Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress

Ran Inoue1*, Kareem Abdou2–5, Ayumi Hayashi-Tanaka1, Shin-ichi Muramatsu3–4, Kaori Mino1, Kaoru Inokuchi2, Hisashi Mori1

1Department of Molecular Neuroscience, 2Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan,
3Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan,
4Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,
5Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt

*Correspondence: Ran Inoue, PhD, Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan, TEL: +81-76-434-7231, FAX: +81-76-434-5015, E-mail: eiran@med.u-toyama.ac.jp
Abstract

Glucocorticoid receptor (GR) is crucial for signaling mediated by stress-induced high levels of glucocorticoids. The lateral nucleus of the amygdala (LA) is a key structure underlying auditory-cued fear conditioning. Here, we demonstrate that genetic disruption of GR in the LA (LAGRKO) resulted in an auditory-cued fear memory deficit for strengthened conditioning. Furthermore, the suppressive effect of a single restraint stress (RS) prior to conditioning on auditory-cued fear memory in floxed GR (control) mice was abolished in LAGRKO mice. Optogenetic induction of long-term depression (LTD) at auditory inputs to the LA reduced auditory-cued fear memory in RS-exposed LAGRKO mice, and in contrast, optogenetic induction of long-term potentiation (LTP) increased auditory-cued fear memory in RS-exposed floxed GR mice. These findings suggest that prior stress suppresses fear conditioning-induced LTP at auditory inputs to the LA in a GR-dependent manner, thereby protecting animals from encoding excessive cued fear memory under stress conditions.
Introduction

Stress activates the hypothalamus–pituitary–adrenal (HPA) axis, which results in the release of glucocorticoid hormones (cortisol in humans and corticosterone in rodents) from the adrenal cortex. Glucocorticoid hormones can readily enter the brain and bind to specific receptors in regions crucial for memories of stressful experiences, such as the hippocampus and amygdala, thereby enhancing the consolidation of emotionally arousing events (de Quervain et al., 2009; Roozendaal et al., 2009). Two types of receptors mediate the effects of glucocorticoids: type I mineralocorticoid receptor (MR, \(Nr3c2\)) and type II glucocorticoid receptor (GR, \(Nr3c1\)). Compared with MR, GR has a lower binding affinity for glucocorticoids and is largely unoccupied at basal levels, and is thus considered to be particularly important in signaling mediated by stress-induced high levels of glucocorticoids (de Kloet et al., 2005; Reul and de Kloet, 1985).

The lateral nucleus of the amygdala (LA) is a key structure underlying auditory-cued fear conditioning (AFC) (LeDoux, 2000). Auditory information, which is critical for AFC, reaches the LA either from the medial geniculate nucleus (MGN) or from the auditory cortex (AC). Long-term potentiation (LTP) in the two auditory inputs to the LA is essential for the acquisition and expression of auditory-cued fear memory (Blair et al., 2001; Rogan et al., 1997; Tsvetkov et al., 2002). In response to stress, GR activation
plays a central role in the formation of long-term memory, which is an essential mechanism for learning from stressful events and respond adaptively to similar demands in the future (Finsterwald and Alberini, 2014). In an electrophysiological study using brain slices, glucocorticoid prolonged excitatory synaptic responses in the basolateral complex of the amygdala (BLA) by binding to GR (Karst et al., 2010). In contrast, after an acute stress exposure, application of glucocorticoid suppressed excitatory synaptic responses in the BLA in a GR-dependent manner. This switch in synaptic response to glucocorticoid is referred to as metaplasticity (Abraham and Tate, 1997; Schmidt et al., 2013). Prior delivery of behavioral stress has also been shown to suppress subsequent induction of LTP (Kavushansky and Richter-Levin, 2006).

However, whether stress-induced amygdalar metaplasticity occurs in vivo in a way relevant to the strength of the auditory-cued fear memory, and what role LAGR plays in this neural process are unknown.

In this study, we generated LA-selective GR knockout (LAGRKO) mice to investigate the region-specific role of LAGR in mediating the modulatory effects of stress on fear memory. We first compared contextual and auditory-cued fear memory conditioned at different strengths between floxed GR (control) and LAGRKO mice at basal condition. We then investigated the effect of LAGR disruption on the adaptive modulation of fear
memory after exposure to acute stress. Finally, using an optogenetic technique to induce LTP and long-term depression (LTD), we investigated how GR-dependent metaplasticity in the LA influenced auditory-cued fear memory in response to prior stress exposure.

Results

Generation of LAGRKO mice

To selectively knock out the GR gene in the LA, we generated two mutant mouse lines. The knock-in line expressed improved Cre (iCre) recombinase (Shimshek et al., 2002) under the control of the gastrin-releasing peptide gene (Grp) promoter, and the animals are referred to as Grp-iCre mice (Figure 1A, B). Grp is abundant in the LA and absent or present at low levels in other subnuclei of the amygdala (Shumyatsky et al., 2002). Thus, Grp promoter could be used for driving the expression of Cre recombinase selectively in the LA. To confirm its usefulness, we crossed a Grp-iCre mouse with a CAG-CAT-Z reporter mouse, which carried the chloramphenicol acetyltransferase gene (CAT) flanked by two loxP sites and the β-galactosidase gene in sequence (Araki et al., 1995). Cre-mediated recombination between the two loxP sites resulted in the expression of β-galactosidase, which was detected by X-gal staining. As shown in
Figure 1C, strong β-galactosidase expression was detected in the LA and hippocampal CA3 region of Grp-iCre/CAG-CAT-Z mice, indicating the presence of robust Cre-loxP recombination in these brain regions. In addition, sparse and weak expression of β-galactosidase appeared in the accessory basal nucleus of the amygdala and in layer 6 of the cerebral cortex.

