Human enhancers harboring specific sequence composition, activity, and genome organization are linked to the immune response

Charles-Henri Lecellier¹, ², ³, *, Jinsen Li⁴, Tsu-Pei Chiu⁴, Wyeth W. Wasserman³, Remo Rohs⁴, and Anthony Mathelier³, ⁵, ⁶, *

¹Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
²Institut de Biologie Computationnelle, 860 rue de St. Priest, 34095 Montpellier cedex 5, France
³Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 980 West 28th Avenue, Room 3103, V5Z 4H4, Vancouver, BC, Canada
⁴Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
⁵Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
⁶Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
*To whom correspondence should be addressed:
charles.lecellier@igmm.cnrs.fr (CHL),
anthony.mathelier@ncmm.uio.no (AM)

Abstract

The FANTOM5 consortium recently characterized 65,423 human enhancers from 1,829 cell and tissue samples using the Cap Analysis of Gene Expression technology. We showed that the guanine and cytosine content at enhancer regions distinguishes two classes of enhancers harboring distinct nucleosome positioning pattern and, at flanking regions, DNA structural properties. A functional analysis of their predicted gene targets highlighted one class of enhancers
as significantly enriched for associations with immune response genes. Moreover, these enhancers were specifically enriched for regulatory motifs recognized by TFs involved in immune response. We observed that immune response enhancers were cell type specific, preferentially activated upon bacterial infection, and with specific response activity. Looking at chromatin capture data, we found that the two classes of enhancers were lying in distinct topologically-associated domains and chromatin loops. Our results suggest that specific nucleotide compositions encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.

1 Introduction

Gene expression is regulated through many layers, one of which being the regulation of the transcription of DNA segments into RNA. Transcription factors (TFs) are key proteins regulating this process through their specific binding to the DNA at regulatory elements, the TF binding sites (TFBSs) [1]. These regulatory elements are located within larger regulatory regions, the promoters and enhancers [2]. While promoters are situated around transcription start sites (TSSs), enhancers are distal to the genes they regulate. The canonical view is that chromatin conformation places enhancers in close 3D proximity to their target gene promoters through DNA looping [3–5]. High-resolution chromatin conformation capture (Hi-C) technology maps genomic regions in spatial proximity within cell nuclei [6]. The Hi-C technology identified specific genomic neighbourhoods of chromatin interactions, the topologically associating domains (TADs), which represent chromatin compartments that are stable between cell types and conserved across species [7,8].

Studies have shown relationships between the composition of a DNA sequence in guanine (G) and cytosine (C) and chromatin organization, for instance in relation to nucleosome positioning [9,10] and chromatin architecture [11]. DNA sequence composition and other features of promoter regions have been extensively studied, including such key advances as the discovery of CpG islands. The analysis of promoter regions in the human genome was accelerated by the development of the Cap Analysis of Gene Expression (CAGE) technology [12,13], which identifies active TSSs in a high-throughput manner based on 5' capped RNA isolation. Using CAGE data, a large scale identification of the precise location of TSSs in human [14] led to the classification of promoters into four classes based on G+C content (%GC) [15]. The study highlighted that GC-rich promoters are associated with genes involved in various binding and protein transport activities while GC-poor promoters are associated with genes responsible for environmental defense responses. While promoters overlapping CpG islands are commonly assumed to be ubiquitous drivers of housekeeping genes, comprehensive analysis of CAGE data from > 900 human samples showed that a subset deliver cell type-specific expression [16].

Large-scale computational analyses of enhancer regions have been hampered by a limited set of bona fide enhancers. An advantage of the CAGE technology
is its capacity to identify in vivo-transcribed enhancers. Specifically, it identifies active enhancer regions in biological samples by capturing bidirectional RNA transcripts at enhancer boundaries [17]. Using this characteristic of CAGE data, the FANTOM5 project identified 65,423 human enhancers, across 1,829 CAGE libraries [16–18]. Sequence property analysis suggested that the enhancers share properties with CpG-poor promoters [17].

As enhancers are distal to the genes they regulate, it is challenging to predict these relationships. Based on cross-tissue correlations between histone modifications at enhancers and CAGE-derived expression at promoters within 1,000 bp, enhancer-promoter links have been shown to be conserved across cell types [19]. As the CAGE technology captures the level of activity for both promoters and enhancers in the same samples, predicting the potential targets of the enhancers was obtained by correlating the activity levels of these regulatory regions over hundreds of human samples from the FANTOM5 consortium [17]. Using the predicted enhancer-gene associations, the authors unveiled that closely spaced enhancers were linked to genes involved in immune and defense responses. These results stress that predictions of enhancer-promoter associations are critical to decipher the functional roles of enhancers.

Here, we used the G+C content of the sequences of human CAGE-derived enhancer regions to define two classes of enhancers. The enhancers from the GC-poor class were predicted to be functionally associated with genes involved in the immune response whereas the enhancers from the other class were associated with genes involved in biological processes related to transcription and metabolic processes. Accordingly, regulatory motifs associated with immune response TFs like NF-κB are enriched in the DNA sequence of the immune response-related set of enhancers. Independent functional analysis of histone modification and CAGE data highlighted a cell type specificity of these enhancers along with their activation upon bacterial infection. Moreover, immune system enhancers were observed with a specific response activity pattern following cell stimulation in time-course data sets. Sequence analysis of the enhancers associated with immune response genes predicted them to be located in nucleosome depleted regions. Finally, we observed that the two classes of enhancers tended to be structurally organized in the human chromosomes within distinct TADs and DNA chromatin loops.

