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A major role of vision is to guide navigation, and navigation is strongly driven by vision1–4. Indeed, the brain’s visual 
and navigational systems are known to interact5,6, and signals related to position in the environment have been 
suggested to appear as early as in visual cortex6,7. To establish the nature of these signals we recorded in primary visual 
cortex (V1) and in the CA1 region of the hippocampus while mice traversed a corridor in virtual reality. The corridor 
contained identical visual landmarks in two positions, so that a purely visual neuron would respond similarly in those 
positions. Most V1 neurons, however, responded solely or more strongly to the landmarks in one position. This 
modulation of visual responses by spatial location was not explained by factors such as running speed. To 
assess whether the modulation is related to navigational signals and to the animal’s subjective estimate of position, 
we trained the mice to lick for a water reward upon reaching a reward zone in the corridor. Neuronal populations in 
both CA1 and V1 encoded the animal’s position along the corridor, and the errors in their representations were 
correlated. Moreover, both representations reflected the animal’s subjective estimate of position, inferred from the 
animal’s licks, better than its actual position. Indeed, when animals licked in a given location – whether correct or 
incorrect – neural populations in both V1 and CA1 placed the animal in the reward zone. We conclude that visual 
responses in V1 are tightly controlled by navigational signals, which are coherent with those encoded in hippocampus, 
and reflect the animal’s subjective position in the environment. The presence of such navigational signals as early as 
in a primary sensory area suggests that these signals permeate sensory processing in the cortex.  

 
To characterise the influence of spatial position on 
the visual responses of area V1 we took transgenic 
mice expressing the calcium indicator GCaMP6 in 
excitatory cells and placed them in a 100 cm corridor 
in virtual reality (VR; Figure 1a). The corridor had four 
prominent landmarks, spaced 20 cm apart: a grating 
and a plaid, and then again a grating and a plaid. The 
repetition of landmarks created two visually-
matching segments of the corridor, separated by 40 
cm (Figure 1a, b; Supplementary Figure 1). We 
identified V1 based on the retinotopic map of the 
cortical surface, measured using wide-field imaging8 
(Figure 1c). We then pointed a two-photon 
microscope on regions in medial V1, focusing our 
analysis on neurons with receptive field centres >40o 
azimuth (Figure 1c), which were driven as the mouse 
passed the landmarks. As expected, given the 
repetition of visual scenes in the two segments of the 
corridor, some V1 neurons had a response profile 
with two equal peaks spaced 40 cm apart (Figure 1d). 
Other V1 neurons, however, responded very 
differently to the same visual stimuli in the two 
segments (Figure 1d). These results indicate that 
visual activity in V1 can be strongly modulated by the 
animal’s spatial position in an environment. 

This modulation of visual responses by spatial 
position occurred in the majority of V1 neurons 
(Figure 1e-g). We imaged the activity of 8,610 V1 

neurons across 18 sessions in 4 mice. We selected 
neurons (n = 4,958) with receptive field centres >40o 
azimuth and activity significantly modulated by 
position in the corridor, and divided the trials in half, 
using the odd trials to find the position where each 
neuron fired maximally. The resulting representation 
reveals a striking preference of V1 neurons for spatial 
position, with most neurons giving much stronger 
responses in one position than in the visually 
matching position 40 cm away  (Figure 1e). To 
quantify this preference while avoiding any 
circularity, we used the data obtained in the other 
half of the trials (even trials). These data showed that 
the preference for spatial position was robust (Figure 
1f). Among the neurons that responded when the 
animal traversed the two visually-matching segments 
(n = 2,422), the responses to the landmarks 40 cm 
from the preferred position were substantially 
smaller than the responses at the preferred position 
(Figure 1g; Supplementary Figure 2): the median ratio 
of their responses was 0.61 ± 0.31 (± m.a.d.). 
Modulation of visual responses by spatial position 
therefore reflected a reliable and widespread 
preference of individual V1 cells for one of the two 
locations. 