Next, we generated a floxed GR (GR^{loxP/loxP}) mouse line in which exon 3 of the GR gene (encoding the DNA-binding domain) was flanked by two loxP sites (Supplementary figure 1A, B). Grp-iCre mice were crossed with floxed GR mice to establish the LAGRKO mouse line (GR^{loxP/loxP}, Grp-iCre^{+/−}). Immunofluorescence staining with a specific antibody against GR revealed a selective disruption of GR proteins in the LA of LAGRKO mice (Figure 2A). There was no significant difference between the two genotypes in the expression level of GR in the central nucleus and basal nucleus of the amygdala. Double immunofluorescence staining with anti-GR and anti-NeuN (a neuronal marker) antibodies showed that GR was undetectable in approximately 70% of LA neurons in LAGRKO mice (floxed GR, 90.88% ± 1.39%; LAGRKO, 20.27% ± 0.95%; Figure 2A, B). The expression level of GR in the hippocampal CA3 region of floxed GR mice was very low, and it was slightly decreased in LAGRKO mice (Figure 2C). There was no significant difference between the two
genotypes in the expression level of GR in the cerebral cortex, hippocampal CA1 and
CA2 regions, and dentate gyrus (Figure 2C). Collectively, these results indicate the
successful establishment of a novel LAGRKO mouse line.

Disruption of LAGR impairs auditory-cued fear memory for strengthened conditioning
Since GR has a low binding affinity for glucocorticoids and its activation requires high
levels of hormones, we investigated the role of LAGR in AFC at different strengths.
After moderate conditioning, which included three CS × US pairings, LAGRKO mice
exhibited the same freezing levels as floxed GR mice during the training, contextual test,
and auditory-cued test (Supplementary figure 2A–D). When the training was
strengthened to six CS × US pairings (Figure 3A), LAGRKO mice exhibited
significantly lower freezing levels than floxed GR mice during tone presentation in the
cued test \((p = 0.046; \text{Student’s} \ t \ \text{test}; \ \text{Figure} \ 3D) \), whereas there were no significant
differences between the two genotypes in freezing levels during the training \((F_{1,126} =
1.19, p = 0.278; \text{two-way repeated measures ANOVA; Figure} \ 3B) \) and contextual test \((p
= 0.803; \text{Student’s} \ t \ \text{test}; \ \text{Figure} \ 3C) \). Corticosterone assays revealed significantly higher
plasma corticosterone levels 90 min after training with six CS × US pairings than after
training with three CS × US pairings in both genotypes (floxed GR, \(p = 0.016 \);
LAGRKO, \(p < 0.001 \); Student’s \(t \) test; Figure 3E). In the open field test, LAGRKO mice
did not show any alteration in anxiety level or locomotion (Supplementary figure 3A-C),
suggesting that the deficit of auditory-cued fear memory in LAGRKO mice was not the
result of altered anxiety and locomotor activity.

Injection of GR-expressing adeno-associated virus into the LA rescues the
auditory-cued fear memory deficit in LAGRKO mice

Although we successfully and selectively disrupted GR in the LA of LAGRKO mice,
we cannot exclude the possibility that sparse disruption of GR in other brain areas, such
as the hippocampal CA3 region, may be associated with behavioral impairment in
LAGRKO mice. To confirm that the auditory-cued fear memory deficit can be
specifically attributed to the disruption of LAGR, we performed a rescue experiment by
injecting a GR-expressing adeno-associated virus (AAV-GR) into the LA of LAGRKO
mice. Green fluorescent protein-expressing AAV (AAV-GFP) was used as the control.
Fear conditioning was conducted 4 weeks after virus injection (Figure 4A, B).
LAGRKO mice injected with AAV-GR and floxed GR mice injected with AAV-GFP
exhibited significantly higher freezing levels during the auditory-cued fear memory test
than did LAGRKO mice injected with AAV-GFP ($F_{2,24} = 5.25, p = 0.013$; one-way ANOVA followed by post hoc Tukey–Kramer test; Figure 4E). There was no significant difference in freezing levels between the three mouse groups during training ($F_{2,168} = 0.60, p = 0.522$; two-way repeated measures ANOVA; Figure 4C) and the contextual fear memory test ($F_{2,24} = 0.53, p = 0.600$; one-way ANOVA; Figure 4D). This rescue experiment further suggests the specific involvement of LAGR in AFC.