2 Materials and Methods

2.1 Human enhancers

We retrieved the hg19 positions of the 65,423 human enhancers from phases 1 and 2 of the FANTOM5 project in BED12 format from fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz [16–18]. The enhancers were predicted from CAGE experiments performed on 1,829 libraries (http://fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/Enhancers/Human.sample_name2library_id).
We extracted DNA sequences for regions of 1,001 bp centered at the enhancer mid-points (columns 7-8 of the BED12 file) using the BEDTools [20] and computed the G+C content of the sequences. We considered the distribution of the G+C content of all the enhancers (mean ∼ 45%, median ∼ 44%, standard deviation ∼ 8) to distinguish GC-poor (%GC below the median; class 1) and GC-rich (%GC above the median; class 2) enhancer classes (Figure 1a).

2.2 Distribution of enhancers in the human genome

The distribution of enhancers from the two classes in 3' UTR, 5' UTR, intergenic regions, transcription termination sites, intronic regions, non-coding and coding exons, and promoter regions in Figure S1a were obtained using the HOMER (v.4.7.2) annotatePeaks.pl script using annotations from the human genome hg19 v.5.4 (http://homer.ucsd.edu/homer/). Distances to TSSs for Figure S1b were obtained using the same script.

2.3 Repetitive elements

The hg19 coordinates of repetitive elements were retrieved from the RepeatMasker track of the UCSC Table browser tool (https://genome.ucsc.edu/cgi-bin/hgTables). The overlaps between enhancers and repetitive elements were obtained using the intersect subcommand of the BEDTools requiring a minimum overlap of 50% of the enhancer lengths.

2.4 Expression quantitative trait loci

The v6p GTEx cis-eQTLs (expression quantitative trait loci) were downloaded from the GTEx Portal at http://www.gtexportal.org/home/. The enhancer coordinates from the two classes were intersected with hg19 cis-eQTL coordinates using the intersect subcommand of the BEDTools. Following cis-eQTL variant-gene associations, each enhancer class was linked to potential target genes (2,459 and 5,857 genes for class 1 and class 2 respectively, Table S2). The intersection of the target genes from the two classes yielded 437 genes. To assess the significance of the intersection, we randomly created 1,000 times two classes of enhancers (with 32,487 and 32,936 enhancers, respectively). None of these random selections yielded an intersection of ≤ 437 potential target genes; the corresponding empirical p-value was evaluated as < 10^{-3}.

2.5 Enhancer gene targets

We considered two sets of enhancer-promoter associations corresponding to different sets of TSSs (derived from either CAGE signals at CAGE-derived TSSs from FANTOM5 or RefSeq TSS annotations). The enhancer-CAGE-derived TSSs associations were retrieved from enhancer.binf.ku.dk/presets/human.associations.hdr.txt.gz and the enhancer-RefSeq promoter associations were retrieved from enhancer.binf.ku.dk/presets/enhancer_tss_
Associations. Results obtained with enhancer-CAGE-derived TSSs associations are shown in the manuscript except otherwise stated. For promoter sequences, we extracted DNA sequences of 2,001 bp centered around peakmax of all gene-assigned CAGEs using http://fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_ann.txt.gz and http://fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_coord.bed.gz.

2.6 Nucleosome positioning

Nucleosome occupancy estimations were obtained by applying the code from the biophysical model described in [21]. It was applied to DNA sequences spanning 4,001 bp around enhancer TSSs from classes 1 and 2. The enhancer TSS positions were obtained by taking the mid-points of the 5' and 3' blocks defined in the BED12-formatted file at fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz. Note that it implies that two TSSs per enhancer were considered. The BioasAway tool [22] was applied to the DNA sequences around enhancer TSSs with the ‘m’ subcommand to shuffle the input sequences, keeping the original mononucleotide composition.

2.7 DNA shape feature plots

The values of 13 DNA structural features were retrieved from the GBshape browser [23] as bigwig files at ftp://rohslab.usc.edu/hg19/. We retrieved the averaged DNA shape values at the enhancer regions from class 1 and class 2 using the agg subcommand of the bwtool tool [24]. The normalized averaged DNA shape values were computed independently for each enhancer class using the equation:

$$norm\text{value} = (value - min\text{value})/(max\text{value} - min\text{value})$$

where $norm\text{value}$ is the normalized value to be computed for a DNA shape at a specific position in the DNA sequence, $value$ is the averaged DNA shape value at this position for the enhancers in the class, and $min\text{value}$ ($max\text{value}$) is the minimum (maximum) averaged DNA shape value for the enhancers in the class.

2.8 Gene ontology functional enrichment

Official symbols corresponding to the promoters associated with enhancers from class 1 and class 2 (Table S3) were submitted to GOrilla [25] at http://cbl-gorilla.cs.technion.ac.il/ using the January 7th 2017 update. We used the two unranked lists option with genes associated with enhancers from either class 1, class 2, specific to class 1, specific to class 2, or common to class 1 and class 2 as targets and the aggregated set of genes associated with the full
set of enhancers as background. We submitted the enriched GO biological processes with FDR< 0.01 to REVIGO [26] at http://revigo.irb.hr/ asking for a ‘small’ output list.