The modulation of V1 responses by spatial position 
could not be explained by classical visual responses, 
or by deviations in pupil position and diameter, 
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running speed or reward.  As expected, applying a 
model of purely visual responses on the sequences of 
images (using a simulation of V1 complex 
cells, Supplementary Figure 3) generated ratios of 
responses that were very close to 1 (0.97 ± 0.17). The 
preference for spatial position could not be explained 
by deviations in pupil position or size as the ratio of 
responses was strongly biased towards low values 
even in sessions with steady eye position or pupil size 
(Supplementary Figure 4). Moreover, the modulation 
of V1 responses by spatial position could not be 
explained by variations in the animal’s speed. Given 
that V1 neurons are influenced in diverse ways by 
running speed and visual speed9–12, they might 
respond differently in the two segments of the 
corridor based on speed differences. To control for 
this potential effect, we stratified the data in three 

groups according to instantaneous running speed 
(low, medium, or high; Supplementary Figure 5), and 
estimated each neuron’s preferred position based on 
medium speed. We then calculated the ratio of 
responses for low and high speeds, and found them 
to be identical (Figure 1h). The spatial modulation of 
visual responses was also independent of the 
presence of a reward:  in some sessions mice ran 
freely in the absence of a reward, and the ratio of 
responses remained significantly different from the 
simulations of purely visual responses 
(Supplementary Figure 6).  

Having established that V1 responses are modulated 
by spatial position, we next asked whether the 
underlying signals reflect the spatial position encoded 
in the brain’s navigational systems and the animal’s 
subjective estimate of position (Figure 2).  We 

Figure 1: Responses in the primary visual cortex (V1) are modulated by spatial context. (a) Mice ran on a cylindrical 
treadmill to navigate a virtual corridor presented on three visual displays. The corridor had two landmarks (a grating and 
a plaid) that repeated after 40 cm, creating two visually-matching segments (red and blue bars). (b) Example screenshots, 
showing the visual similarity of the virtual corridor at two pairs of positions spaced 40 cm apart. (c) Example retinotopic 
map of the cortical surface acquired with widefield calcium imaging.  The border of V1 is defined by inversion of the 
retinotopic map. Squares denote the field of view in two-photon imaging sessions targeted to medial V1 in an animal 
(field of view with green frame is shown in the inset). Within these sessions we analysed responses from neurons with 
receptive field centre > 40o azimuth (curve). (d) Normalized response as a function of position in the virtual environment 
for six example V1 neurons. Dotted lines show predictions if the responses were identical in the two segments of the 
corridor (red and blue bars).  (e) Normalized response as a function of distance in the virtual environment obtained from 
odd trials only, for V1 neurons with receptive field centres >40o azimuth and activity significantly modulated by position 
in the corridor (4,958 of 8,610 neurons). Neurons are ordered based on the position of their maximum response. Yellow, 
red and blue lines indicate position of maximum +/- 40 cm.  Red and blue bars are as in a. (f) Same as e, for the half of the 
data (even trials) that were not used to order the responses. Sequence and scaling of the responses are the same as in e. 
(g) Cumulative distribution for the ratio of secondary response (40 cm away from peak response, red or blue line in f) 
divided by peak response (yellow line in f), derived from even trials (black). For comparison, the red curve shows the same 
ratio of responses obtained from simulations of Complex cells with purely visual responses. (h) Same as in g after 
stratifying the data by running speed. The two curves corresponding to low (cyan) and high (purple) speeds overlap and 
appear as a single dashed curve.  
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recorded neuronal activity simultaneously in V1 and 
hippocampal area CA1 using two 32-channel 
extracellular electrodes in four wild-type mice (Figure 
2a). To gauge their subjective estimate of position, we 
trained the mice to lick a water spout upon reaching 
a specific region of the VR corridor to receive a water 
reward (Figure 2b; Supplementary Movie 1, 
Supplementary Figure 7). All four mice learned to 
perform this task with over 80% accuracy. To ensure 
that the task required vision and could not be solved 
simply by counting steps, we introduced random 
intervals between consecutive runs through the 
corridor, and also tested that the animals could still 
perform the task when we changed the gain relating 
wheel rotation to progression in the VR corridor 

(Supplementary Fig 7f,g). Moreover, performance 
was reduced when the contrast was lowered, thus 
confirming that the animal used vision to perform the 
task (Supplementary Figure 7c-e).  