Disruption of LAGR impairs adaptive modulation of conditioned fear in response to prior restraint stress exposure

Fear conditioning is highly susceptible to modulation by prior stress exposure (Cordero et al., 2003; Rodriguez Manzanares et al., 2005). To investigate the involvement of LAGR in mediating the effect of prior stress on subsequent fear conditioning, floxed GR and LAGRKO mice were exposed to a 20-min restraint stress (RS) and conditioned 1 h later (Figure 5A). Mice were conditioned with three CS × US pairings that resulted in equivalent freezing levels in floxed GR and LAGRKO mice in the contextual and auditory-cued fear memory tests (Supplementary figure 2). RS exposure 1 h prior to fear conditioning induced a significant increase in freezing levels during the training ($F_{3,215} = 32.25, p < 0.001$; two-way repeated measures ANOVA; Figure 5B) and
contextual memory test \((F_{3,43} = 5.03, p = 0.004);\) one-way ANOVA followed by post hoc Tukey–Kramer test; Figure 5C) in both floxed GR and LAGRKO mice. In contrast to the facilitating effect of prior RS exposure on contextual fear memory, RS exposure 1 h before fear conditioning induced a significant decrease in auditory-cued freezing in floxed GR mice but not in LAGRKO mice \((\text{floxed GR}, p = 0.016; \text{LAGRKO}, p = 0.951;\) Student’s \(t\) test; Figure 5D), suggesting this suppressive effect is LAGR-dependent.

Optogenetic manipulation of metaplasticity in the LA alters the behavioral effect of prior RS exposure on auditory-cued fear memory

We next investigated whether stress-induced changes in synaptic plasticity were responsible for the effect of prior stress on auditory-cued fear memory in floxed GR and LAGRKO mice. It was recently proposed that metaplasticity may play a role in the regulation of learning and memory under stress \((\text{Joels et al., 2012; Myers et al., 2014});\)

Therefore, we hypothesized that prior RS exposure would suppress AFC-induced LTP in the LA, leading to the attenuation of auditory-cued fear memory in floxed GR mice, and that LAGR disruption might impair stress-induced metaplasticity in the LA. To test this, we used a recently established technique that allows engineering a memory using an
optical LTP or LTD protocol (Nabavi et al., 2014). We injected an AAV vector expressing a variant of light-activated channelrhodopsin 2, oChIEF, into bilateral MGN and AC. Four weeks after virus injection, when oChIEF had reached axon terminals in the LA, mice were exposed to a RS and conditioned 1 h later (Figure 6A, B).

Immediately after the first auditory-cued fear memory test (Test 1), which was conducted 24 h after fear conditioning, mice received an optical LTP or LTD protocol and tested 24 h later (Test2). The optical LTP protocol significantly increased freezing levels during the Test 2 compared with Test 1 in floxed GR mice but not in LAGRKO mice (floxed GR, $p = 0.046$; LAGRKO, $p = 0.811$; Student’s t test; Figure 6C, D). These results support our hypothesis that prior RS exposure suppresses AFC-induced LTP in a GR-dependent manner, thus resulting in reduced auditory-cued fear memory in floxed GR mice. In LAGRKO mice, the optical LTD protocol significantly reduced freezing levels during Test 2 compared with that during Test 1 ($p = 0.010$; Student’s t test; Figure 6E), further supporting the hypothesis that prior stress weakens synaptic strength in the LA leading to reduced cued fear memory.

To confirm that the optical LTP or LTD protocols produced the expected synaptic effects, we conducted in vivo recordings in the LA of anaesthetized naïve mice expressing oChIEF in auditory regions. Brief light pulses (0.033 Hz) at the recording
site produced field responses, which were potentiated by the LTP protocol ($F_{1,126} = 174.06, p < 0.001$; two-way repeated measures ANOVA; Figure 6F) and depressed by the LTD protocol ($F_{1,126} = 376.56, p < 0.001$; two-way repeated measures ANOVA; Figure 6G). These results suggest that the LTP and LTD protocols used in the behavioral experiments modify synaptic strength in the expected manner.

211 Discussion

In the present study, we demonstrate that LAGR exclusively mediates auditory-cued fear responses to strengthened conditioning, suggesting a critical role for LAGR in signaling mediated by stress-induced high levels of glucocorticoids. We further demonstrate that LAGR is indispensable for the suppressive effect of prior RS exposure on AFC. The optogenetic manipulation of synaptic strength at auditory inputs to the LA by an LTP protocol significantly increased auditory-cued fear memory in RS-exposed floxed GR mice but not in RS-exposed LAGRKO mice. In contrast, an LTD protocol significantly reduced auditory-cued fear memory in RS-exposed LAGRKO mice. These findings suggest that stress-induced metaplasticity occurs in the LA in a GR-dependent manner, and is responsible for the suppressive effect of prior RS on AFC.
The degree of stress induced by learning itself has been shown to be related to strength of the memory (Cordero et al., 1998; Cordero and Sandi, 1998). In our study, there was no difference in freezing levels between floxed GR and LAGRKO mice conditioned with three CS × US pairings. When the number of CS × US pairings of the conditioning procedure was increased to six, LAGRKO exhibited an impaired auditory-cued fear memory. Concomitantly, in both genotypes, plasma corticosterone levels 90 min after fear conditioning were significantly higher in the group with six CS × US pairings than in the group with three CS × US pairings. It is likely that the increased number of CS × US pairings strengthened the connection between auditory CS and US in the LA, and LAGR, which is activated by high levels of circulating corticosterone, contributes exclusively to this neural process. These findings are in agreement with the lower binding affinity of GR for glucocorticoids, leading to the critical role of GR in signaling mediated by stress-induced high levels of glucocorticoids (Reul and de Kloet, 1985).

