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Abstract 20 

Identifying adaptive loci can provide insight into the mechanisms underlying local adaptation. 21 

Genotype-environment association (GEA) methods, which identify these loci based on 22 

correlations between genetic and environmental data, are particularly promising. Univariate 23 

methods have dominated GEA, despite the high dimensional nature of genotype and 24 

environment. Multivariate methods, which analyze many loci simultaneously, may be better 25 

suited to these data since they consider how sets of markers covary in response to environment. 26 

These methods may also be more effective at detecting adaptive processes that result in weak, 27 

multilocus signatures. Here, we evaluate four multivariate methods, and five univariate and 28 

differentiation-based approaches, using published simulations of multilocus selection. We found 29 

that Random Forest performed poorly for GEA. Univariate GEAs performed better, but had low 30 

detection rates for loci under weak selection. Constrained ordinations showed a superior 31 

combination of low false positive and high true positive rates across all levels of selection. These 32 

results were robust across the demographic histories, sampling designs, sample sizes, and levels 33 

of population structure tested. The value of combining detections from different methods was 34 

variable, and depended on study goals and knowledge of the drivers of selection. Reanalysis of 35 

genomic data from gray wolves highlighted the unique, covarying sets of adaptive loci that could 36 

be identified using redundancy analysis, a constrained ordination. Although additional testing is 37 

needed, this study indicates that constrained ordinations are an effective means of detecting 38 

adaptation, including signatures of weak, multilocus selection, providing a powerful tool for 39 

investigating the genetic basis of local adaptation.  40 
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Introduction 41 

Analyzing genomic data for loci underlying local adaptation has become common practice in 42 

evolutionary and ecological studies (Hoban et al., 2016). These analyses can help identify 43 

mechanisms of local adaptation and inform management decisions for agricultural, natural 44 

resources, and conservation applications. Genotype-environment association (GEA) approaches 45 

are particularly promising for detecting these loci (Rellstab et al. 2015). Unlike differentiation 46 

outlier methods, which identify loci with strong allele frequency differences among populations, 47 

GEA approaches identify adaptive loci based on associations between genetic data and 48 

environmental variables hypothesized to drive selection. Benefits of GEA include the option of 49 

using individual-based (as opposed to population-based) sampling and the ability to make 50 

explicit links to the ecology of organisms by including relevant predictors. The inclusion of 51 

predictors can also improve power and allows for the detection of selective events that do not 52 

produce high genetic differentiation among populations (De Mita et al., 2013; de Villemereuil et 53 

al., 2014; Rellstab et al., 2015). 54 

 Univariate statistical methods have dominated GEA since their first appearance (Mitton 55 

et al., 1977). These methods test one locus and one predictor variable at a time, and include 56 

generalized linear models (e.g. Joost et al. 2007; Stucki et al. 2016), variations on linear mixed 57 

effects models (e.g. Coop et al. 2010; Frichot et al. 2013; Yoder et al. 2014; Lasky et al. 2014), 58 

and non-parametric approaches (e.g. partial Mantel, Hancock et al. 2011). While these methods 59 

perform well, they can produce elevated false positive rates in the absence of correction for 60 

multiple comparisons, an issue of increased importance with large genomic data sets. Corrections 61 

such as Bonferroni can be overly conservative (potentially removing true positive detections), 62 

while alternative correction methods, such as false discovery rate (FDR, Benjamini & Hochberg 63 

1995), rely on an assumption of a null distribution of p-values, which may often be violated for 64 

empirical data sets. While these issues should not discourage the use of univariate methods 65 

(though corrections should be chosen carefully, see François et al. (2016) for a recent overview), 66 

other analytical approaches may be better suited to the high dimensionality of modern genomic 67 

data sets. 68 

 In particular, multivariate approaches, which analyze many loci simultaneously, are well 69 

suited to data sets comprising hundreds of individuals sampled at many thousands of genetic 70 
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markers. Compared to univariate methods, these approaches are thought to more effectively 71 

detect multilocus selection since they consider how groups of markers covary in response to 72 

environmental predictors (Rellstab et al. 2015). This is important because many adaptive 73 

processes are expected to result in weak, multilocus molecular signatures due to selection on 74 

standing genetic variation, recent/contemporary selection that has not yet led to allele fixation, 75 

and conditional neutrality (Yeaman & Whitlock, 2011; Le Corre & Kremer, 2012; Savolainen et 76 

al., 2013; Tiffin & Ross-Ibarra, 2014). Identifying the relevant patterns (e.g., coordinated shifts 77 

in allele frequencies across many loci) that underlie these adaptive processes is essential to both 78 

improving our understanding of the genetic basis of local adaptation, and advancing applications 79 

of these data for management, such as conserving the evolutionary potential of species 80 

(Savolainen et al., 2013; Harrisson et al., 2014; Lasky et al., 2015). While multivariate methods 81 

may, in principle, be better suited to detecting these shared patterns of response, they have not 82 

yet been tested on common data sets simulating multilocus adaptation, limiting confidence in 83 

their effectiveness on empirical data.  84 

Here we evaluate a set of these methods, using published simulations of multilocus 85 

selection (Lotterhos & Whitlock, 2014, 2015). We compare power using empirical p-values, and 86 

evaluate false positive rates based on cutoffs used in empirical studies. We follow up with a test 87 

of three of these methods on their ability to detect weak multilocus selection, as well as an 88 

assessment of the common practice of combining detections across multiple tests. We investigate 89 

the effects of correction for population structure in one ordination method, and follow up with an 90 

application of this test to an empirical data set from gray wolves. We find that the constrained 91 

ordinations we tested maintain the best balance of true and false positive rates across a range of 92 

demographies, sampling designs, sample sizes, and selection levels, and can provide unique 93 

insight into the processes driving selection and the multilocus architecture of local adaptation. 94 

 95 

Methods 96 

Multivariate approaches to GEA: 97 

Multivariate statistical techniques, including ordinations such as principal components analysis 98 

(PCA), have been used to analyze genetic data for over fifty years (Cavalli-Sforza, 1966). 99 

Indirect ordinations like PCA (which do not use predictors) use patterns of association within 100 
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genetic data to find orthogonal axes that fully decompose the genetic variance. Constrained 101 

ordinations extend this analysis by restricting these axes to combinations of supplied predictors 102 

(Jombart et al., 2009; Legendre & Legendre, 2012). When used as a GEA, a constrained 103 

ordination is essentially finding orthogonal sets of loci that covary with orthogonal multivariate 104 

environmental patterns. By contrast, a univariate GEA is testing for single locus relationships 105 

with single environmental predictors. The use of constrained ordinations in GEA goes back as 106 

far as Mulley et al. (1979), with more recent applications to genomic data sets in Lasky et al. 107 

(2012), Forester et al. (2016), and Brauer et al. (2016). In this analysis, we test two promising 108 

constrained ordinations, redundancy analysis (RDA) and distance-based redundancy analysis 109 