Many recorded neurons in both the visual cortex and 
hippocampus had place-specific response profiles and 
faithfully represented the position of the mouse in 
the environment (Figure 2c-f). Consistent with our 
previous observations with two-photon imaging, V1 
neurons displayed a non-visual modulation of their 
response profiles, i.e. they responded more strongly 
in one of the two visually-matching segments of the 
corridor (Figure 2c). In turn, hippocampal CA1 
neurons exhibited place fields4,13–15, responding in a 
single corridor location (Figure 2d). Responses in both 

 

Figure 2: V1 and CA1 neural populations represent spatial 
positions in the virtual corridor and make correlated 
errors. (a) Example of reconstructed electrode tracks. Multi-
electrode arrays were dipped in DiI before insertion (red); 
green shows cells labelled by DAPI. Panel shows one array 
(with four shanks) in the CA1 layer of the Hippocampus 
together with a second electrode track of one shank aimed 
at the primary visual cortex (V1). (b) In the task, water was 
delivered when mice licked in a reward zone (indicated by 
green shaded area in bottom of a). (c) Normalized activity as 
a function of position in the virtual corridor, for V1 neurons 
(266 cells, 8 sessions). Cells are ordered based on the 
position of their maximum response. Yellow, red and blue 
lines indicate position of maximum +/- 40 cm. (d) Similar plot 
for CA1 place cells (334 cells, 8 sessions). (e) Density map 
showing the distribution of the position decoded from the 
firing of simultaneously recorded V1 neurons (y-axis) as a 
function of the animal’s actual position (x-axis).  The 
distribution of decoded positions was averaged across all 
recording sessions (n = 8), considering only correct trials. 
The red diagonal stripe indicates accurate estimation of 
position from the population. (f) Similar plot for CA1 
neurons. (g) Density map showing the joint distribution of 
position decoding error from V1 and CA1 at an example 
position (left), together with a similar analysis on data 
shuffled preserving the correlation of run speed and 
position (right). (h) Correlation coefficient of decoding 
errors in V1 and CA1 for each recording session, against 
similar analysis of shuffled data. Correlations are 
significantly above shuffling control (p=0.0198, Student t-
test). (i) Difference between density map for decoding 
errors from simultaneously recorded V1 and CA1 
populations and shuffling control, for the example in g. (j) 
Difference between joint density map of V1 and CA1 
position, and shuffled control, averaged over all positions 
and recording sessions (n = 8). 
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V1 and CA1 encoded the position of the mouse in the 
environment, with no ambiguity between the two 
visually-matching segments. Indeed, an independent 
Bayes decoder16 was able to read out the animal’s 
position from the activity of neurons recorded from 
V1 (33 ± 17 neurons per session, n = 8 sessions; Figure 
2e) or from CA1 (42 ± 20 neurons per sessions; n = 8 
sessions; Figure 2f). 

Furthermore, when visual cortex and hippocampus 
made errors in estimating the mouse’s position, these 
errors were correlated with each other (Figure 2g-h). 
The distributions of errors in position decoded from 
V1 and CA1 both peaked at zero (Figure 2g), but were 
significantly correlated (Figure 2h; ρ = 0.125, p = 
0.0129, Student t-test). Variations in speed affect 
responses of both V19,10 and CA116–19, so it is 
important to test whether this correlation arises from 
a common modulation of both regions by running 
speed. We therefore shuffled the data between trials 
in a manner that preserves the relationship between 

speed and position. After shuffling, the correlation 
dramatically decreased: V1 and CA1 decoding errors 
had a correlation of only 0.022, significantly less than 
the observed moment-by-moment correlation of 
0.125 (p = 0.0115; Figure 2g, h). To estimate how V1 
and CA1 errors covary regardless of position and 
speed, we subtracted the joint distributions obtained 
from the original dataset and from the shuffled one 
(Figure 2i, j). The residual showed a clear distribution 
of decoding errors along the diagonal, indicating that 
V1 and CA1 representations are more correlated than 
expected from common speed modulation. Thus, on 
a moment-by-moment basis V1 carries an estimate of 
the animal’s position that is consistent with the 
estimate in CA1.   