Emerging evidence indicates that stress exposure modulates subsequent learning and memory bidirectionally, either through facilitation or impairment (Raio and Phelps, 2015). Glucocorticoid signaling has been thought as a common mechanism for mediating the effects of stress on fear memory (Cordero et al., 2003; Rodriguez et al., 2003).
Manzanares et al., 2005). In our behavioral tests, a single RS exposure 1 h before conditioning significantly reduced auditory-cued fear memory in floxed GR mice but not in LAGRKO mice, suggesting that the suppressive effect of prior RS is LAGR-dependent. To date, there are no reports demonstrating the effects of stress 1 h before conditioning on fear memory. One previous report demonstrated that a single acute stress exposure 48 h before fear conditioning had no effect on AFC (Cordero et al., 2003). GRs control the magnitude and duration of stress responses, and they are critical in the negative feedback regulation of the HPA axis in response to acute stress (Laryea et al., 2015). In our study, plasma corticosterone levels were significantly higher 1 h after RS than 24 h after RS (data not shown), and it is possible that the timing of previous stress exposure is a key determinant of the effects of stress on auditory-cued fear memory. Consistent with our in vivo evidence showing the LAGR-dependent suppressive effect of prior RS, Karst et al. demonstrated that a long-lasting glutamatergic transmission in BLA neurons triggered by the application of corticosterone was suppressed by RS 1 h before slice preparation and was attenuated by treatment with a GR antagonist (Karst et al., 2010).

Synaptic changes at auditory inputs to the LA play an essential role in the acquisition and expression of auditory-cued fear memory (Blair et al., 2001; Rogan et al., 1997;
Tsvetkov et al., 2002). Exposure to a single stress induces LTP in the BLA (Sarabdjitsingh et al., 2012; Vouimba et al., 2004). Therefore, it is possible that prior RS exposure occludes or suppresses subsequent AFC-induced LTP in floxed GR mice, thereby preventing the formation of excessive cued fear memory. To test this hypothesis, we induced LTP at auditory inputs to the LA by optogenetic stimulation, and found a significant increase in auditory-cued fear responses in RS-exposed floxed GR mice. This is the first evidence supporting a causal link between stress-induced metaplasticity in the LA and adaptive fear response to a salient cue in a stressful condition. Several in vitro and in vivo electrophysiological studies have demonstrated that the activation of GRs are involved in stress-induced amygdalar metaplasticity (Karst et al., 2010; Kavushansky and Richter-Levin, 2006). In our study, the optogenetic delivery of an LTP protocol failed to change fear responses to auditory cues in RS-exposed LAGRKO mice, supporting the hypothesis that the activation of LAGR is essential for stress-induced metaplasticity in the LA. Weakening synaptic strength by delivering of an LTD protocol significantly reduced fear responses to auditory cues in RS-exposed LAGRKO mice, further suggesting that activation of LAGR after stress exposure suppresses fear conditioning-induced LTP at auditory inputs to the LA, thereby protecting animals from encoding excessive cued fear memory under stress condition.
This study demonstrated that LAGR is indispensible for stress-induced metaplasticity in the LA and for controlling fear responses to salient cues depending on the recent stress history of an animal. Individuals with lower levels of cortisol are more susceptible to developing post-traumatic stress disorder (PTSD) (Yehuda, 2006; Yehuda et al., 1998), suggesting that glucocorticoid signaling dysfunction is involved in the development of PTSD. Our findings contribute to understanding how emotional memory is formed under stress conditions and provide clues for elucidating the pathophysiology and etiology of stress-related disorders, such as PTSD.

Methods

Construction of Grp-iCre targeting vector. To construct a codon-improved Cre-recombinase (iCre)-splice gene, the intron sequence from the SV40 t-antigen gene was amplified by PCR and inserted between codons 283 and 284 of iCre. We obtained the bacterial artificial chromosome (BAC) clone containing the gastrin-releasing peptide gene (Grp) from the BACPAC Resources Center CHORI (Oakland, CA). Using a counter-selection BAC modification kit (Gene Bridges, Dresden, Germany), we inserted the iCre-splice gene linked to the pgk-neo cassette flanked by two FRT sites into Grp gene at the +1 position (+1 corresponding to A of ATG, the initiation site of translation.
in the \textit{Grp} gene). The modified BAC DNA fragment inserted with the iCre-splice-pgk-neo cassette and containing the \(~5.1\) kbp upstream (\(-5079\) to \(-1\)) and \(~4.9\) kbp downstream (\(+2\) to \(+4933\)) sequences of \textit{Grp} gene were cloned into pMC1DTApMA (Kitayama et al., 2001) to generate the targeting vector pTVGRP-iCre.

\textbf{Construction of }\textit{GR}^{\text{loxP}}\textit{ targeting vector.} A BAC clone containing the GR gene was obtained from BACPAC Resources Center CHORI. The 5' arm of \(~5.2\) kbp (\(-5344\) to \(-104\), +1 corresponding to the first nucleotide of the exon 3 of the GR gene) and the 3' arm of \(~5\) kbp (+104 to +5092) were subcloned into the pDONR P4-P1R and pDONER P2R-P3 vectors (Invitrogen, Carlsbad, CA), respectively, using the counter-selection BAC modification kit. A 370 bp GR gene fragment containing exon 3, part of intron 2, and part of intron 3 was amplified by PCR and was subcloned between two loxP sequences of a modified pDONR 221 vector containing a pgk-Neo cassette flanked by two FRT sites. To construct the targeting vector, these three plasmids were directionally subcloned into pDEST R4-R3 vector containing the diphtheria toxin gene (MC1-DTA) by MultiSite Gateway LR recombination reaction.