2.9 Motif enrichment

We applied Centrimo [27] from the MEME suite version 4.11.1 with default parameters to DNA sequences of regions ±500 bp around the mid-points of enhancers from class 1 and class 2. Class 1 enhancer regions were used as foreground and class 2 enhancer regions as background and vice-versa. The MEME databases of motifs considered for enrichment were derived from [28] (jolna2013.meme), JASPAR [29] (JASPAR_CORE_2016 vertebrates.meme), Cis-BP [30] (Homo_sapiens.meme), Swiss Regulon [31] (Swiss_Regulon_human_and_mouse.meme), and HOCOMOCO [32] (HOCOMOCOv10_HUMAN_mono_meme_format.meme). The same procedure was applied to promoter regions (±500 bp around TSSs) associated with class 1 and class 2 enhancers.

Figure 3a,b has been obtained from the html output of Centrimo by selecting the 3 most enriched motifs (ranked using the Fisher E-value).

2.10 Genome segmentation

2.10.1 ENCODE genome segmentation.

The genome segmentation using the combination of results from ChromHMM [33] and Segway [34] for ENCODE tier 1 and tier 2 cell types GM12878, H1hesc, HelaS3, HepG2, HUVEC, and K562 were retrieved from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/.

2.10.2 Genome segmentation in dendritic cells.

2.10.3 Genome segmentation overlap with enhancers.

The overlaps between enhancers and genome segments were obtained using the intersect subcommand of the BEDTools requiring a minimum overlap of 50% of the enhancer lengths. We considered enhancers as in active states if they overlapped the TSS, promoter flank, enhancer, weak enhancer, and transcribed segments.

2.11 RELA ChIP-seq data analyses

The ENCODE RELA ChIP-seq data in GM12878 cells was retrieved at http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
wgEncodeAwgTfbsSydhGm12878NfkbTnfaIggrabUniPk.narrowPeak.gz. To identify active FANTOM5 enhancers in GM12878, we considered the overlap between 1,001 bp-long regions around enhancer’s mid-points and genome segments predicted by ChromHMM and Segway combined as enhancer or weak enhancer. The identified 1,001 bp-long active enhancer regions were further overlapped with RELA ChIP-seq peaks. All overlaps were computed with the `intersect` subcommand of the BEDTools.

2.12 Enhancer expression specificity

The cell-type expression specificity of enhancers was computed as

\[
\text{entropy(enhancer expression)} = \log_2(\text{number of cell types})
\]

in [17]. Each enhancer expression was represented by a vector of expression values in each cell type, which corresponded to the mean of the enhancer expression in the samples associated with the cell types. The binary matrix of enhancer usage across FANTOM5 samples was obtained at http://enhancer.binf.ku.dk/presets/hg19_permissive_enhancer_usage.csv.gz. The association between FANTOM5 samples and cell types was obtained from Tables S10-S11 in [17]. Heat maps in Figure 5 were computed using the `colormesh` function of the `matplotlib.pyplot` Python module [36].

2.13 Enhancer dynamics

FANTOM5 classification in the 14 dynamics displayed in Figure 7 was obtained from Auxiliary data table S3 in [18]. The classification provided response class assignments to 1,294 and 2,800 class 1 and class 2 enhancers, respectively. Response classes were assigned to 2,827 and 4,406 genes associated with class 1 and class 2 enhancers, respectively. Note that enhancers and promoters can be assigned to multiple response classes.

Corresponding plots (Figure 7) and enrichment analyses were performed using `pandas` Python data structure [37] and the `scipy` Python library [38] in the `IPython` environment [39].

2.14 Chromatin conformation data

The enrichment for enhancers associated with a specific class in each TAD or chromatin domain (see below) was computed using Binomial test p-values as implemented by the `binom.test` function in the `R` environment [40]. As a control, we randomly assigned the labels class 1 and class 2 to the enhancers and computed the corresponding Binomial test p-values; this procedure was applied to 1,000 random trials.
2.14.1 Topologically associating domains.

As TADs have been shown to be conserved between cell types and species, we retrieved the TADs defined in the first study describing them [7]. The TADs were predicted in mouse embryonic stem cells and we used the liftOver tool from the UCSC genome browser at https://genome.ucsc.edu/cgi-bin/hgLiftOver to map them to hg19 coordinates.

2.14.2 Chromatin loops.

The positions of the chromatin loops computed with the HICCUPS tools [41] from Hi-C data on the GM12878, HMEC, HUVEC, HeLa, IMR90, K562, KBM7, and NHEK human cell lines were retrieved from GEO at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525.

2.15 Enrichment p-values

P-values throughout the manuscript were computed using the Fisher exact test except otherwise stated.

3 Results

3.1 Guanine and cytosine nucleotide content identified two classes of human enhancers associated with distinct interspersed nuclear elements

To analyze the sequence properties of human enhancers, we considered the set of 65,423 CAGE-derived enhancers predicted in the phases 1 and 2 of the FANTOM5 project [16–18]. We extracted 500 bp DNA sequences 5’ and 3’ of the mid-point of the enhancers. We considered the distribution of the G+C content of the enhancers (mean ∼ 45%, median ∼ 44%, standard deviation ∼ 8) to distinguish GC-poor (%GC below the median) and GC-rich (%GC above the median) enhancer classes (Figure 1a). The two classes were composed of 32,487 and 32,936 enhancers, hereafter referred to as class 1 (GC-poor) and class 2 (GC-rich), respectively.