We next asked whether the positional signals carried 
by CA1 and V1 relate to the animal’s subjective 
estimate of position (Figure 3a-f). CA1 activity is 
influenced by the ongoing performance of navigation 
tasks20–23, and may reflect the animal’s subjective 

Figure 3: Positions encoded by visual cortex and 
hippocampus are correlated with animal’s spatial 
decisions. (a) Density map showing the distribution of 
positions decoded from the V1 population (y-axis), as a 
function of the animal’s actual position (x-axis) on trials 
where the mice licked early. The decoder was trained on 
a separate set of trials where mice licked in the correct 
position. (b) Same plot for trials where the animal licked 
late.  (c) The average decoded probability for the animal 
to be in the reward zone, as a function of distance from 
the reward on Early (red), Correct (green) and Late (blue) 
trials. The red curve peaks before the animal actually 
reaches the reward zone, while the blue curve peaks 
after, indicating that V1 population activity represents 
subjective, rather than actual position at the time of 
licking on early and late trials. The probability was 
normalized relative to the probability of being in the 
reward zone in the correct trials. Red dots: positions 
where the decoded probability of being in the reward 
zone differed significantly between Early and Correct 
trials (p<0.05, two-sample t-test).  Blue dots: significant 
difference between Correct and Late trials. (d-f) Same as 
a-c, for decoding using the population of CA1 neurons. 
(g) Position decoded from V1 activity as a function of 
actual position of the animal. Each cross shows the 
position of when the animal licked for a reward on Early 
trials (red crosses) or Late trials (blue crosses) on an 
example session. Note that Late trials can include some 
early licks. The distributions of all the error trial licks 

during the example session (mean ± s.d) are shown as shaded regions for Early (red) and Late (blue) trials. The reward 
zone is indicated as a light green shaded region. (h) The distributions of positions decoded from V1 activity as a function 
of actual position of the animal for all error trial licks across all recording sessions (n = 8). (i) Fraction of licks as a function 
of distance from reward location in decoded positions decoded from V1 activity. (j-l) Same as g-i, for CA1 neurons. 
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position more than actual position21,23,24. Having 
trained the mice to selectively lick the spout in the 
reward zone, we could assess their subjective 
estimate of position from the location of their licks. 
We divided trials into three groups: Early trials when 
too many licks (usually 4-6) were before the reward 
zone, causing the trial to be aborted; Correct trials 
when one or more licks occurred in the reward zone; 
and Late trials when the mouse missed the reward 
zone and licked afterwards. To understand how V1 
and CA1 neural representations of space related to 
this behaviour, we trained the Bayesian decoder on 
the population activity measured in Correct trials, and 
analysed the likelihood of decoding different 
positions in the three types of trials. Decoding 
performance in Early and Late trials showed 
systematic deviations from the diagonal (where 
decoded position is veridical). In Early trials, V1 and 
CA1 tended to overestimate the animal’s progress 
along the corridor (a deviation above the diagonal in 
Figure 3a, d). In Late trials, conversely, they tended to 
underestimate it (a deviation below the diagonal in 
Figure 3b, e). Accordingly, the probability of being in 
the reward zone peaked before the actual reward 
zone in Early trials and after it in Late trials, and this 
was the case not just for CA1 but also for V1 (Figure 
3c, f). These consistent deviations suggest that the 
representations of position in V1 and CA1 are 
correlated with the animal’s decisions to lick and thus 
likely reflect the animal’s subjective estimate of 
position.  

The timing of the licks provides an opportunity to 
gauge when the mouse’s subjective estimate of 
position lies in the reward zone.  If activity in V1 and 
CA1 reflects subjective position, it should place the 
animal in the reward zone whether the animal 
correctly licked in that zone or it licked earlier or later. 
This prediction is borne out by the data (Figure 3g-l). 
In the VR environment, we had a precise 
measurement of the times when the animal licked. 
We could therefore decode activity in V1 and CA1 at 
those times, and compare the decoded position to 
the animal’s actual position. When plotted as a 
function of actual position, by definition, the 
distributions of licks in Early, Correct, and Late trials 
were distinct (Figure 3g, h and j, k). However, when 
plotted as a function of decoded position (with a 
decoder trained only on Correct trials) these 
distributions came into register over the rewarded 
zone, whether the decoding was done from V1 
activity (Figure 3g-i) or from CA1 activity (Figure 3j-

l).  Thus, when animals licked for a reward, the activity 
of both V1 and CA1 signalled that position was in the 
reward zone. 