\textbf{ES cell culture and generation of Grp-iCre and GR}^{\text{loxP}}\textit{ mice.} The targeting vectors
linearized with *NotI* was electroporated into the C57BL/6-derived ES cell line RENKA 312 (Fukaya et al., 2006) as previously described. After the selection with G418 (150 µg/mL), the recombinant ES cell clone was identified by Southern blot analysis. The obtained recombinant ES cells were injected into 8-cell-stage embryos of ICR mice. The embryos were cultured to blastocysts and transferred to the uterus of pseudopregnant ICR mice. The resulting chimeric mice were mated with CAG-FLPe mice (provided by RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan) to delete the pgk-neo gene and establish the mutant mouse line. Grp-iCre and GR^{loxP} mice were genotyped using polymerase chain reaction (PCR) amplification of genomic DNA prepared from the mouse tail. The Grp-iCre mice were genotyped using the following primer sequences: Gic1, 5’-GTCGAGAGCTCTGAGGGTTT-3’; Gic2, 5’-GATTTCATGATCGGGACACTTACCCA-3’; Gic3, 5’-GGTACAGGAGGTTAGTCCCTCACATC-3’; NeoP1, 5’-GGGGATCCACTAGCGAATTCGAAG-3’; and NeoP2, 5’-GGATCCCCTCAGAAGAACTCGTCAA-3’. The GR^{loxP} mice were genotyped using the following primer sequences: GR3’LU, 5’-AAAAGAGCAGTGGAAGGTAGTGTG-3’ and GR3’LL, 5’-TACTTCTGTCCTCCATGGAG-3’.
Animal care and experimental protocols were approved by the Animal Experiment Committee of the University of Toyama (Authorization No. 2013 MED-18 and MED-68) and carried out in accordance with the Guidelines for the Care and Use of Laboratory Animal of the University of Toyama. Three month-old male mice were used for analyses in a genotype blind manner. The mice were kept in a temperature- and humidity-controlled room under 12 h light/dark cycle (lights on at 7:00 AM) and had ad libitum access to food and water.

Analysis of Cre-mediated recombination efficacy. We used the mutant mice carrying both Grp-iCre and CAG-CAT-Z transgene heterozygously as the reporter mice. The mice were deeply anesthetized with pentobarbital sodium (100 mg/kg body weight, intraperitoneal injection), and then transcardially perfused with phosphate buffered saline (PBS, pH 7.4) followed by 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB). Brains were removed, post-fixed with the 4% PFA overnight, and dipped in 0.1 M PB containing 30% sucrose for 36 h at 4°C. The brains were cut into 1-mm-thick coronal sections and stained for β-galactosidase (β-gal) activity for 18 h in PBS containing 5 mM potassium hexacyanoferrate (III), 5 mM potassium hexacyanoferrate (II), 2 mM MgCl₂, and 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Tsujita et
al., 1999). After the staining reaction, 20-µm-thick sections were prepared from 1-mm-thick sections and mounted on glass slides. Images were obtained using a Keyence BZ-8000 microscope (Keyence, Osaka, Japan).

Immunofluorescence staining. The brains were removed, fixed, and cryoprotected as described above and then cut into 25-µm-thick serial coronal sections using a freezing microtome. For each animal, every fourth section (bregma from -1.4 to -1.8 mm, 5 sections per animal) was selected on the basis of the Mouse Brain in Stereotaxic Coordinates (Paxinos and Franklin, 2001) and was prepared for immunofluorescence staining.

Free floating brain sections were rinsed with PBS and blocked with Protein Block Serum Free (DAKO Cytomation, Carpinteria, CA) for 10 min at room temperature. The sections were then incubated with primary antibodies (rabbit anti-GR, 1:100, Santa Cruz #H-300; mouse anti-NeuN, 1:100, Chemicon #MAB377) diluted in PBS containing 1% bovine serum albumin (BSA) overnight at 4°C. After washing with PBS, the sections were incubated with Alexa-Fluor-488- and Alexa-Fluor-594-conjugated species-specific secondary antibodies (Invitrogen) for 1 h at room temperature. Then, the sections were washed with PBS, adhered to glass slides and coverslipped. Images were taken using a
confocal laser scanning microscope (Leica TCS-SP5, Leica Microsystems, Germany).

Three sections per animal were used for quantification of GR-positive and NeuN-positive cells in the LA. All sections were counted by us who were blind to the genotype of the mice.

Auditory-cued fear conditioning. Except for the optogenetic experiment, auditory-cued fear conditioning (AFC) was conducted in a small conditioning chamber (10 × 10 × 10 cm; with transparent walls and a floor made of 14 stainless steel rods) surrounded by a sound-attenuating chest (CL-M3, O’Hara & Co., Ltd, Tokyo, Japan). Mice were placed in the conditioning chamber for 60 s and then presented with a 30-s tone (65 dB, white noise) through a speaker on the ceiling of the sound-attenuating chamber. At the end of the tone presentation, mice were given a foot shock (0.5 mA, 2 s for three CS × US pairings and 0.5 mA, 1 s for six CS × US pairings). Mice were returned to their home cages 30 s after the last foot shock. The contextual and auditory-cued fear memory retention tests were conducted 24 and 48 h after training, respectively. During the contextual memory test, mice were re-exposed to the conditioning chamber for 5 min without the tone and shock presentation. The conditioning chamber was cleaned with 70% ethanol before each trial. For the
auditory-cued memory test, mice were placed in a novel chamber (10 × 10 × 10 cm, with white walls and a flat floor). Freezing was scored for 3 min before delivery of the tone and then scored for 3 min in the presence of the tone. Before each trial, the chamber was cleaned with 4% acetic acid. Freezing responses were analyzed on a Macintosh computer with Image FZC 2.22sr2 (O’Hara & Co., Japan), which is software based on the NIH Image program.