(dbRDA). We also test an extension of RDA that uses a preliminary step of summarizing the 110 

genetic data into sets of covarying markers (Bourret et al., 2014). We do not include canonical 111 

correspondence analysis, a constrained ordination that is best suited to modeling unimodal 112 

responses, although this method has been used to analyze microsatellite data sets (e.g. Angers et 113 

al. 1999; Grivet et al. 2008). 114 

 Random Forest (RF) is a machine learning algorithm that is designed to identify structure 115 

in complex data and generate accurate predictive models. It is based on classification and 116 

regression trees (CART), which recursively partition data into response groups based on splits in 117 

predictors variables. CART models can capture interactions, contingencies, and nonlinear 118 

relationships among variables, differentiating them from linear models (De’ath & Fabricius, 119 

2000). RF reduces some of the problems associated with CART models (e.g. overfitting and 120 

instability) by building a “forest” of classification or regression trees with two layers of 121 

stochasticity: random bootstrap sampling of the data, and random subsetting of predictors at each 122 

node (Breiman, 2001). This provides a built-in assessment of predictive accuracy (based on data 123 

left out of the bootstrap sample) and variable importance (based on the change in accuracy when 124 

covariates are permuted). For GEA, variable importance is the focal statistic, where the predictor 125 

variables used at each split in the tree are molecular markers, and the goal is to sort individuals 126 

into groups based on an environmental category (classification) or to predict home 127 

environmental conditions (regression). Markers with high variable importance are best able to 128 

sort individuals or predict environments. RF has been used in a number of recent GEA and 129 
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GWAS studies (e.g. Holliday et al. 2012; Brieuc et al. 2015; Pavey et al. 2015; Laporte et al. 130 

2016), but has not yet been tested in a GEA simulation framework. 131 

We compare these multivariate methods to the two differentiation-based and three 132 

univariate GEA methods tested by Lotterhos & Whitlock (2015): the XTX statistic from Bayenv2 133 

(Günther & Coop, 2013), PCAdapt (Duforet-Frebourg et al., 2014), latent factor mixed models 134 

(LFMM, Frichot et al. 2013), and two GEA-based statistics (Bayes factors and Spearman’s ρ) 135 

from Bayenv2. We also include generalized linear models (GLM), a regression-based GEA that 136 

does not use a correction for population structure.  137 

 138 

GEA implementation: 139 

Constrained ordinations: 140 

We tested RDA and dbRDA as implemented by Forester et al. (2016). RDA is a two-step process 141 

in which genetic and environmental data are analyzed using multivariate linear regression, 142 

producing a matrix of fitted values. Then PCA of the fitted values is used to produce canonical 143 

axes, which are linear combinations of the predictors. We centered and scaled genotypes for 144 

RDA (i.e., mean = 0, s = 1; see Jombart et al. 2009 for a discussion of scaling genetic data for 145 

ordinations). Distance-based redundancy analysis is similar to RDA but allows for the use of 146 

non-Euclidian dissimilarity indices. Whereas RDA can be loosely considered as a PCA 147 

constrained by predictors, dbRDA is analogous to a constrained principal coordinate analysis 148 

(PCoA, or a PCA on a non-Euclidean dissimilarity matrix). For dbRDA, we calculated the 149 

distance matrix using Bray-Curtis dissimilarity (Bray & Curtis, 1957), which quantifies the 150 

dissimilarity among individuals based on their multilocus genotypes (equivalent to one minus the 151 

proportion of shared alleles between individuals). For both methods, SNPs are modeled as a 152 

function of predictor variables, producing as many constrained axes as predictors. We identified 153 

outlier loci on the constrained ordination axes based on the “locus score”, which represent the 154 

coordinates/loading of each locus in the ordination space. We use rda for RDA and capscale for 155 

dbRDA in the vegan, v. 2.3-5 package (Oksanen et al., 2013) in R v. 3.2.5 (R Development Core 156 

Team, 2015) for this and all subsequent analyses.  157 
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Redundancy analysis of components: 158 

This method, described by Bourret et al. (2014), differs from the approaches described above in 159 

using a preliminary step that summarizes the genotypes into sets of covarying markers, which are 160 

then used as the response in RDA. The idea is to identify from these sets of covarying loci only 161 

the groups that are most strongly correlated with environmental predictors. We began by 162 

ordinating SNPs into principal components (PCs) using prcomp in R on the scaled data, 163 

producing as many axes as individuals. Following Bourret et al. (2014), we used parallel analysis 164 

(Horn, 1965) to determine how many PCs to retain. Parallel analysis is a Monte Carlo approach 165 

in which the eigenvalues of the observed components are compared to eigenvalues from 166 

simulated data sets that have the same size as the original data. We used 1,000 random data sets 167 

to generate the distribution under the null hypothesis and retained components with eigenvalues 168 

greater than the 99th percentile of the eigenvalues of the simulated data (i.e., a significance level 169 

of 0.01), using the hornpa package, v. 1.0 (Huang, 2015).  170 

Next, we applied a varimax rotation to the PC axes, which maximizes the correlation 171 

between the axes and the original variables (in this case, the SNPs). Note that once a rotation is 172 

applied to the PC axes, they are no longer “principal” components (i.e. axes associated with an 173 

eigenvalue/variance), but simply components. We then used the retained components as 174 

dependent variables in RDA, with environmental variables used as predictors. Next, components 175 

that were significantly correlated with the constrained axis were retained. Significance was based 176 

on a cutoff (alpha = 0.05) corrected for sample sizes using a Fisher transformation as in Bourret 177 

et al. (2014). Finally, SNPs were correlated with these retained components to determine 178 

outliers. We call this approach redundancy analysis of components (cRDA). 179 

 180 

Random Forest: 181 

The Random Forest approach implemented here builds off of work by Goldstein et al. (2010), 182 

Holliday et al. (2012), and Brieuc et al. (2015). This three-step approach is implemented 183 

separately for each predictor variable. The environmental variable used in this study was 184 

continuous, so RF models were built as regression trees. For categorical predictors (e.g. soil 185 

type) classification trees would be used, which require a different parameterization (important 186 

recommendations for this case are provided in Goldstein et al. 2010). 187 
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First, we tuned the two main RF parameters, the number of trees (ntrees) and the number 188 

of predictors sampled per node (mtry). We tested a range of values for ntrees in a subset of the 189 

simulations, and found that 10,000 trees were sufficient to stabilize variable importance (note 190 

that variable importance requires a larger number of trees for convergence than error rates, 191 