The two classes of enhancers harbored similar proportions of enhancers located in intronic (~ 55% and ~ 49% of class 1 and class 2 enhancers, respectively) and intergenic (~ 44% and ~ 48% of class 1 and class 2 enhancers, respectively) regions (Figure S1a) but class 2 enhancers were found closer to TSSs than class 1 enhancers (Figure S1b). A third of class 1 enhancers (10,791) and 22% of class 2 enhancers (7,165) overlapped repetitive elements from RepeatMasker. In agreement with their nucleotide composition, class 1 enhancers were enriched in (A)n and (T)n simple repeats and in AT-rich low complexity sequences compared to class 2 enhancers while class 2 enhancers harbored
Figure 1: DNA sequence features at enhancers. Features associated with human enhancers from class 1 and class 2 are represented in blue and green, respectively.

a. Histogram of the %GC of the enhancers.

b. Nucleosome occupancy (y-axis) for ±2,000 bp around enhancer TSSs (x-axis) from class 1 (blue), class 2 (green), shuffled class 1 sequences (black), and shuffled class 2 sequences (grey).

c. Distribution of the normalized average %GC (y-axis) of the enhancers in class 1 and 2 along DNA regions ±2000 bp centered at enhancer center points (x-axis).

d-f. Normalized average DNA shape values (y-axis) along the DNA regions ±2,000 bp centered at enhancer midpoints (x-axis) for DNA shape features MGW (d), stretch (e), HelT (f). The largest K-S statistics between class 1 and class 2 enhancers were obtained with these 3 DNA shape features.
G-rich and C-rich low complexity sequences (Table S1). Further, long inter-
spersed nuclear elements were enriched in class 1 enhancers while no difference
was observed for short interspersed nuclear elements (Table S1).

3.2 Sequence composition predicts distinct nucleosome po-
sitioning environment around enhancer TSSs from the
two classes

In the nucleus, the DNA is packed through nucleosomes, which are composed
of ∼147 bp-long DNA sequence wrapped around histone cores. Nucleosome po-
sitioning and gene expression regulation are intrinsically linked [42–45]. Several
studies have shown that nucleosome positioning is intrinsically influenced by
DNA sequence, which can be used to predict where nucleosomes are positioned
along the genome [21, 46–49]. Using crystallographic analyses on nucleosome
structure and elasticity, [21] developed a computational tool to predict nucle-
osome positioning in DNA sequences. When applied to promoter regions of
unicellular and multicellular organisms, their model showed that promoter re-
gions of multicellular organisms have evolved to attract nucleosomes.

We evaluated nucleosome positioning around TSSs of human enhancers from
classes 1 and 2 (Figure 1b). We observed very distinct patterns of intrinsic nu-
cleosome positioning between enhancers from the two classes. Namely, DNA
sequences around class 1 enhancer TSSs harbored a lower DNA-nucleosome
affinity while the signal around class 2 enhancer TSSs was more uniform. Shuf-
fling the sequences of class 1 enhancers by keeping the %GC composition (see
Materials and Methods) abolished their nucleosome positioning profile (Fig-
ure 1b), while the same procedure did not affect the nucleosome pattern around
class 2 enhancer TSSs. The mere %GC content could explain a higher nucleo-
some occupancy for class 2 enhancers but not the specific decrease of nucleosome
affinity around class 1 enhancer TSSs (Figure 1b). Rather, class 1 enhancers
seemed to harbor specific local distribution of nucleotides, which encode for nu-
cleosome depleted regions around their TSSs. These observations reinforced a
difference between enhancers from classes 1 and 2 that goes beyond the simple
mononucleotide composition distinction.

3.3 DNA regions flanking the two classes of human en-
hancers harbored distinct DNA structural properties

Next we sought to explore the positional distribution of the %GC along the
enhancer and their flanking regions in classes 1 and 2. We considered ±2,000 bp
DNA sequences 5’ and 3’ of the mid-point of the enhancers and computed the
%GC at each position (Figure S2a). To focus on the differences in positional
patterns of %GC from class 1 and class 2 enhancers, the average G+C content
were normalized separately for the two classes (Figure 1c). We observed distinct
positional patterns of G+C content at DNA sequences flanking the enhancers
from the two classes. Class 1 enhancers harbored a stronger decrease in %GC
at their mid-points when compared to class 2 enhancers. Moreover, the regions surrounding the class 1 enhancers harbored a symmetric decrease in %GC going away from the mid-points with a minimum at about 300-400 bp from the mid-points; it was followed by an increase in %GC. On the contrary, we observed a continuous symmetric decrease in %GC composition going away from class 2 enhancer mid-points. Nevertheless, note that both class 1 and class 2 enhancers harbored a symmetrical decrease of %GC in regions of about 300-400 bp around mid-points.