For the optogenetic experiment, mice were anaesthetized with isoflurane and optic fibers were inserted into guide cannulas. Mice were returned to their home cages and left for at least 1 h before AFC. AFC was conducted in a soundproof experimental room (Yamada Co., Japan). Mice were placed in the square conditioning chamber (17.5 × 30 cm, with a transparent front wall, white side and back walls, and a floor of 26 stainless steel rods) for 60 s and then received three pairings of CS (65 dB, 7 kHz, 30 s tone) and US (0.5 mA, 2 s foot shock) with 1 min inter-pairing interval. Mice were returned to their home cages 90 s after the last foot shock. The first auditory-cued fear memory test (Test 1) was conducted in a circular chamber (opaque black walls, diameter 21.5 cm × height 34 cm, with a flat floor) 24 h after conditioning. Immediately after Test 1, mice received the optical LTP or LTD protocol and 24 h later, the second auditory-cued fear memory test (Test 2) was conducted in a novel circular chamber.
(opaque reddish walls, diameter 23.5 cm × height 22.5 cm, with a flat floor). Freezing was scored for 3 min before delivery of the tone and then scored for 3 min in the presence of the tone.

Open field test. The open field test was performed to measure locomotion and anxiety in a novel open field using SCANET MV-40 (MELQUEST Co., Toyama Japan). The open field consisted of a square box of 48 cm per side with infrared sensors arranged at 6-mm intervals for the automatic detection of activity. Individual mice were placed at the center of the open field at the initiation of the test session and allowed to freely explore the field for 15 min.

Restraint stress. Mice were placed in an adequately ventilated 50-mL plastic tube (FALCON) for 20 min. They could rotate from a prone to supine position and back again but not turn head to tail.

Corticosterone measurements. Plasma was extracted from blood samples collected from the heart. All blood samples were collected between 2 and 4 p.m. Blood samples were centrifuged at 3,000 rpm for 5 min at 4 °C and extracted plasma was stored at
−30°C until assayed for corticosterone using a corticosterone enzyme immunoassay kit (Arbor Assays, Ann Arbor, MI) in accordance with the manufacturer’s instructions.

Viral vector. The GR-expressing adeno-associated virus (AAV-GR) and green fluorescent protein-expressing AAV (AAV-GFP) plasmids consisted of the mouse synapsin I promoter followed by cDNA encoding GR or the GFP and a woodchuck hepatitis virus post-transcriptional regulatory element between the inverted terminal repeats of the AAV3 genome. Plasmid AAV-hsyn-oChIEF-tdTomato was purchased from Addgene (Cambridge, MA). Recombinant AAV vectors were produced by transient transfection of HEK293 cells with the vector plasmid, an AAV3 rep and AAV9 vp expression plasmid, and an adenoviral helper plasmid, pHelper (Agilent Technologies, Santa Clara, CA), as previously described (Iida et al., 2013; Li et al., 2006). Recombinant viruses were purified by isolation from two sequential continuous CsCl gradients, and the viral titers were determined by qRT-PCR. Before administration, AAV-GR and AAV-GFP vectors were diluted in phosphate-buffered saline to 5 × 10^{11} genome copies/100 µL and 1 × 10^{11} genome copies/100 µL, respectively.

Surgery. Mice were deeply anesthetized with pentobarbital sodium (100 mg/kg body
weight, intraperitoneal injection) and placed in a stereotactic frame (Narishige, Tokyo, Japan). AAV-GR or AAV-GFP (0.3 µL per hemisphere) was bilaterally injected into the LA (AP: -1.7 mm; ML: 3.3 mm; DV: -4.1 to -4.2 mm) using glass pipettes (tip diameter 50 µm) connected to a compatible syringe and motorized microinjector (Narishige IMS-10). Mice were allowed to recover in their home cages for 4 weeks before behavioral experiments.

For optogenetic experiments, AAV-hsyn-oChIEF-tdTomato was bilaterally injected into the medial geniculate nucleus (AP: -3.1 mm; ML: 1.9 mm; DV: -3.5 mm) and the auditory cortex (AP: -2.7 mm; ML: 4.4 mm; DV: -3.3 mm). A total of 0.5 µL virus per hemisphere was injected. An optic fiber cannula was implanted just above the dorsal tip of the LA (AP: -1.7 mm; ML: 3.4 mm; DV: -4.1 mm) and secured to the skull with screws and dental cement.

In vivo LTP or LTD induction. Optical LTP was induced with 10 trains of light (each train consisted of 100 pulses of light, 5 ms each, at 100 Hz) at 90-s inter-train intervals. Optical LTD was induced with 900 pulses of light, 2 ms each, at 1 Hz. After induction, mice were immediately returned to their home cages.
In vivo recording. Eight weeks after the injection of AAV-hsyn-oChIEF-ttdTomato into the MGN and AC, mice were anesthetized with pentobarbital sodium and then mounted on a stereotaxic frame. The optic fiber was glued to the recording electrode so that the tip of the fiber was 500 μm above the tip of the electrode. The optrode was inserted into the LA and the optic fiber was connected to a 473-nm laser unit. The LTP or LTD induction protocol was identical to those used in the behavioral test. After establishing a stable baseline at the recording site for 21 min (stimulation frequency at 0.033 Hz), *in vivo* LTP or LTD was induced, which was followed by at least 21 min of 0.033 Hz stimulation. Data were analyzed using Clampex 10.7 software. All animals were perfused after the recordings and the position of the recording sites were verified.