Goldstein et al. 2010). We used the default value of mtry for regression (number of predictors/3, 192 

equivalent to ~3,330 SNPs in this case) after checking that increasing mtry did not substantially 193 

change variable importance or the percent variance explained. In a GEA/GWAS context, larger 194 

values of mtry reduce error rates, improve variable importance estimates, and lead to greater 195 

model stability (Goldstein et al. 2010). 196 

Because RF is a stochastic algorithm, it is best to use multiple runs, particularly when 197 

variable importance is the parameter of interest (Goldstein et al., 2010). We begin by building 198 

three full RF models using all SNPs as predictors, saving variable importance as mean decrease 199 

in accuracy for each model. Next, we sampled variable importance from each run with a range of 200 

cutoffs, pulling the most important 0.5%, 1.0%, 1.5%, and 2.0% of loci. These values correspond 201 

to approximately 50/100/150/200 loci that have the highest variable importance. For each cutoff, 202 

we then created three additional RF models, using the average percent variance explained across 203 

runs to determine the best starting number of important loci for step 3. This step removes clearly 204 

unimportant loci from further consideration (i.e. “sparsity pruning”, Goldstein et al. 2010). 205 

Third, we doubled the best starting number of loci from step 2; this is meant to 206 

accommodate loci that may have low marginal effects (Goldstein et al. 2010). We then built 207 

three RF models with these loci, and recorded the mean variance explained. We removed the 208 

least important locus in each model, and recalculated the RF models and mean variance 209 

explained. This procedure continues until two loci remain. The set of loci that explain the most 210 

variance are the final candidates. Candidates are then combined across runs to identify outliers.  211 

 212 

Differentiation-based and univariate GEA methods: 213 

For the two differentiation-based and the Bayenv2-based GEA methods, we compared power 214 

directly from the results provided in Lotterhos & Whitlock (2015). PCAdapt is a differentiation-215 

based method that concurrently identifies outlier loci and population structure using latent factors 216 

(Duforet-Frebourg et al., 2014). The XTX statistic from Bayenv2 (Günther & Coop, 2013) is an 217 
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FST analog that uses a covariance matrix to control for population structure. The two Bayenv2 218 

GEA statistics (Bayes factors and Spearman’s ρ) also use the covariance matrix to control for 219 

population structure, while identifying candidate loci based on log-transformed Bayes factors 220 

and nonparametric correlations, respectively. Details on these methods and their implementation 221 

are provided in Lotterhos & Whitlock (2015).  222 

We reran latent factor mixed models, a GEA approach that controls for population 223 

structure using latent factors, using updated parameters as recommended by the authors (O. 224 

François, pers. comm.). We tested values of K (the number of latent factors) ranging from one to 225 

25 using a sparse nonnegative matrix factorization algorithm (Frichot et al., 2014), implemented 226 

as function snmf in the package LEA, v. 1.2.0 (Frichot & François, 2015). We plotted the cross-227 

entropy values and selected K based on the inflection point in these plots; when the inflection 228 

point was not clear, we used the value where additional cross-entropy loss was minimal. We 229 

parameterized LFMM models with this best estimate of K, and ran each model ten times with 230 

5,000 iterations and a burnin of 2,500. We used the median of the squared z-scores to rank loci 231 

and calculate a genomic inflation factor (GIF) to assess model fit (Frichot & François, 2015; 232 

François et al., 2016). The GIF is used to correct for inflation of z-scores at each locus, which 233 

can occur when population structure or other confounding factors are not sufficiently accounted 234 

for in the model (François et al. 2016). The GIF is calculated by dividing the median of the 235 

squared z-scores by the median of the chi-squared distribution. We used the LEA and qvalue, v. 236 

2.2.2 (Storey et al., 2015) packages in R. Full K and GIF results are presented in Table S1. 237 

Finally, we ran generalized linear models (GLM) on individual allele counts using a binomial 238 

family and logistic link function for comparison with LFMM; GIF results are presented in Table 239 

S1. 240 

 241 

Simulations: 242 

We used a subset of simulations published by Lotterhos & Whitlock (2014, 2015). Briefly, four 243 

demographic histories are represented in these data, each with three replicated environmental 244 

surfaces (Fig. S1): an equilibrium island model (IM), equilibrium isolation by distance (IBD), 245 

and nonequilibrium isolation by distance with expansion from one (1R) or two (2R) refugia. In 246 

all cases, demography was independent of selection strength, which is analogous to simulating 247 
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soft selection (Lotterhos & Whitlock, 2014). Haploid, biallelic SNPs were simulated 248 

independently, with 9,900 neutral loci and 100 under selection. Note that haploid SNPs will yield 249 

half the information content of diploid SNPs (Lotterhos & Whitlock 2015). The mean of the 250 

environmental/habitat parameter had a selection coefficient equal to zero and represented the 251 

background across which selective habitat was patchily distributed (Fig. S1). Selection 252 

coefficients represent a proportional increase in fitness of alleles in response to habitat, where 253 

selection is increasingly positive as the environmental value increases from the mean, and 254 

increasingly negative as the value decreases from the mean (Lotterhos & Whitlock 2014, Fig. 255 

S1). This landscape emulates a weak cline, with a north-south trend in the selection surface. Of 256 

the 100 adaptive loci, most were under weak selection. For the IBD scenarios, selection 257 

coefficients were 0.001 for 40 loci, 0.005 for 30 loci, 0.01 for 20 loci, and 0.1 for 10 loci. For the 258 

1R, 2R, and IM scenario, selection coefficients were 0.005 for 50 loci, 0.01 for 33 loci, and 0.1 259 

for 17 loci. Note that realized selection varied across demographies, so results across 260 

demographic histories are not directly comparable (Lotterhos & Whitlock 2015). 261 

 We used the following sampling strategies and sample sizes from Lotterhos & Whitlock 262 

(2015): random, paired, and transect strategies, with 90 demes sampled, and 6 or 20 individuals 263 

sampled per deme. Paired samples (45 pairs) were designed to maximize environmental 264 

differences between locations while minimizing geographic distance; transects (nine transects 265 

with ten locations) were designed to maximize environmental differences at transect ends 266 

(Lotterhos & Whitlock 2015). Overall, we used 72 simulations for testing. We assessed trend in 267 

neutral loci using linear models of allele frequencies within demes as a function of coordinates. 268 

We evaluated the strength of local adaptation using linear models of allele frequencies within 269 

demes as a function of environment. Note that the Lotterhos & Whitlock (2014, 2015) 270 

simulations assigned SNP genotypes to individuals within a population sequentially (i.e., the first 271 

few individuals would all get the same allele until its target frequency was reached, the 272 

remaining individuals would get the other allele). This creates artifacts (e.g., artificially low 273 

observed heterozygosity) and may affect statistical error rates when subsampling individuals or 274 

performing analyses at the individual level. As recommended by K. Lotterhos (pers. comm.), we 275 

avoided these problems by randomizing allele counts for each SNP among individuals within 276 
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each population. The habitat surface, which imposed a continuous selective gradient on non-277 

neutral loci, was used as the environmental predictor. 278 

 279 

Evaluation statistics: 280 

In order to equitably compare power (true positive detections out of the number of loci under 281 

selection) across these methods, we calculated empirical p-values using the method of Lotterhos 282 