Taken together, these results indicate that the visual 
responses of V1 are modulated by the same spatial 
signals represented in hippocampus, and that these 
signals reflect the animal’s subjective position in the 
environment.  These signals may become stronger as 
animals become increasingly familiar with the 
environment6,7, perhaps contributing to the changes 
in V1 responses to visual stimuli seen as animals learn 
behavioural tasks25–27. However, we also observed 
spatial modulation in animals that freely ran the 
environment without reward (Figure 1; 
Supplementary Figure 6), suggesting that even 
incidental learning of the spatial features of the 
environment, in the absence of a task, is sufficient to 
modulate V1 responses. 

The network of connections underlying this 
modulation of visual responses by subjective spatial 
position is yet unknown. While the primary visual 
cortex and hippocampus are not directly connected, 
both feed-forward and feedback connections 
(possibly through higher visual areas and retrosplenial 
or rhinal cortices) may convey spatial information 
between the two regions28,29. Outside the 
hippocampal formation, spatial signals have been 
reported in the retrosplenial, parietal and prefrontal 
cortex30,31. Our data show that spatial signals related 
to an animal’s own estimate of position appear as 
early as in a primary sensory cortex. This result 
indicates that the mouse cortex does not keep a firm 
distinction between navigational and sensory 
systems: rather, spatial signals permeate cortical 
processing. 
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Supplementary Figures 

Supplementary Movie 1: Movie of animal performing the task in virtual reality. 

 

 

 

Supplementary Figure 1: Design of virtual environment with two visually matching segments.  

a, The virtual corridor had four prominent landmarks. Two landmarks (grating and plaid) were repeated at two 
positions, 40cm apart creating two visually matching segments in the room, from 10 cm to 50 cm and from 50 
cm to 90 cm (indicated by red and blue bars in the left panel), as illustrated in the right panel.  

b, Example screenshots of the right visual field displayed in the environment when the animal is at different 
positions. Each row displays screen images at positions 40cm apart. 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 18, 2017. ; https://doi.org/10.1101/235648doi: bioRxiv preprint 

https://doi.org/10.1101/235648
http://creativecommons.org/licenses/by-nc-nd/4.0/


  9 
 

 

Supplementary Figure 2: Spatial averaging of visual cortical activity confirms the difference in response 
between visually matching locations.  

a, Mean response of V1 neurons as a function of the distance to the peak response , as obtained from even 
trials (2,422 cells with peak response between 15 and 85 cm along the corridor). The position of the peak 
response was estimated from the other half of the trials (odd trials). 

b, Population average across responses shown in a. Lower values of the side peaks compared to central peak 
indicates strong preference of V1 neurons for one segment of the corridor over the other visually-matching 
segment (40 cm away from peak response) . 
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Supplementary Figure 3: Simulation of purely visual responses to position in VR. 

Responses of 6 simulated neurons, with purely visual responses produced by a complex cell model, with 
varying spatial frequency, orientation, or receptive field centres. The images on the left of the panel show the 
quadrature pair of complex cell filters, and on the right is the response of the simulation of that pair as a 
function of position in the virtual environment. Simulated complex cells had spatial frequencies, and 
orientations that are commonly observed in mouse V1 (sf: 0.04, 0.05, 0.06 or 0.07 cyc/o; orientations: 0o to 
90o with twice more cells for cardinal orientations). The receptive field had positions > 40o azimuth (40o, 50o, 
70o, 80o), similar to the V1 neurons we considered for analysis. In rare cases (like in f) when the receptive fields 
do not match the features of the environment, we get little selectivity along the corridor. These cases lead to 
lower value for the response ratios.  
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Supplementary Figure 4: The spatial modulation of V1 responses is not a result of pupil position or diameter.  