Statistical analysis. Statistical analysis was performed using student’s *t*-test for the comparison of two groups and one-way ANOVA was used for analyzing experiments consisting of multiple groups. Two-way repeated measures ANOVA was used for analyzing the freezing level during training sessions. Significant ANOVA results were followed by a *post hoc* Tukey–Kramer test for multiple comparisons. All values are presented as mean ± S. E. M. Values of *p* < 0.05 were considered statistically significant.
Statistical analysis was performed using Statcel2. Mice were randomly assigned to experimental groups prior to experimentation. No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those generally employed in the field. Animals with viral injections off target or damage during the experiment were excluded from the statistical analysis.

Acknowledgements

We thank Dr. R. Sprengel for providing the plasmid containing iCre and Dr. J. Miyazaki for providing the CAG-CAT-Z mice. CAG-FLPe mice were provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. We thank M. Ito and N. Takiko (Jichi Medical University) for their help with production of the AAV vectors. This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas Nos. 221S0003, 15H01279, 25116508, and JP25115002, Grant-in-Aid for Young Scientists (B) Nos.25830005 and 26293213, a Grant-in-Aid for Scientific Research (C) No. 15K06705 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a grant from the Japan Agency for Medical Research and Development (AMED), and a grant from the Core Research for Evolutional Science and Technology (CREST) program (JPMJCR13W1) of the Japan Science and Technology
Agency (JST).

Competing financial interests

S.M. own equity in a gene therapy company (Gene Therapy Research Institution) that commercializes the use of AAV vectors for gene therapy applications. To the extent that the work in this manuscript increases the value of these commercial holdings, S.M. has a conflict of interest. The remaining authors declare no competing financial interests.
References

Saradjiitsingh RA, Kofink D, Karst H, de Kloet ER, Joels M. 2012. Stress-induced enhancement of mouse amygdalar synaptic plasticity depends on glucocorticoid and...

Figure 1. Generation and characterization of Grp-iCre mice. (A) Schematic diagram of the gene targeting strategy. iCre and pgk-neo cassettes flanked by two FRT sites were inserted into the gastrin-releasing peptide gene (Grp) locus. Met is the translation initiation site of Grp. The location of PCR primers (Gic1, Gic2, Gic3, NeoP1, and NeoP2) used for genotyping are indicated. DT, diphtheria toxin gene; pBSK, pBluescriptII SK. The chimeric mouse obtained was crossed with a CAG-FLPe mouse to delete the pgk-neo cassette and establish the Grp-iCre (Gic) mouse line. (B) Genotyping PCR of genomic DNA prepared from WT; Gic+/−, Neo+; Gic+/-, and ΔNeo mice. (C) Cre activity in Grp-iCre mice was examined by crossing Grp-iCre mice with
lacZ reporter mice (CAG-CAT-Z) mice. β-galactosidase expression in a
Grp-iCre/CAG-CAT-Z mouse stained with X-gal. X-gal staining revealed robust
Cre-loxP recombination in the lateral nucleus of the amygdala (LA) and the
hippocampal CA3 region, with sparser recombination in the accessory basal nucleus of
the amygdala (AB), and in layer 6 of the cerebral cortex (VI).
Figure 2. Generation and characterization of lateral amygdala (LA)-selective glucocorticoid receptor (GR) knockout (LAGRKO) mice. (A) The LAGRKO mouse line (GRflox/flox, Grp-iCre+/-) was established by crossing floxed GR (GRflox/flox) and Grp-iCre mice. Double immunofluorescence staining of GR (green, left panels) and NeuN (magenta, middle panels) in coronal brain sections from floxed GR and LAGRKO mice. (B) Quantification of GR expression in floxed and LAGRKO mice. (C) Fluorescence images of GR expression in coronal brain sections from floxed and LAGRKO mice.
LAGRKO mice. The overlap of green and magenta signals (white, right panels) indicates the expression of GR in LA neurons in floxed GR mice (upper), which was apparently reduced in LAGRKO mice (lower). Magnified images of the boxed areas are shown in the insets. LA, lateral nucleus of the amygdala; BA, basal nucleus of the amygdala; CeA, central nucleus of the amygdala. (B) Quantification of GR* and NeuN* cells in the LA of floxed GR and LAGRKO mice (n = 9 sections from 3 mice). Data are presented as mean ± S.E.M. **p < 0.001. (C) Expression of GR in the cerebral cortex and hippocampus.
Figure 3. Genetic disruption of LAGR impairs auditory-cued fear memory following strengthened conditioning. (A) Experimental protocol for fear conditioning. Mice were trained with a protocol using six CS × US pairings. Contextual and auditory-cued fear memory were tested 24 and 48 h after training, respectively. Freezing levels during the training (B), contextual test (C), and cued test (D). During the cued test, LAGRKO mice (n = 10) exhibited significantly lower freezing levels in the presence of the tone than did floxed GR mice (n = 10). There was no significant difference in freezing levels.
between the two genotypes during the training and contextual test. (E) Plasma corticosterone levels 90 min after training were significantly higher in mice conditioned with six CS × US pairings (n = 7) than in mice conditioned with 3 CS × US pairings (n = 6) in both genotypes. Data are presented as mean ± S. E. M. *p < 0.05, *p < 0.001.
Figure 4