& Whitlock (2015). In this approach, we first built a null distribution based on the test statistics 283 

of all neutral loci, and then generated a p-value for each selected locus based on its cumulative 284 

frequency in the null distribution. We then converted empirical p-values to q-values to assess 285 

significance, using the same q-value cutoff (0.01) as Lotterhos & Whitlock (2015). We used 286 

code provided by K. Lotterhos to calculate empirical p-values (code provided in Supplemental 287 

Information). 288 

Because false positive rates (FPRs) are not very informative for empirical p-values (rates 289 

are universally low, see Lotterhos & Whitlock 2015 for a discussion), we applied cutoffs (e.g. 290 

thresholds for statistical significance) to assess both true and false positive rates across methods. 291 

While power is important, determining FPRs is also an essential component of assessing method 292 

performance, since high power achieved at the cost of high FPRs is problematic. Because cutoffs 293 

differ across methods, we tested a range of commonly used thresholds for each method and 294 

chose the approach that performed the best (i.e., best balance of TPR and FPR). Note that cutoffs 295 

can be adjusted for empirical studies based on research goals and the tolerance for TP and FP 296 

detections. For each cutoff tested, we calculated the TPR as the number of correct positive 297 

detections out of the number possible, and the FPR as the number of incorrect positive detections 298 

out of 9900 possible. For the main text, we present results from the best cutoff for each method; 299 

full results for all cutoffs tested are presented in the Supplemental Information. For constrained 300 

ordinations (RDA and dbRDA) we identified outliers as SNPs with a locus score +/- 2.5 and 3 301 

SD from the mean score of each constrained axis. For cRDA, we used cutoffs for SNP-302 

component correlations of alpha = 0.05, 0.01, and 0.001, corrected for sample sizes using a 303 

Fisher transformation as in Bourret et al. (2014). For GLM and LFMM, we compared two 304 

Bonferroni-corrected cutoffs (0.05 and 0.01) and a FDR cutoff of 0.1.  305 
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Weak selection: 306 

We compared the best-performing multivariate methods (RDA, dbRDA, and cRDA) for their 307 

ability to detect signals of weak selection (s = 0.005 and s = 0.001). All tests were performed as 308 

described above, after removing loci under strong (s = 0.1) and moderate (s = 0.01) selection 309 

from the simulation data sets. The number of loci under selection in these cases ranged from 43 310 

to 76.  311 

 312 

Combining detections: 313 

We compared the effects of combining detections (i.e., looking for overlap) using cutoff results 314 

from two of the best-performing methods, RDA and LFMM. We also included a scenario in 315 

which a second, uninformative predictor (the x-coordinate of each individual) is included in the 316 

RDA and LFMM tests. This predictor is analogous to including an environmental variable 317 

hypothesized to drive selection that covaries with longitude. 318 

 319 

Correction for population structure in RDA: 320 

To determine how explicit modeling of population structure affects the performance of the best-321 

performing multivariate method, RDA, we accounted for population structure using three 322 

approaches: (1) partialling out significant spatial eigenvectors not correlated with the habitat 323 

predictor, (2) partialling out all significant spatial eigenvectors, and (3) partialling out ancestry 324 

coefficients. The spatial eigenvector procedure uses Moran eigenvector maps (MEM) as spatial 325 

predictors in a partial RDA. MEMs provide a decomposition of the spatial relationships among 326 

sampled locations based on a spatial weighting matrix (Dray et al., 2006). We used spatial 327 

filtering to determine which MEMs to include in the partial analyses (Dray et al., 2012). Briefly, 328 

this procedure begins by applying a principal coordinate analysis (PCoA) to the genetic distance 329 

matrix, which we calculated using Bray-Curtis dissimilarity. We used the broken-stick criterion 330 

(Legendre & Legendre, 2012) to determine how many genetic PCoA axes to retain. Retained 331 

axes were used as the response in a full RDA, where the predictors included all MEMs. Forward 332 

selection (Blanchet et al., 2008) was used to reduce the number of MEMs, using the full RDA 333 

adjusted R2 statistic as the threshold. In the first approach, retained MEMs that were significantly 334 

correlated with environmental predictors were removed (alpha = 0.05/number of MEMs), and the 335 
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remaining set of significant MEMs were used as conditioning variables in RDA. Note that this 336 

approach will be liberal in removing MEMs correlated with environment. In the second 337 

approach, all significant MEMs were used as conditioning variables, the most conservative use 338 

of MEMs. We used the spdep, v. 0.6-9 (Bivand et al., 2013) and adespatial, v. 0.0-7 (Dray et al., 339 

2016) packages to calculate MEMs. For the third approach, we used individual ancestry 340 

coefficients as conditioning variables. We used function snmf in the LEA package to estimate 341 

individual ancestry coefficients, running five replicates using the best estimate of K, and 342 

extracting individual ancestry coefficients from the replicate with the lowest cross-entropy.  343 

 344 

Empirical data set:  345 

To provide an example of the use and interpretation of RDA as a GEA, we reanalyzed data from 346 

94 North American gray wolves (Canis lupus) sampled across Canada and Alaska at 42,587 347 

SNPs (Schweizer et al., 2016). These data show similar global population structure to the 348 

simulations analyzed here: wolf data Fst = 0.09; average simulation Fst = 0.05. We reduced the 349 

number of environmental covariates originally used by Schweizer et al. (2016) from 12 to eight 350 

to minimize collinearity among them (e.g., |r| < 0.7). One predictor, land cover, was removed 351 

because the distribution of cover types was heavily skewed toward two of the ten types. Missing 352 

data levels were low (3.06%). Because RDA requires complete data frames, we imputed missing 353 

values by replacing them with the most common genotype across individuals. We identified 354 

candidate adaptive loci as SNPs loading +/- 3 SD from the mean loading of significant RDA axes 355 

(significance determined by permutation, p < 0.05). We then identified the covariate most 356 

strongly correlated with each candidate SNP (i.e., highest correlation coefficient), to group 357 

candidates by potential driving environmental variables. Annotated code for this example is 358 

provided in the Supplementary Information.  359 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2017. ; https://doi.org/10.1101/129460doi: bioRxiv preprint 

https://doi.org/10.1101/129460
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Results 360 

Empirical p-value results: 361 

Power across the three ordination techniques was comparable, while power for RF was relatively 362 

low (Fig. 1). Ordinations performed best in IBD, 1R, and 2R demographies, with the larger 363 

sample size improving power for the IM demography. Within ordination techniques, RDA and 364 

cRDA had slightly higher detection rates compared to dbRDA; subsequent comparisons are 365 

made using RDA results. 366 

Except for a few cases in the IM demography, the power of RDA was generally higher 367 

than univariate GEAs (Fig. 2). Of the univariate methods, GLM had the highest overall power, 368 

while LFMM had reduced power for the IBD demography. Power from the Bayes Factor 369 