As DNA sequence and shape are intrinsically linked, we next considered 13 DNA shape features computed from DNA sequences with the DNAshape tool [50, 51]: buckle, helix twist (HelT), minor groove width (MGW), opening, propeller twist (ProT), rise, roll, shear, shift, slide, stagger, stretch, and tilt [52]. We plotted the distribution of these DNA shape features along the enhancers and their flanking regions for the two classes following the same procedure used for analyzing the G+C content (Figures 1d-f, S2, and S3). We assessed the pattern differences between class 1 and class 2 enhancers by computing Kolmogorov-Smirnov (K-S) statistics. The three largest K-S statistics were obtained when considering MGW, stretch, and HelT (Figure 1d-f). The main differences between class 1 and class 2 enhancers were observed for regions flanking the enhancers while the regions <~ 200 bp away from the mid-points harbored very similar patterns; this observation was consistent between all 13 DNA shape features (Figures 1d-f and S2b-n). These observations were in agreement with the %GC-patterns observed close to the enhancer mid-points with a symmetric decrease in G+C content and differences when considering flanking regions (Figure 1c).

Taken together, these results described two subsets of human enhancers distinguishable by their G+C content with distinct positional distribution of %GC along the regions flanking the enhancers, which were reflected in their DNA structural properties. Importantly, we observed that the enhancer classification based on %GC highlighted distinct patterns of DNA shapes along the regions immediately flanking the enhancers but not at the enhancer central regions, indicating that the two classes of enhancers are located in distinct genomic environments.

3.4 The two classes of human enhancers associated with distinct biological processes

Different classes of mammalian promoters, derived from their nucleotide composition, were observed to be associated with genes linked to distinct biological functions [15]. Following the same approach, we sought for a functional interpretation of the %GC-based classification of human enhancers. We first aimed at characterizing whether the enhancers from the two classes were associated with distinct sets of target genes based on cis-eQTL associations. We linked enhancers to potential target genes by using cis-eQTL associations defined by the GTEx project. For each enhancer class, a list of potential target genes was obtained for enhancers overlapping with cis-eQTL single nucleotide polymor-
Functional enrichment analysis. Enriched GO biological processes (y-axis; log\(_{10}\) p-value < −5) associated with genes predicted to be regulated by enhancers from class 1 (top) and class 2 (bottom) were obtained using the GOrilla and REVIGO tools [25,26]. See Tables S4-S5 for the full lists of enriched terms.

Based on correlations between promoter and enhancer activities derived from CAGE data in human samples, [17] linked enhancers to their potential gene promoter targets using CAGE-derived TSSs. To infer the biological functions of enhancers, we assumed that each enhancer was associated with the same biological functions as the genes it was predicted to regulate. We submitted the two sets of genes associated with class 1 and class 2 enhancers to the GOrilla and REVIGO tools [25,26] to predict enriched (FDR q-value < 0.01) gene ontology (GO) biological processes. Class 1 enhancers were predicted to target 6,756 genes whereas class 2 enhancers were linked to 10,866 genes (Table S3). In aggregate, the enhancers corresponded to a set of 12,844 genes, of which 4,778 were common to the two classes (representing ~ 71%, ~ 44%, and ~ 37% of class 1, class 2, and the combined set of genes, respectively). Note that the aggregated set of 12,844 genes was used as the background set of genes for enrichment analyses.

Biological processes linked to immune system processes and response to stim-
ulcus and stress were found enriched for genes associated with class 1 enhancers: 'regulation of immune system process' (q = 1.23 × 10^{-14}), 'immune system process' (q = 2 × 10^{-8}), 'regulation of response to stress' (q = 1.74 × 10^{-6}), and 'response to stimulus (q = 3.44 × 10^{-6})' (Figure 2 and Table S4). The GO term 'immune system process' was found enriched with 664 genes predicted to be targets of 3,454 class 1 enhancers. When considering the genes predicted to be regulated by enhancers from class 2, the most enriched GO biological process terms were associated with 'nucleic acid-templated transcription' (q = 1.69 × 10^{-3}) and multiple biosynthetic processes (Figure 2 and Table S5). Similar results were obtained when considering enhancer-gene associations derived from CAGE signal at known RefSeq TSS locations (Tables S6-S7).

When focusing on the genes predicted to be exclusively targeted by enhancers from class 1 or class 2, we did not find enriched GO terms both for class 1 specific targets and class 2 specific ones. Finally, we considered the set of genes that are predicted to be common targets of enhancers from the two classes. GO terms associated with immune system process were found enriched (Table S8). The enrichment of immune system process-related terms was expected as about 71% of the target genes of class 1 enhancers are predicted to be targets of class 2 enhancers as well.

Taken together, the functional enrichment results revealed that a classification based on the G+C content of human enhancer regions featured two sets of enhancers predicted to be regulating genes enriched for distinct biological functions. While enhancers from the second class were linked to genes annotated with GO terms associated to transcription and multiple biosynthetic processes, the first class highlighted enhancers predicted to more specifically regulate genes involved in immune system processes.