a, Pupil position as a function of location in the virtual corridor, for an example session where the position of 
the pupil was on average the same along the corridor. Thin red curves: position trajectories on individual trials; 
thick curves, average. Top and bottom panels: x- and y-coordinates of the pupil.  

b, Distribution of response ratios for sessions with steady eye position (10 sessions; red) and for simulations 
of complex cells (black).The two distributions are significantly different (two-sample Kolmogorov-Smirnov 
test; p<<0.001).  

c, Pupil size as a function of position for an example session where pupil size was on average the same along 
the VR corridor.  

d, Distribution of response ratios for sessions with steady pupil size (5 sessions; red) and for simulations of 
complex cells (black). The two distributions are significantly different (two-sample Kolmogorov-Smirnov test; 
p<<0.001). 
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Supplementary Figure 5: The spatial modulation of responses in V1 cannot be explained by speed.  

a, Single-trial trajectories of speed as a function of position in the virtual reality environment for three example 
recording sessions.  

b, Response profile of an example V1 cells in each session as a function of position in the room for three 
different speed ranges, corresponding to the 3 shading bands in a.  

c, Two-dimensional response profiles of the same example neurons showing activity as a function of position 
and running speed for speeds higher than 1cm/s. 
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Supplementary Figure 6:  The spatial modulation of V1 responses cannot be explained by reward.  

a, Normalized response as a function of position in the virtual corridor, across sessions without reward (1173 

cells). Data come from 2 out 4 mice that freely ran the environment without reward (8 sessions). Responses 

in even trials (right) are ordered according to the position of maximum activity measured in odd trials (left). 

b, Distribution of response ratios for unrewarded sessions (8 sessions; cyan) and for simulations of complex 

cells (black). The two distributions are significantly different (two-sample Kolmogorov-Smirnov test; 

p<<0.001). 
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Supplementary Figure 7: Behavioural performance in the task.  

a, Cartoon of the experimental setup. Virtual reality was presented on three visual displays.  

b, Illustration of the virtual reality environment with four prominent landmarks, a reward zone, and the zones 

that define trial types: Early, Correct and Late. 

c, Percentage of trials during which the animal makes behavioural errors, by licking either too early or too late 

at three different contrast levels: 18% (low), 60% (medium) or 72% (high).  

d, Illustration of performance on all trials of one example recording session. Each row represents a trial, black 

dots represent positions where the animal licked, and cyan dots indicate the delivery of a water reward. 

Coloured bars indicate the outcome of the trial, red: Early, green: Correct, blue: Late.  

e-g, Successful performance relies on vision: e, The animal does not lick when the room was presented at zero 

contrast. f. If the gain between the animals’ physical movement and movement in the virtual environment 

was increased, the animals licked after running a shorter physical distance. g, If the position of the visual cues 

was shifted forward or back (high/low room length (RL)), the lick position shifted accordingly, indicating that 

the animals rely on vision to perform the task. 
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Methods 

All experiments were conducted according to the UK Animals (Scientific Procedures) Act, 1986 under personal 
and project licenses issued by the Home Office following ethical review. 

For simultaneous recordings in V1 and CA1, we used four C57BL/6 mice (all male, implanted at 4-8 weeks of 
age). For calcium imaging experiments, we used double or triple transgenic mice expressing GCaMP6 in 
excitatory neurons (3 females, 1 male, implanted at 4-6 weeks). The double transgenic expressed GCaMP6 
slow (Wekselblatt et al., 2016) (Camk2a-tTA;tetO-G6s). The triple transgenics expressed GCaMP6 fast 
(Madisen et al., 2015) (Emx1- Cre;Camk2a-tTA;Ai93, 3 mice). None of these mice displayed the aberrant 
activity that is sometimes seen in Ai93 mice (Steinmetz et al., 2017).  

Virtual Environment and task 

The virtual reality environment was a corridor adorned with a white noise background and four landmarks: 
two grating stimuli oriented orthogonal to the corridor and two plaid stimuli (Figure 1a). The corridor 
dimensions were 100 x 8 x 8 cm, and the landmarks (8 cm wide) were centred 20, 40, 60 and 80 cm from the 
start of the corridor. The animal navigated the environment by walking on a custom-made polystyrene wheel 
(15 cm wide, 18 cm diameter). Movements of the wheel were captured by a rotary encoder (2400 
pulses/rotation, Kübler, Germany), and used to control the virtual reality environment presented on three 
monitors surrounding the animal, as previously described(Saleem et al., 2013). When the animal reached the 
end of the corridor, it was placed back at the start of the corridor after a 3-5 s presentation of a grey screen. 
Trials longer than 120 s were timed out and were excluded from further analysis.  