(Bayenv2) was generally lower than RDA across all demographies. Finally, RDA had overall 370 

higher power than the two differentiation-based methods (Fig. 3), with the exception of the IBD 371 

demography, where power was high for all methods. 372 

Among the methods with the highest overall power, all performed well at detecting loci 373 

under strong selection (Fig. 4 and S2). Detection rates for loci under moderate and weak 374 

selection were highest for ordination methods, with RDA and cRDA having the overall highest 375 

detection rates. Detection of moderate and weakly selected loci was lower and more variable for 376 

univariate methods, especially LFMM, where detection was dependent on demography and 377 

sampling scheme.  378 
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 379 

Figure 1. Comparison of power (from empirical p-values) from RDA (x-axis) and three other 380 

multivariate GEAs (y-axes, rows) for two sample sizes (columns). Points reflect demographies: 381 

1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium 382 

island model. Some variation within demographies comes from sampling design.  383 
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 384 

Figure 2. Comparison of power (from empirical p-values) from RDA (x-axis) and three 385 

univariate GEAs (y-axes, rows) for two sample sizes (columns). Points reflect demographies: 1R 386 

and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium island 387 

model. Some variation within demographies comes from sampling design.  388 
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 389 

Figure 3. Comparison of power (from empirical p-values) from RDA (x-axis) and two 390 

differentiation-based outlier detection methods (y-axes, rows) for two sample sizes (columns). 391 

Points reflect demographies: 1R and 2R = refugial expansion, IBD = equilibrium isolation by 392 

distance, IM = equilibrium island model. Some variation within demographies comes from 393 

sampling design.  394 
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 395 

Figure 4. Average power (from empirical p-values) for different levels of selection (rows) from 396 

five methods (columns) using a sample size of 20 individuals per deme. Each method shows 397 

results for different sampling strategies (R = random, P = pairs, T = transects) and demographies 398 

(1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = equilibrium 399 

island model). Only the IBD demography included very weak selection (s=0.001).  400 
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Weak selection: 401 

We compared the three ordination methods for their power to detect only weak loci in the 402 

simulations (Fig. 5). Power from RDA was higher when all selected loci were included, 403 

especially for the IM demography. Power using only weakly selected loci was comparable 404 

between RDA and dbRDA, with power slightly higher for RDA in most cases. cRDA was 405 

comparable to RDA for the IBD and 2R demographies, but had very low to no power in the IM 406 

demography, and the 1R demography with the larger sample size. 407 

 408 

Cutoff results: 409 

We compared cutoff results for the methods with the highest overall power: RDA, dbRDA, 410 

cRDA, GLM, and LFMM. The best performing cutoffs were: RDA/dbRDA, +/- 3 SD; cRDA, 411 

alpha = 0.001; GLM, Bonferroni = 0.05, and LFMM, FDR = 0.1. We did not choose the FDR 412 

cutoff for GLMs since GIFs indicated that the test p-values were not appropriately calibrated 413 

(i.e., GIFs > 1, Table S1). For some scenarios, LFMM GIFs were less than one (indicating a 414 

conservative correction for population structure, Table S1). We reran LFMM models with the 415 

best estimate of K minus one (i.e., K-1) to determine if a less conservative correction would 416 

influence LFMM results. Because there was no consistent improvement in power or TPR/FPRs 417 

using K-1 (Tables S2-S3), all subsequent results refer to LFMM runs using the best estimate of 418 

K. 419 

Full cutoff results for each method are presented in the Supplementary Information (Fig. 420 

S3-S6). Cutoff FPRs were highest for cRDA and GLM (Fig. 6). By contrast, RDA and dbRDA 421 

had mostly zero FPRs, with slightly higher FPRs for LFMM. Within these three low-FPR 422 

methods, RDA maintained the highest TPRs, except in the IM demography, where LFMM 423 

maintained higher power. LFMM was more sensitive to sampling design than the other methods, 424 

with more variation in TPRs across designs.  425 
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 426 

Figure 5. Comparison of power (from empirical p-values) from RDA tested on weak selection 427 

only (x-axis) and RDA tested on all loci under selection (first row), as well as dbRDA and cRDA 428 

tested on weak selection only (second and third rows) for two sample sizes (columns). Points 429 

reflect demographies: 1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, 430 

IM = equilibrium island model. Some variation within demographies comes from sampling 431 

design.  432 
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 433 
 434 

Figure 6. Average true positive (top two rows, in blue) and false positive (bottom two rows, in 435 

red) rates from five methods (columns) using the best cutoff for each method. Each method 436 

shows results for different sampling strategies (R = random, P = pairs, T = transects), 437 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 438 

equilibrium island model), and sample sizes (rows).   439 
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Combining detections: 440 

We compared the univariate LFMM and multivariate RDA cutoff results for overlap and 441 

differences in their detections using both the habitat predictor only, and the habitat and 442 

(uninformative) x-coordinate predictor (Figs. 7 and S7). When the driving environmental 443 

predictor is known, RDA detections alone are the best choice, since FPRs are very low and RDA 444 

detects a large number of selected loci that are not identified by LFMM (except in the IM 445 

demography, Fig. 7a). However, when a noninformative environmental predictor is included, 446 

combining test results yields greater overall benefits, since the tests show substantial 447 

commonality in TP detections, but show very low commonality in FP detections (Fig. 7b). By 448 

retaining only overlapping loci, FPRs are substantially reduced at some loss of power due to 449 

discarded RDA (and LFMM in the IM demography) detections.  450 

 451 

Correction for population structure in RDA: 452 

No MEM-based corrections for RDA were applied to IM scenarios, due to low spatial structure 453 

(i.e., no PCoA axes were retained based on the broken-stick criterion). The more liberal approach 454 

to correction using MEMs (removing retained MEMs significantly correlated with environment), 455 

resulted in removal of MEMs with correlation coefficients ranging from 0.07 to 0.72. Ancestry-456 

based corrections were only applied to IM scenarios with 20 individuals since 6 individual 457 

samples had K=1. All approaches that correct for population structure in RDA resulted in 458 

substantial loss of power across all scenarios, both in terms of empirical p-values and cutoff 459 

TPRs (Table 1 and Table S4). False positive rates (which were already very low for RDA) 460 

increased slightly when correcting for population structure. There were only two scenarios where 461 

FPRs improved (one and two fewer FP detections); however, these scenarios saw a reduction in 462 

TPR of 81% and 92%, respectively (Table S4).  463 
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 464 
Figure 7. Average counts of true positive (top rows of a and b, in blue) and false positive 465 

(bottom rows of a and b, in red) detections for two methods, RDA and LFMM, using their best 466 

cutoffs and a sample size of 20 individuals per deme. The first column shows the average 467 

number of loci detected by both methods. The second and third columns show the average 468 

number of detections that are unique to RDA and LFMM, respectively. (a) Results for GEAs 469 

using Habitat as the only predictor. (b) Results for GEAs using Habitat and the (uninformative) 470 

X-coordinate predictor. Results are presented for different sampling strategies (R = random, P = 471 

pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium 472 

isolation by distance, IM = equilibrium island model), and sample sizes (rows). 473 

(a) 

(b) 
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Table 1. Average change in power (from empirical p-values) and true and false positive rates 474 

(from cutoffs) for RDA using three different approaches for partialling out population structure. 475 

All approaches led to an overall loss of power and an increase in false positive rates. There are 476 

no MEM corrections for the IM demography, which has no significant spatial structure. Ancestry 477 

corrections apply only to 20 individual runs, where K ≠ 1. 478 

  479 

Ancestry
MEMs uncorr. 