Figure 4. Rescue of the auditory-cued fear memory deficit in LAGRKO mice by restoring GR expression levels in the LA. (A) The experimental protocol for adeno-associated virus (AAV) vector injection and fear conditioning. (B) Representative images of the expression of green fluorescent protein (GFP, green) and GR (magenta) in the LA of LAGRKO mice injected with AAV-GFP or AAV-GR. The expression levels of GFP and GR were assessed after the behavioral test was completed. Freezing levels during the training (C), contextual test (D), and cued test (E). During the cued test, LAGRKO mice (n = 9) injected with AAV-GR and floxed GR injected with AAV-GFP...
exhibited significantly higher levels of freezing in the presence of the tone than did AAV-GFP-injected LAGRK0 mice (n = 9). There were no significant differences between the three groups during the training and contextual tests. Data are presented as mean ± S. E. M. *p < 0.05.
Figure 5. Effect of acute prior stress on auditory-cued fear conditioning. (A) The experimental design for prior restraint stress (RS) exposure and fear conditioning. Floxed GR and LAGRKO mice were exposed to a 20-min RS and fear-conditioned 1 h later. Contextual and auditory-cued fear memories were tested 24 and 48 h after training, respectively. (B) Mice exposed to RS 1 h before conditioning (brown, RS1h-Floxed GR, n = 11; RS1h-LAGRKO, n = 10) exhibited significantly higher freezing levels than did nonstressed mice (black, Floxed GR, n = 10; LAGRKO, n = 16) during the training session in both genotypes. (C) Mice exposed to RS exhibited significantly higher freezing levels than did nonstressed mice during the contextual fear memory test. (D) During the cued test, floxed GR mice exposed to RS 1 h before training exhibited significantly lower freezing levels than did the nonstressed floxed GR mice. Previous RS exposure had no effect on auditory-cued fear memory in LAGRKO mice. Data are presented as mean ± S. E. M. *p < 0.05; **p < 0.001.
Figure 6. Optogenetic manipulation of LTP or LTD at auditory inputs to the LA alters the effect of acute stress on auditory-cued fear memory. (A) Experimental schedule for AAV injection, RS exposure, auditory-cued fear conditioning, and optical LTP or LTD induction. (B) Representative fluorescence image of areas expressing
AAV-oChIEF-tdTomato 4 weeks after virus injection in the medial geniculate nucleus (MGN) and auditory cortex (AC). LA, lateral nucleus of the amygdala. (C) Floxed GR mice (n = 8) that received immediate optical LTP after the first auditory-cued fear memory test (Test 1) exhibited significantly increased freezing levels in the second auditory-cued fear memory test (Test 2). (D) LAGRKO mice (n = 8) that received optical LTP stimulation exhibited the same freezing levels in Tests 1 and 2. (E) LAGRKO mice (n = 8) that received LTD stimulation immediately after Test 1 exhibited significantly lower freezing levels in Test 2 than in Test 1. Graphs show the freezing rate during the first 1 min of tone presentation at Tests 1 and 2. (F, G) A plot of the average of field EPSP slopes (normalized to the period before optical stimulation) before and after delivering an optical LTP (before LTP, 100.00% ± 0.87%; after LTP, 146.34% ± 3.20%) or LTD (before LTD, 100.00% ± 0.61%; after LTD, 77.35% ± 0.99%). Data are obtained from four mice (two floxed GR and two LAGRKO mice). Data are presented as mean ± S. E. M. *p < 0.05, **p < 0.001.
Supplementary Figure 1. Generation of floxed GR mice. (A) Strategy for targeting the GR (Nr3c1) gene locus. The coding regions of GR exons are indicated by closed boxes. The construct included two loxP sites and the pgk-neo genes flanked by two FRT sites. DT, diphtheria toxin gene; pBSK, pBluescriptII SK; GR, glucocorticoid receptor. The chimeric mice obtained were crossed with CAG-FLP mice to delete the pgk-neo cassette and establish a floxed GR mouse line. (B) Genotyping PCR of genomic DNA prepared from WT, GR^{flox/+}, Neo (+), GR^{flox/+}, ΔNeo, and GR^{flox/flox}, ΔNeo mice.
locations of PCR primers used are indicated.

Supplementary figure 2

Supplementary Figure 2. LAGRKO mice did not exhibit fear memory deficits with the moderate fear conditioning protocol. (A) Experimental design for fear conditioning. Mice were trained with three CS × US pairing protocol. Contextual and auditory fear memories were tested 24 and 48 h after training, respectively. Freezing levels during the training (B), contextual test (C), and cued test (D). Data are presented as mean ± S. E. M. Floxed GR, n = 10; LAGRKO, n = 16. Data are presented as mean ± S. E. M.
Supplementary Figure 3. LAGRKO mice exhibited no changes in locomotor activity and anxiety level as determined using the open field test. Distance of travel throughout the apparatus (A) and in the center zone of the open field (B) and time spent in the center of the open field (C) did not differ between the two genotypes. Floxed GR, n = 15; LAGRKO, n = 10. Data are presented as mean ± S. E. M.