3.5 Distinct transcription factors predicted to act upon the two classes of human enhancers

We sought to identify TF binding motifs enriched within each class of enhancers, to suggest driving TFs for the distinct biological functions. We considered 1,001 bp-long DNA sequences centered at the enhancers' mid-points. Positional motif enrichment analyses were performed using the Centrimo tool [27] to predict TF binding motifs over-represented at enhancers. Class 1 enhancer regions were compared to class 2 regions and vice-versa to highlight specific motifs (Figure 3a,b and Data S1). The most enriched motifs in class 1 enhancer regions were related to the nucleosome-remodeling factor subunit BPTF and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel signaling (NFkB1, REL, and RELA [53] and BACH2 [54]; Figure 3a and Data S1), in agreement with an involvement of class 1 enhancers in the immune response biological function (Figure 2). Motifs associated with the Specificity Protein/Krüppel-like Factor (SP/KLF) TFs were enriched in class 2 enhancer regions (Figure 3b and Data S1). Members of the SP/KLF family have been associated with a large range of core cellular processes such as cell growth, proliferation, and differentiation [55]. A similar analysis based on DNA
Figure 3: **TF binding analysis at enhancer regions.** Regions of ±500 bp around enhancer mid-points (a, b) were subjected to positional motif enrichment analyses using the Centrimo tool [27] with motifs from JASPAR [29], Cis-BP [30], Swiss Regulon [31], and HOCOMOCO [32]. Enhancers from class 1 (a) and class 2 (b) were analyzed separately. The x-axis represents the distance to the enhancer mid-points. The y-axis represents the probability of predicting TFBSs associated with the motifs given in the legend boxes. Plain lines represent the distribution of predicted TFBSs in the foreground sequences (from class 1 and class 2). Similarly, dashed lines represent the distribution of predicted TFBSs in the background sequences (from class 1 and class 2). Note that the SP1 PWMs enriched in class 2 enhancers originate from [30] (M1906_1.02) and [32] (SP1_HUMAN.H10MO.S). (c) Proportion of class 1 (left) and class 2 (right) active enhancers in GM12878 bound or not by the RELA TF (using ChIP-seq data).
regions flanking gene TSSs associated with class 1 and class 2 enhancers did not yield any enriched motifs.

We confirmed the motif-based enrichment of NF-κB/REL/RELA binding in class 1 enhancers by using ENCODE ChIP-seq data obtained in GM12878 cells for the RELA TF involved in NF-κB heterodimer formation. By combining data capturing histone modification marks, TF binding, and open chromatin regions from a specific cell type, the ChromHMM [33] and Segway [34] tools segment the genome into regions associated with specific chromatin states. Focusing on predictions from ChromHMM and Segway combined, we found 3,486 (∼11%) and 4,649 (∼14%) active enhancer regions from classes 1 and 2, respectively.

We observed that class 1 active enhancers were preferentially bound by RELA. Specifically, 904 active class 1 enhancers and 897 active class 2 enhancers overlapped RELA ChIP-seq peaks (p-value = 1.2 × 10−12; Figure 3c).

Together, these results reinforced the predictions of biological functions specific to class 1 and class 2 enhancers (Figure 2) through the presence of associated TF binding motifs at enhancers.

3.6 The two classes of human enhancers exhibited distinct activity patterns

We further investigated the functional differences between the two classes of human enhancers by analyzing their patterns of activity across cell types. In previous studies, enhancer activity has been inferred either from histone modifications or eRNA transcription signatures [5, 33, 34, 56]. We considered these two approaches. Namely, we considered histone modification data from 6 cell lines and CAGE data from 71 cell types produced by the ENCODE [57] and FANTOM5 [17] projects, respectively.

We retrieved the segmentation of the human genome obtained using a combination of ChromHMM and Segway in the tiers 1 and 2 cell types from ENCODE [57]. For each cell type, we overlapped enhancers with predicted genome segments to assign activity states to the enhancers. As an example, Figure 4 presents the proportion of enhancers from classes 1 and 2 that were overlapping with segments associated with active, CTCF, and repressed chromatin states in embryonic stem cells (H1-hESC). We consistently observed that enhancers from class 2 were significantly more active than those from class 1, which were found to be enriched in repressed genomic segments (Figures 4 and S4). Class 2 enhancers were also associated with segments characterized by CTCF binding.

From the human samples with CAGE expression from the FANTOM5 project [17], 71 cell types were defined by grouping cell and tissue samples and a cell type-specificity score was computed for each human enhancers. Specifically, the expression specificity of an enhancer was computed by [17] as the ratio between the entropy of the expression of the enhancer in the cell types and the number of cell types considered (see Materials and Methods). Using this enhancer expression specificity computation, we considered enhancers from class 1 and class 2 separately to highlight potential activity differences in the 71 cell types (Figure S5). Comparing enhancer activity specificity over all the cell types between
class 1 and class 2, enhancers from class 1 appeared to be more cell type specific (Figure 5). While immune cells, neurons, neuronal stem cells, and hepatocytes were previously described to use a higher fraction of human enhancers [17], the elevated utilization was even more pronounced for class 1 enhancers (Figures 5 and S5a).

Taken together, these results derived from histone marks and transcriptional data highlighted that enhancers from class 2 were more ubiquitously active over human cell types than enhancers from class 1, which were more cell type specific. In our previous functional analyses, we inferred the biological functions of the two classes of enhancers from the genes they were predicted to regulate. Here, we further confirmed specific functionalities for the two classes based on enhancer activity analyses, which corroborated with our functional analysis described above. Class 2 enhancers were found to be enriched in transcription, biosynthetic and metabolic processes, which are required in all cell types. Enhancers from class 1 were more cell type specific, with an emphasis in cell types associated with the immune system, in agreement with the functional enrichment analysis.