Habitat

All retained 

MEMs

1R -0.53 -0.59 -0.72

2R -0.81 -0.53 -0.84

IBD -0.94 -0.75 -0.96

IM - - -

1R -0.26 -0.14 -0.58

2R -0.64 -0.12 -0.70

IBD -0.93 -0.69 -0.93

IM -0.70 - -

-0.69 -0.47 -0.79

1R -0.39 -0.43 -0.69

2R -0.70 -0.40 -0.76

IBD -0.93 -0.69 -0.94

IM - - -

1R -0.16 -0.16 -0.47

2R -0.47 -0.17 -0.51

IBD -0.92 -0.60 -0.90

IM -0.71 - -

-0.61 -0.41 -0.71

1R 0.0011 0.0013 0.0020

2R 0.0021 0.0011 0.0021

IBD 0.0025 0.0017 0.0023

IM - - -

1R 0.0005 0.0003 0.0014

2R 0.0014 0.0003 0.0015

IBD 0.0021 0.0010 0.0021

IM 0.0023 - -

0.0017 0.0009 0.0019

20

Average

Change in FPR (cutoffs)

Change in power (empirical p -values)

Change in TPR (cutoffs)

6

20

Average

6

Average

6

20

Indiv./

deme

Demo-

graphy
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 480 

Figure 8. Redundancy analysis biplots for simulation 1R, paired sampling, environmental 481 

surface 453, and 6 individuals per deme. Distribution of loci using: (a) unconditioned RDA (no 482 

correction for population structure); (b) partial RDA using ancestry values; (c) partial RDA using 483 

retained MEMs that are not significantly correlated with Habitat; (d) partial RDA using all 484 

retained MEMs.  485 
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Empirical data set:  486 

There were four significant RDA axes in the ordination of the wolf data set (Fig. 9), which 487 

returned 556 unique candidate loci that loaded +/- 3 SD from the mean loading on each axis: 171 488 

SNPs detected on RDA axis 1, 222 on RDA axis 2, and 163 on RDA axis 3 (Fig. 10). Detections 489 

on axis 4 were all redundant with loci already identified on axes 1-3. The majority of detected 490 

SNPs were most strongly correlated with precipitation covariates: 231 SNPs correlated with 491 

annual precipitation (AP) and 144 SNPs correlated with precipitation seasonality (cvP). The 492 

number of SNPs correlated with the remaining predictors were: 72 with mean diurnal 493 

temperature range (MDR); 79 with annual mean temperature (AMT); 13 with NDVI; 12 with 494 

elevation; 4 with temperature seasonality (sdT); and 1 with percent tree cover (Tree). 495 
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Figure 9. Triplots of wolf data for (a) RDA axes 1 and 2, and (b) axes 1 and 3. The dark gray cloud of points at the center of 496 

each plot represent the SNPs, colored points represent individual wolves with coding by ecotype. Blue vectors represent 497 

environmental predictors (see text for abbreviations). Triplot scaling is symmetrical (both SNP and individual scores are scaled 498 

symmetrically by the square root of the eigenvalues).  499 

(a)                                                                                                                        (b)   
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Figure 10. Magnification of wolf data triplots from Figure 9 to highlight SNP loadings on (a) RDA axes 1 and 2, and (b) axes 1 500 

and 3. Candidate SNPs are shown as colored points with coding by most highly correlated environmental predictor. SNPs not 501 

identified as candidates (neutral SNPs) are shown in light gray. Blue vectors represent environmental predictors (see text for 502 

abbreviations). 503 

(a)                                                                                                                          (b)   
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Discussion 504 

Multivariate genotype-environment association (GEA) methods have been noted for their ability 505 

to detect multilocus selection (Rellstab et al., 2015; Hoban et al., 2016), although there has been 506 

no controlled assessment of the effectiveness of these methods in detecting multilocus selection 507 

to date. Since these approaches are increasingly being used in empirical analyses (e.g. Bourret et 508 

al. 2014; Brieuc et al. 2015; Pavey et al. 2015; Hecht et al. 2015; Laporte et al. 2016; Brauer et 509 

al. 2016), it is important that these claims are evaluated to ensure that the most effective GEA 510 

methods are being used, and that their results are being appropriately interpreted. 511 

Here we compare a suite of methods for detecting selection in a simulation framework to 512 

assess their ability to correctly detect multilocus selection under different demographic and 513 

sampling scenarios. We found that constrained ordinations had the best overall performance 514 

across the demographies, sampling designs, sample sizes, and selection levels tested here. The 515 

univariate LFMM method also performed well, though power was scenario-dependent and was 516 

reduced for loci under weak selection (in agreement with findings by de Villemereuil et al., 517 

2014). Random Forest, by contrast, had lower detection rates overall. In the following sections 518 

we discuss the performance of these methods and provide suggestions for their use on empirical 519 

data sets. 520 

 521 

Random Forest: 522 

Random Forest performed relatively poorly as a GEA. This poor performance is caused by the 523 

sparsity of the genotype matrix (i.e., most SNPs are not under selection), which results in 524 

detection that is dominated by strongly selected loci (i.e., loci with strong marginal effects). This 525 

issue has been documented in other simulation and empirical studies (Goldstein et al., 2010; 526 

Winham et al., 2012; Wright et al., 2016) and indicates that RF is not suited to identifying weak 527 

multilocus selection or interaction effects in these large data sets. Empirical studies that have 528 

used RF as a GEA have likely identified a subset of loci under strong selection, but are unlikely 529 

to have identified loci underlying more complex genetic architectures. Note that the amount of 530 

environmental variance explained by the RF model can be high (i.e., overall percent variance 531 

explained by the detected SNPs, which ranged from 79-91% for these simulations, Table S5), 532 

while still failing to identify most of the loci under selection. Removing strong associations from 533 
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the genotypic matrix can potentially help with the detection of weaker effects (Goldstein et al., 534 