Mice used for calcium imaging ran freely through the corridor, with no specific task. Two of the mice were 
motivated to run with water rewards. One animal received rewards at random positions along the corridor. 
The other received rewards at the end of the corridor. To control for the effect of the reward on V1 responses, 
no reward was delivered in some sessions (n = 8 sessions; 2 animals).  

Mice used for simultaneous V1-CA1 recordings were trained to lick in a specific region of the corridor, the 
reward zone. This zone was centred at 70 cm and was 8 cm wide. Trials in which the animals were not engaged 
in the task, i.e. when they ran through the environment without licking, were excluded from further analysis. 
The animal was rewarded for correct licks with ~2 μl water using a solenoid valve (161T010; Neptune Research, 
USA), and licks were monitored using a custom device that detected breaks in an infrared beam. 

Surgery and training 

The surgical methods are similar to those described previously (Ayaz et al., 2013; Saleem et al., 2013). Briefly, 
a custom head-plate with a circular chamber (3-4 mm diameter for electrophysiology; 8 mm for imaging) was 
implanted on 4-8 week mice under isoflurane anaesthesia. For imaging, we performed a 4 mm craniotomy 
over left visual cortex by repeatedly rotating a biopsy punch. The craniotomy was shielded with a double 
coverslip (4 mm inner diameter; 5 mm outer diameter). After 4 days of recovery, some mice were water 
restricted (> 40 ml / kg / day) and were trained for 30-60 min, 5-7 days/week.  

Mice used for simultaneous V1-CA1 recordings were trained to lick selectively in the reward zone using a 
progressive training procedure. Initially, the animals were rewarded for running past the reward location on 
all trials. After this, we introduced trials where the animal was rewarded only when it licked in the rewarded 
region of the corridor. The width of the reward region was progressively narrowed from 30 cm to 8 cm across 
successive days of training. To prevent the animals from licking all across the corridor, trials were terminated 
early if the animal licked more than a certain number of times before the rewarded region. We reduced this 
number as the animals performed more accurately, typically reaching a level of 4-6 licks by the time recordings 
were made. Once a sufficient level of performance was reached, we controlled on some (random) trials that 
the animal performed the task visually by measuring the performance when decreasing the visual contrast or 
changing the distance to the reward zone (Supplementary Figure 7). Training was carried out for 3-5 weeks. 
Animals were light shifted (9 am light off, 9 pm light on) and experiments were performed during the day.  
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Widefield calcium imaging 

For widefield imaging we used a standard epi-illumination imaging system (Ratzlaff and Grinvald, 1991; 
Carandini et al., 2015) together with an SCMOS camera (pco.edge, PCO AG). A Leica 1.6x Plan APO objective 
was placed above the imaging window and a custom black cone surrounding the objective was fixed on top of 
the headplate to prevent contamination from the monitors’ light. The excitation light beam emitted by a high-
power LED (465 nm LEX2-B, Brain Vision) was directed onto the imaging window by a dichroic mirror designed 
to reflect blue light. Emitted fluorescence passed through the same dichroic mirror and was then selectively 
transmitted by an emission filter (FF01-543/50-25, Semrock) before being focused by another objective (Leica 
1.0 Plan APO objective) and finally detected by the camera. Images of 200 x 180 pixels, corresponding to an 
area of 6.0 x 5.4 mm were acquired at 50 Hz.   

To measure retinotopy we presented a 14o-wide vertical window containing a vertical grating (spatial 
frequency 0.15 cycles/deg), and swept (Kalatsky and Stryker, 2003; Yang et al., 2007) the horizontal position 
of the window over 135o of azimuth angle, at a frequency of 2 Hz. Stimuli lasted 4 s and were repeated 20 
times (10 in each direction).  We obtained maps for preferred azimuth by combining responses to the 2 stimuli 
moving in opposite direction, as previously described (Kalatsky and Stryker, 2003).  

