.5E-04± 5.7E-05 5.3E-04± 1.4E-04 2.2E-01± 6.5E-02

FSP Yes 2.1E-03± 2.2E-05 9.2E-03± 2.1E-04 2.7E+03± 4.1E+02 3.1E-03± 5.2E-05 7.4E-03± 1.7E-04 5.6E-04± 2.6E-05 1.0E-07± 1.5E-05

CTT1 Model Parameter Values – Transcription and Degradation Rates
Statistics Spatial ∗ki1

∗ki2
∗ki3

∗ki4
#γ t0

[5] No 6.2E-04 9.8E-03 1.0E+00 1.6E-03 2.0E-03 1.9E+02
µ No 2.6E-01± 6.4E-02 2.2E+03± 1.3E+03 4.7E-03± 3.6E-03 4.2E+05± 2.3E+05 5.5E-01± 1.4E-01 2.6E+02± 4.0E+00

µ, Σ (χ2) No 6.3E-05± 1.0E-04 2.1E-01± 1.8E-03 2.4E-08± 6.8E-06 5.2E+02± 3.1E+02 1.1E-03± 1.3E-05 2.2E+02± 1.6E+00
Extended Moments No 3.3E-03± 7.9E-04 6.2E-08± 5.9E-06 3.1E+00± 6.8E-01 1.2E+03± 3.1E+02 1.9E-03± 6.4E-04 4.9E+01± 1.3E+01

FSP No 1.1E-03± 3.9E-05 9.9E-02± 2.7E-03 6.1E-01± 1.9E-02 2.4E-02± 3.8E-03 2.1E-03± 3.8E-05 2.1E+02± 2.1E+00
µ Yes 1.1E-01± 3.5E-02 4.4E+03± 2.8E+03 1.5E-07± 4.1E-07 4.0E+05± 2.3E+05 6.9E-03± 2.6E-04 3.0E-01± 1.0E-02

µ, Σ (Wishart) Yes 3.1E-03± 2.1E-04 4.6E-01± 1.1E-02 1.7E+03± 7.3E+02 1.6E-02± 1.4E-02 4.5E-03± 9.0E-05 2.6E-01± 3.9E-03
Extended Moments Yes 5.6E-03± 5.8E-04 6.7E+00± 1.4E+00 3.5E+00± 6.4E-01 5.2E+02± 1.3E+02 9.4E-03± 1.0E-03 3.8E-01± 3.5E-02

FSP Yes 2.5E-03± 5.0E-05 1.2E-01± 1.8E-03 6.5E-01± 8.6E-03 5.5E-04± 9.2E-05 3.7E-03± 4.2E-05 1.8E-01± 2.4E-03

CTT1 Model Parameter Values – Spatial Rates
Statistics Spatial #γnuc

#γcyt
#ktransport

µ Yes 4.9E+00± 1.7E+00 6.9E-03± 2.6E-04 3.0E-01± 1.0E-02
µ, Σ (χ2) Yes 4.2E-03± 4.5E-03 4.5E-03± 9.0E-05 2.6E-01± 3.9E-03

Extended Moments Yes 6.8E-07± 2.2E-06 9.4E-03± 1.0E-03 3.8E-01± 3.5E-02
FSP Yes 1.0E-07± 1.5E-05 3.7E-03± 4.2E-05 1.8E-01± 2.4E-03

Table S4: Parameter values (and uncertainty) for the final model for CTT1. Each parameter set was identified using a
different fluctuation analysis: means (µ), means and (co)variances (µ and σ/Σ with χ2 or Wishart formulation), the
extended moments-based analysis using the means and covariances and a likelihood function defined by the first four
moments, or distributions computed with the FSP approach; and a different assumption on the spatial fluctuations:
non-spatial or spatial). Parameter uncertainties were identified using the Metropolis Hastings algorithm on the
corresponding likelihood function and are listed as plus or minus one standard deviation. Units of all parameters
denoted by (∗) are s−1. Units of all parameters denoted by (#) are Molecules−1s−1. Units of k(1)21 are AUC−1s−1,
where AUC is arbitrary units of Hog1p concentration. Units of t0 are s.