2010), but this approach has not been tested on large matrices. Combined with the computational 535 

burden of this method (taking ~10 days on a single core for the larger data sets), as well as the 536 

availability of fast and accurate alternatives such as RDA (which takes ~3 minutes on the same 537 

data), it is clear that RF is not a viable option for GEA analysis of genomic data. 538 

 Random Forest does hold promise for the detection of interaction effects in much smaller 539 

data sets (e.g., tens of loci, Holliday et al. 2012). However, this is an area of active research, and 540 

the capacity of RF models in their current form to both capture and identify SNP interactions has 541 

been disputed (Winham et al., 2012; Wright et al., 2016). New modifications of RF models are 542 

being developed to more effectively identify interaction effects (e.g. Li et al. 2016), but these 543 

models are computationally demanding and are not designed for large data sets. Overall, 544 

extensions of RF show potential for identifying more complex genetic architectures on small sets 545 

of loci, but caution is warranted in using them on empirical data prior to rigorous testing on 546 

realistic simulation scenarios. 547 

 548 

Constrained ordinations: 549 

The three constrained ordination methods all performed well. RDA in particular had the highest 550 

overall power across all methods tested here (Figs. 1-3). Ordinations were relatively insensitive 551 

to sample size (6 vs 20 individuals sampled per deme), with the exception of the IM 552 

demography, where larger sample sizes consistently improved TPRs, as previously noted by De 553 

Mita et al. (2013) and Lotterhos & Whitlock (2015) for univariate GEAs. Power was lowest in 554 

the IM demography, which is typified by a lack of spatial autocorrelation in allele frequencies 555 

and a reduced signal of local adaptation (Table S6), making detection more difficult. This 556 

corresponds with univariate GEA results from Lotterhos & Whitlock (2015), who found very 557 

low detection rates for loci under weak selection in the IM demography. Power was highest for 558 

IBD, followed by the 2R and 1R demographies. Data from natural systems likely lie somewhere 559 

among these demographic extremes, and successful differentiation in the presence of IBD and 560 

non-equilibrium conditions indicate that ordinations should work well across a range of natural 561 

systems. 562 
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All three methods were relatively insensitive to sampling design, with transects 563 

performing slightly better in 1R and random sampling performing worst in IM (Figs. 4, 6, and 564 

S2). Otherwise results were consistent across designs, in contrast to the univariate GEAs tested 565 

by Lotterhos and Whitlock (2015), most of which had higher power with the paired sampling 566 

strategy. Ordinations are likely less sensitive to sampling design since they take advantage of 567 

covarying signals of selection across loci, making them more robust to sampling that does not 568 

maximize environmental differentiation (e.g., random or transect designs). All methods 569 

performed similarly in terms of detection rates across selection strengths (Figs. 4 and S2). As 570 

expected, weak selection was more difficult to detect than moderate or strong selection, except 571 

for IBD, where detection levels were high regardless of selection. 572 

High TPRs were maintained when using cutoffs for all three ordination methods (Fig. 6). 573 

False positives were universally low for RDA and dbRDA. By contrast, cRDA showed high 574 

FPRs for all demographies except IM, tempering its slightly higher TPRs. These higher FPRs are 575 

a consequence of using component axes as predictors. Across all scenarios and sample sizes, 576 

cRDA detected component 1, 2, or both as significantly associated with the constrained RDA 577 

axes (Table S7). Most selected loci load on these components (keeping TPRs high), but neutral 578 

markers also load on these axes, especially in cases where there are strong trends in neutral loci 579 

(i.e., maximum trends in neutral markers reflect FPRs for cRDA, Table S6, Fig. 6). Given these 580 

results, we hypothesized that it might be challenging for cRDA to detect weak selection in the 581 

absence of a covarying signal from loci with stronger selection coefficients. If the selection 582 

signature is weak, it may load on a lower-level component axis (i.e., an axis that explains less of 583 

the genetic variance), or it may load on higher-level axes, but fail to be significantly associated 584 

with the constrained axes. Note that although cRDA contains a step to reduce the number of 585 

components, parallel analysis resulted in retention of all axes in every simulation tested here 586 

(Table S7). This meant that cRDA could search for the signal of selection across all possible 587 

components. 588 

When tested on simulations with loci under weak selection only, RDA, which uses the 589 

genotype matrix directly, maintained similar power as in the full data set (except in the IM 590 

scenario, where power was higher when all selected loci were included), indicating that selection 591 

signals can be detected with this method in the absence of loci under strong selection (Fig. 5, top 592 
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row). By contrast, cRDA detection was more variable, ranging from comparable detection rates 593 

with the full data set, to no/poor detections under certain demographies and sample sizes. In 594 

these latter cases, poor performance is reflected in the component axes detected as significant 595 

(Table S7); instead of identifying the signal in the first few axes, a variable set of lower-variance 596 

axes are detected (or none are detected at all). This indicates that the method is not able to “find” 597 

the selected signal in the component axes in cases where that signal is not driven by strong 598 

selection. This result, in addition to higher FPRs for cRDA, builds a case for using the genotype 599 

matrix directly with a constrained ordination such as RDA or dbRDA, as opposed to a 600 

preliminary step of data conversion with PCA. 601 

 602 

Should results from different tests be combined? 603 

A common approach in local adaptation studies is to run multiple tests (GEA only, or a 604 

combination of GEA and differentiation methods) and look for overlapping detections across 605 

methods. This ad hoc approach is thought to increase confidence in TPRs, while minimizing 606 

FPRs. The problem with this approach is that it can bias detection toward strong selective sweeps 607 

to the exclusion of other adaptive mechanisms which may be equally important in shaping 608 

phenotypic variation (Le Corre & Kremer, 2012; François et al., 2016). If the goal is to detect 609 

other forms of selection such as recent selection or selection on standing genetic variation, this 610 

approach will not be effective since most methods are unlikely to detect these weak signals. 611 

Additionally, this approach limits detections to those of the least powerful method used, forcing 612 

overall detection rates to be a function of the weakest method implemented.  613 

The complexities of this issue are illustrated by comparing results across two sets of RDA 614 

and LFMM results: one where the driving environmental variable is known (Fig. 7a), and 615 

another where the environmental predictors represent hypotheses about the most important 616 

factors driving selection (Fig. 7b). In both cases, agreement on TPs is high, and RDA has a large 617 

number of true positive detections that are unique to that method, while unique detections by 618 