3.7 Predicted immune system enhancers were activated upon cell infection

We sought to further confirm the association of class 1 enhancers with transcriptional control of immune responses. [35] generated genome-wide DNA methylation, histone marks, and chromatin accessibility data in normal dendritic cells
Figure 5: **Cell type expression specificities of human enhancers.** The difference in cell type expression specificities derived from FANTOM5 CAGE datasets [17] for enhancers in class 1 and class 2 is provided as a heat map (see Materials and Methods for details on cell type specificity computation). The color (see scale) represents the difference in fraction of expressed enhancers in each cell type (columns) found in each expression specificity range (rows). Positive (respectively negative) values indicate a higher fraction of class 1 (respectively class 2) enhancers. The heat maps corresponding to the enhancers in each class are provided in Figure S5. CAGE, Cap Analysis of Gene Expression.
Figure 6: Enhancer activation upon cell infection. Stacked histogram of the fraction of human enhancers (y-axis) from class 1 and class 2 predicted to be activated (red) or inhibited (blue). Predictions were obtained using genomic segments predicted by ChromHMM [33] on human dendritic cells before and after infection with Mycobacterium tuberculosis [35]. Stacked histogram including unchanged activity is provided in Figure S6.

(DCs) and DCs after infection with Mycobacterium tuberculosis (MTB). The data provided the opportunity to study the chromatin state changes after infection obtained using the ChromHMM tool [33]. As for the above analysis, we overlapped chromatin state information with the enhancers from classes 1 and 2. To highlight the key epigenetic changes at enhancers, we classified the transition of activities before and after MTB infection into three groups: activated (from inactive before MTB infection to active after infection), inhibited (active to inactive) or unchanged (Figures 6 and S6). We observed that the enhancers from class 1 were significantly more activated (p-value = 4.5 × 10^{-8}) and less inhibited (p-value < 2.2 × 10^{-16}) when compared to class 2 enhancers upon MTB infection (Figure 6). These results reinforced the potential role of class 1 enhancers in immune response.

3.8 Predicted immune system enhancers showed specific response activity

Based on time-courses of differentiation and activation, it has been previously reported that transcribed enhancers were coordinating the transcription of genes in transitioning mammalian cells [18]. In this study, CAGE experiments were used to analyze the transcriptional dynamics of enhancers and promoters on the terminal differentiation of stem cells and committed progenitors as well as on the response to stimuli for differentiated primary cells and cell lines [18]. Specifically, they profiled time-courses with CAGE at a high temporal resolution within
Figure 7: Expression dynamics of human enhancers and associated promoters. Response patterns (x-axis) of human enhancers (a) and promoters (b) in time courses were classified by Arner et al. [18]. The percentage (y-axis) of enhancers (top) and promoters (bottom) from class 1 (blue) and class 2 (green) in each response pattern category are provided as histograms in the two panels. A significant difference (Bonferroni-corrected p-value < 0.01) between class 1 and class 2 enhancers or promoters in a specific category is highlighted by ‘**’.
a 6 hour time-frame to classify enhancers and promoters into distinct dynamic response patterns of early response activity. We overlaid our classification of human enhancers and their predicted target promoters with the dynamic response pattern data (Figure 7). Within the enhancers associated with any dynamic response pattern \((n = 4,094; 1,294 \text{ and } 2,800 \text{ from class 1 and class 2, respectively})\), class 2 enhancers were enriched (p-value = \(3.9 \times 10^{-129}\), hypergeometric test).

We focused on the set of 4,094 enhancers classified in the dynamic response patterns. Looking at the peaks of activity specific to early time points ('rapid short response' and 'early standard response'), class 1 enhancers were found to be downregulated while class 2 enhancers were upregulated (Figure 7a). Enhancers from class 1 showed activity dynamics corresponding to later responses (up-regulated in 'rapid long response', 'late standard response', and 'long response') when compared to class 2 enhancers (down-regulated in the same activity dynamics) (Figure 7a). The promoters associated with class 1 were significantly enriched for upregulation in the 'late response' dynamic when class 2 promoters exhibited significant downregulation (Figure 7b).

Taken together, these results identified different dynamics between class 1 and class 2 enhancers. Class 2 enhancers were more dynamic than class 1 enhancers in the FANTOM5 time-courses, activated early and for a short period of time while class 1 enhancers harbored long-lasting rapid and late activities. As previously observed [18], the activity of the enhancers were followed by peaks of activity for the associated promoters at later stages (enrichment in late response categories).

3.9 Enhancers from the same class co-localized within chromatin domains

The organization of the chromatin in cell nuclei is a key feature in gene expression regulation by forming regulatory region interactions within TADs [8]. Genes within the same TAD tend to be coordinately expressed across cell types and tissues, and clusters of functionally related genes requiring co-regulation tend to lie within the same TADs [8,58]. Similar to these studies analyzing gene organization observed in chromatin domains, we focused on how the two classes of enhancers were organized with respect to TADs. We compared the distribution of enhancers from the two classes within a set of TADs [7]. Specifically, we assessed whether individual TADs were biased for containing more enhancers associated with a specific class than expected by chance using the Binomial test. The distribution of the corresponding p-values was compared to those obtained by randomly assigning classes 1 and 2 labels to the enhancers. The results highlighted that TADs were enriched for enhancers from a specific class (Figure 8a), showing a genomic organization of human enhancers with respect to chromatin domains.