36

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2017. ; https://doi.org/10.1101/154401doi: bioRxiv preprint 

https://doi.org/10.1101/154401
http://creativecommons.org/licenses/by-nc-nd/4.0/


STL1 Relative -Log10-Likelihood Values
Likelihood Function

Fitting Data Spatial µ∗ µ andΣ∗ Extended Moments∗ Distributions
Means only No 0 -1.72E+04 -1.64E+04 -6.97E+04

Means and variances (chi2) No -4.46E+02 0 -1.85E+04 -6.26E+04
Extended moments No -6.83E+02 -3.71E+04 0 -4.94E+04

Full FSP Distributions No -2.75E+03 -1.45E+04 -6.64E+02 0
Means only Yes 0 -6.46E+04 -7.32E+03 -2.72E+04

Means and variances (Wishart) Yes -7.62E+02 0 -7.20E+03 -1.77E+04
Extended moments Yes -1.88E+03 -4.75E+04 0 -8.15E+04

Full FSP Distributions Yes -1.03E+04 -2.40E+04 -3.45E+03 0
CTT1 Relative -Log10-Likelihood Values

Likelihood Function
Fitting Statistics Spatial µ∗ µ andΣ∗ Extended Moments∗ Distributions

Means only No 0 -1.83E+05 -1.48E+03 -3.62E+05
Means and variances (chi2) No -1.61E+03 0 -2.29E+03 -3.06E+04

Extended moments No -9.49E+02 -5.24E+04 0 -9.39E+04
Full FSP Distributions No -4.76E+03 -5.62E+03 -1.83E+03 0

Means only Yes 0 -3.85E+05 -1.94E+03 -3.57E+05
Means and variances (Wishart) Yes -3.11E+03 0 -1.94E+04 -2.45E+04

Extended moments Yes -4.13E+03 -1.25E+05 0 -2.36E+05
Full FSP Distributions Yes -1.56E+04 -1.60E+04 -6.65E+03 0

Table S5: Relative log-likelihood values for different likelihoods that compare the means (µ), means and
(co)variances (µ and σ/Σ with χ2 or Wishart formulation), the extended moments-based approach, or full distribu-
tions. Each row corresponds to a different combination of gene and identification strategy. Each column corresponds
to a different likelihood function. Values presented are log10 of the actual likelihoods relative to the best value found
for that objective function. For example, a value of zero states that the corresponding parameter set (Tables S4,S3)
maximizes that likelihood function. A value −xij , in the i-row and j-column states that the parameters identified
using the ith likelihood yields 10xij -fold worse fit to the jth likelihood function. See Section 2.8 for detailed instruc-
tions on how to interpret this table. ∗The moment-based likelihood functions are approximated using the Central
Limit Theorem as discussed in the Materials and Methods.
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Estimation of CTT1 Transcription Elongation Rates (Nt/s)
Analysis Spatial Simplified Theory Detailed FSP

Means only No 5.93E+07± 5.9E+06 N/A
Means and variances (χ2) No 7.25E+04± 7.3E+03 N/A

Extended moments No 1.65E+05± 1.7E+04 N/A
Full FSP Distributions No 85.8±8.6 45± 14

Means only Yes 5.54E+07 ± 5.6E+06 N/A
Means and (co)variances (Wishart) Yes 2.39E+05 ± 2.4E+04 N/A

Extended moments Yes 7.27E+04± 7.3E+03 N/A
Full FSP Distributions Yes 91.2± 9.1 ∗63±13

Table S6: Elongation rates identified for CTT1 transcription using the best parameters identified in Tables S4 and the
measured TS intensity data. For each case – means (µ), means and (co)variances (µ andΣ), extended moments, or
distributions – we present the upper bound on the rates using the simplified theoretical model and the more precise
rates using the detailed FSP-TS analysis, when possible. Uncertainty in these rates is given as the standard error of
the mean computed from the five biological replicates. (∗Figs. 1D, 4D, and S11 use the rate identified from CTT1
TS intensity measurements and the corresponding fit of the elongation rate with the spatial FSP analysis.)
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