LFMM are largely limited to the IM demography. The differences in the cases lies in FP 619 

detections: when selection is well understood, and uninformative predictors are not used, 620 

retaining RDA detections only is the approach that will maximize TPRs (and detection of weak 621 

loci under selection) while maintaining minimal to zero FPRs (Fig. 7a). Where GEA analyses are 622 
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more exploratory (i.e., when selective gradients are unknown), combining detections can help 623 

reduce FPRs (Fig. 7b). If some FP detections are acceptable, keeping only RDA detections will 624 

improve TPRs at the cost of slightly increased FPRs. A third approach, keeping all detections 625 

across both methods, would yield little improvement in TPRs in both cases, since LFMM has 626 

high levels of unique FPs, and minimal unique TP detections. 627 

 The decision of whether and how to combine results from different tests will be specific 628 

to the study questions, the tolerance for false negative and false positive detections, and the 629 

capacity for follow-up analyses on detected markers. For example, if the goal is to detect loci 630 

with strong effects while keeping false positive rates as low as possible, or GEA is being used as 631 

an exploratory analysis, running multiple GEA methods and considering only overlapping 632 

detections could be a suitable strategy. However, if the goal is to detect selection on standing 633 

genetic variation or a recent selection event, and the most important selective agents (or close 634 

correlates of them) are known, combining detections from multiple tests would likely be too 635 

conservative. In this case, the best approach would be to use a single GEA method, such as 636 

RDA, that can effectively detect covarying signals arising from multilocus selection, while being 637 

robust to selection strength, sampling design, and sample size.  638 

 639 

Correction for population structure: 640 

All three methods used to correct for populations structure in RDA resulted in substantial loss of 641 

power and, in most cases, increased FPRs (Table 1 and S4). The effect of correcting for 642 

population structure can be seen in ordination biplots from an example simulation scenario (Fig. 643 

8). In this 1R demographic scenario, the selection surface (“Hab”) and the refugial expansion 644 

gradient coincide, so any correction for population structure will also remove the signal of 645 

selection from the selected loci. The correction is most conservative when using all significant 646 

MEM predictors to account for spatial structure (Fig. 8d), and is less conservative when using 647 

only MEMs not significantly correlated with environment (Fig. 8c), or ancestry coefficients (Fig. 648 

8b). In all cases, however, the loss of the selection signal is significant (Table 1), and is visible in 649 

the increasing overlap of selected loci with neutral loci. 650 

While the simulations used here have overall low global Fst (average Fst = 0.05), 651 

population structure is significant enough in many scenarios to result in elevated FPRs for GLMs 652 
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(univariate linear models which do not correct for population structure, Fig. 6). Despite this, 653 

RDA and dbRDA (the multivariate analogue of GLMs) do not show elevated FPRs, even when 654 

selection covaries with a range expansion front, as in the 1R and 2R demographies. This is likely 655 

because only loci with extreme loadings are identified as potentially under selection, leaving 656 

most neutral loci, which share a similar, but weaker, spatial signature, loading less than +/- 3 SD 657 

from the mean. The generality of these results needs to be tested in a comprehensive manner 658 

using an expanded simulation parameter space that includes stronger population structure and 659 

metapopulation dynamics; this work is currently in progress. In the meantime, we recommend 660 

that RDA be used conservatively in empirical systems with higher population structure than is 661 

tested here, for example, by finding overlap between detections identified by RDA and LFMM 662 

(or another GEA that accounts for population structure). 663 

 664 

Empirical example: 665 

Triplots of three of the four significant RDA axes for the wolf data show SNPs (dark gray 666 

points), individuals (colored circles), and environmental variables (blue arrows, Fig. 9). The 667 

relative arrangement of these items in the ordination space reflects their relationship with the 668 

ordination axes, which are linear combinations of the predictor variables. For example, 669 

individuals from wet and temperate British Columbia are positively related to high annual 670 

precipitation (AP) and low temperature seasonality (sdT, Fig. 9a). By contrast, Artic and High 671 

Arctic individuals are characterized by small mean diurnal temperature range (MDR), low 672 

annual mean temperature (AMT), lower levels of tree cover (Tree) and NDVI (a measure of 673 

vegetation greenness), and are found at lower elevation (Fig. 9a). Atlantic Forest and Western 674 

Forest individuals load more strongly on RDA axis 3, showing weak and strong precipitation 675 

seasonality (cvP) respectively (Fig. 9b), consistent with continental-scale climate in these 676 

regions. 677 

 If we zoom into the SNPs, we can visualize how candidate SNPs load on the RDA axes 678 

(Fig. 10). For example, SNPs most strongly correlated with AP have strong loadings in the lower 679 

left quadrant between RDA axes 1 and 2 along the AP vector, accounting for the majority of 680 

these 231 AP-correlated detections (Fig. 10a). Most candidates highly correlated with AMT and 681 

MDR load strongly on axes 1 and 2, respectively. Note how candidate SNPs correlated with 682 
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precipitation seasonality (cvP) and elevation are located in the center of the plot, and will not be 683 

detected as outliers on axes 1 or 2 (Fig. 10a). However, these loci are detected as outliers on axis 684 

3 (Fig. 10b). Overall, candidate SNPs on axis 1 represent multilocus haplotypes associated with 685 

annual precipitation and mean diurnal range; SNPs on axis 2 represent haplotypes associated 686 

with annual precipitation and annual mean temperature; and SNPs on axis 3 represent haplotypes 687 

associated with precipitation seasonality. 688 

 Of the 1661 candidate SNPs identified by Schweizer et al., (2016) using Bayenv (Bayes 689 

Factor > 3), only 52 were found in common with the 556 candidates from RDA. Of these 52 690 

common detections, only nine were identified based on the same environmental predictor. If we 691 

include Bayenv detections using highly correlated predictors (removed for RDA) we find nine 692 

more candidates identified in common. Additionally, only 18% of the Bayenv identifications 693 

were most strongly related to precipitation variables, which are known drivers of morphology 694 

and population structure in gray wolves (Geffen et al., 2004; O’Keefe et al., 2013; Schweizer et 695 

al., 2016). By contrast, 67% of RDA detections were most strongly associated with precipitation 696 

variables, providing new candidate regions for understanding local adaptation of gray wolves 697 

across their North American range. 698 

 699 

Conclusions and recommendations: 700 

We found that constrained ordinations, especially RDA, show a superior combination of low 701 

FPRs and high TPRs across weak, moderate, and strong multilocus selection. These results were 702 

robust across the levels of population structure, demographic histories, sampling designs, and 703 

sample sizes tested here. Additionally, RDA outperformed an alternative ordination-based 704 

approach, cRDA, especially (and importantly) when the multilocus selection signature was 705 

completely derived from loci under weak selection. It is important to note that population 706 

structure was relatively low in these simulations. Results may differ for systems with strong 707 

population structure or metapopulation dynamics, where it can be important to correct for 708 

structure or combine detections with another GEA that accounts for structure. Continued testing 709 

of these promising methods is needed in simulation frameworks that include more population 710 

structure, multiple selection surfaces, and genetic architectures that are more complex than the 711 

multilocus selection response modeled here. However, this study indicates that constrained 712 
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ordinations are an effective means of detecting adaptive processes that result in weak, multilocus 713 

molecular signatures, providing a powerful tool for investigating the genetic basis of local 714 

adaptation and informing management actions to conserve the evolutionary potential of species 715 

of agricultural, forestry, fisheries, and conservation concern.  716 
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