TADs represent interactions within megabase-sized domains of chromatin, which can be subdivided into kilobase-sized chromatin loops of chromatin interactions [41]. We refined our analyses of class-based enhancer co-localization by
4 Discussion

We have analyzed the sequence properties of FANTOM5 human enhancers derived from CAGE experiments to reveal that a subset with low G+C content is associated with immune response genes. The predicted immune system enhancers tend to co-localize within chromatin domains, exhibit cell type specificity, are activated upon infection, and are observed with specific response activity. In summary, our study of enhancer DNA sequence composition culminated with the identification of human enhancers associated with immune response that harbor specific sequence composition, activity, and genome organization.

The analyses of sequence properties in regulatory regions, most prominently CpG islands at promoters, have been key to understanding gene expression...
regulation [9, 10, 15]. We observed that GC-rich enhancers were more broadly activated than GC-poor enhancers. A recent study highlighted that human enhancers with broad regulatory activity across cellular contexts were enriched for GC-rich sequence motifs, in line with the fact that broadly active human TFs bind to GC-rich motifs [59]. The immune response enhancers predicted here exhibit a cell-type specific expression pattern and have low %GC. It remains unclear how and why immune response enhancers have emerged with these sequence properties. In line with their low G+C content, they were associated with (A)n and (T)n simple repeats and AT-rich low complexity sequences. They were also strongly enriched in long interspersed nuclear elements (LINEs) when compared to other enhancers. Provided that repetitive elements represent both molecular parasites and evolutionary drivers [60], these observations may explain, at the sequence level, the differences observed between the two classes of enhancers. Besides, they suggest that, similar to Alu elements and endogenous retroviruses [61–63], LINEs can exert enhancer activities that are specifically related to the immune response process. In line with this proposal, expression of LINE-1 has been shown to trigger inflammatory pathway in systemic autoimmune disease [64,65].

When comparing the set of predicted immune system enhancers to others, we found that they lie in specific genomic environments associated with a distinct local DNA shape pattern. DNA structural properties were shown to be linked with DNA flexibility, nucleosome positioning, and gene expression regulation [48,66–69]. We noticed that the DNA shape conformation at enhancers were similar between the two classes but distinct at their flanking regions (Figures 1d-f and S3). The differences in DNA shape features between the two classes of enhancers might relate to differences in conformational flexibility. Indeed, we observed that class 1 enhancer flanking regions harbored increasing MGW, stagger, and opening combined with decreasing HelT close to enhancers compared to class 2 enhancers (Figures 1d-f and S3). Moreover, we observed that sequences around immune system enhancer TSSs were predicted to repel nucleosomes, suggesting intrinsic nucleosome depleted regions around their TSSs. These characteristics all relate to distinct flexibility of the DNA, which could provide a topological explanation for the differences observed between the two classes.

Our results are reminiscent of the work of Zabidi et al., who uncovered two classes of enhancers in Drosophila regulating "housekeeping" versus "developmental" genes [70]. Similar to our findings considering human enhancers, these two Drosophila classes contain distinct regulatory elements and differ in genomic organization. A review [71] also emphasized the potential existence of two sets of enhancers, based on their distinct information processing. The proposed mechanism distinguished enhancers where the binding of TFs would be highly cooperative and coordinated, described as 'enhanceosome' model, in contrast to enhancers where TF binding provide a flexible information display characteristics of the 'billboard' model [72]. Based on studies in Drosophila, the authors pinpointed that the Rel family of TFs interact with enhancers that exhibit the properties of enhanceosomes [71]. As Rel and NF-κB proteins are
evolutionarily conserved mediators of immune responses [73], it can be speculated that the human class 1 enhancers described in our study, enriched for Rel/NF-κB binding motifs, exhibit ‘enhanceosome’ features and that the class 2 is enriched for ‘billboard’ enhancers. Dedicated experiments would be necessary to confirm this hypothesis.

5 Acknowledgments

As research parasites [74], we are indebted to the researchers around the globe who generated experimental data and made them freely available. We thank Miroslav Hatas and Georgios Magklaras for systems support, Dora Pak for management support, Chih-Yu Chen for providing the code for enrichment analyses in chromatin conformation data, and Robin Andersson for his help with FANTOM5 enhancer data. CHL was supported by funding from CNRS, Plan d’Investissement d’Avenir #ANR-11-BINF-0002 Institut de Biologie Computationnelle (Young Investigator grant). AM and WWW were supported by the Genome Canada/Genome BC Large Scale Applied Research Grant 174CDE. Funding was provided by the Child and Family Research Institute and the British Columbia Children’s Hospital Foundation, Vancouver, to AM and WWW. AM was also supported by funding from the Norwegian Research Council, Helse Sør-Øst, and the University of Oslo through the Centre for Molecular Medicine Norway (NCMM) and the Oslo University Hospital Radiumhospitalet. RR was supported by the National Institutes of Health (grants R01GM106056 and U01GM103804).

6 Author contributions

CHL and AM conceived and designed the project. CHL and AM implemented and performed experiments. JL and TPC computed the DNA shape feature values and made them available. RR supervised the development of DNA shape features computation. CHL, WWW, and AM analyzed and interpreted the results. JL, TPC, and RR were involved in the interpretation of the results related to the DNA shape features. CHL and AM wrote the manuscript with revisions from WWW and RR.

References