Two-photon imaging 

Two-photon imaging was performed with a standard multiphoton imaging system (Bergamo II; Thorlabs) 
controlled by ScanImage4 (Pologruto et al., 2003). A 970 nm laser beam, emitted by a Ti:Sapphire Laser 
(Chameleon Vision, Coherent), was targeted onto L2/3 neurons through a 16x water-immersion objective (0.8 
NA, Nikon). Fluorescence signal was transmitted by a dichroic beamsplitter and amplified by photomultiplier 
tubes (GaAsP, Hamamatsu). The emission light path between the focal plane and the objective was shielded 
with a custom-made plastic cone, to prevent contamination from the monitors’ light. In each experiment, we 
imaged 4 planes set apart by 40 μm. Multiple-plane imaging was enabled by a piezo focusing device (P-725.4CA 
PIFOC, Physik Instrumente), and an electro-optical modulator (M350-80LA, Conoptics Inc.) which allowed 
adjustment of the laser power with depth. Images of 512x512 pixels, corresponding to a field of view of 
500x500 μm, were acquired at a frame rate of 30 Hz (7.5 Hz per plane). 

Pre-processing of raw imaging movies involved 1) image registration to correct for brain movement, 2) ROI 
extraction, i.e. cell detection and 3) correction for neuropil contamination. Image registration, cell detection 
and neuropil signal extraction were performed with the Suite2p pipeline (Pachitariu et al., 2016). Cells with 
noisy baseline or extremely seldom firing were excluded from further analysis.  

For neuropil correction, we used an established method (Peron et al., 2015; Dipoppa et al., 2016).  We used 
Suite2p to determine a mask surrounding each cell’s soma, the ‘neuropil mask’. The inner diameter of the 
mask was 3 µm and the outer diameter was < 45 µm. For each cell we obtained a correction factor, α, by 
regressing the binned neuropil signal (20 bins in total) from the 5th percentile of the raw binned cell signal. For 
a given session, we obtained the average correction factor across cells. This average factor was used to obtain 
the corrected individual cell traces, from the raw cell traces and the neuropil signal, assuming a linear 
relationship. All correction factors fell within 0.7 and 0.9.  

Pupil tracking 

We tracked the eye of the animal using an infrared camera (DMK 21BU04.H, Imaging Source) and a zoom lens (MVL7000, 

Navitar) at 25 Hz. Pupil position and size were calculated by fitting an ellipsoid to the pupil for each frame using a custom 

software. X and Y positions of the pupil were derived from the centre of mass of the fitted ellipsoid.  

Electrophysiological recordings 

On the day prior to the first recording session, we made two 1 mm craniotomies, one over CA1 (1.0 mm lateral, 
2.0 mm anterior from lambda), and a second one over V1 (2.5 mm lateral, 0.5 mm anterior from lambda). We 
covered the chamber using KwikCast (World Precision Instruments) and the animals were allowed to recover 
overnight. The CA1 probe was lowered until all shanks were in the pyramidal layer. We waited ~30 min for the 
tissue to settle before starting the recordings. In two animals, we dipped the probes in red-fluorescent DiI 
(Figure 2a). In these animals, we had only one recording session. The other animals had two and four recording 
sessions. 
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Offline spike sorting was carried out using the KlustaSuite (Rossant et al., 2016) package, with automated spike 
sorting using KlustaKwik (Kadir et al., 2014), followed by manual refinement using KlustaViewa (Rossant et al., 
2016). Hippocampal interneurons were identified based on their spike time autocorrelation and excluded from 
further analysis. Only time points with running speeds greater than 5 cm/s were included in further analyses. 

Analysis of response profiles for electrophysiological data 

To calculate the response profile of each neuron as a function of position in the virtual corridor we used a local 
smoothing method (Loader, 1996; Harris et al., 2002, 2003). We first smoothed the firing rate using a 250 ms 
Gaussian window. We then discretized the position of the animal in 2 cm bins, yielding 50 bins and we 
calculated the spike count map and occupancy map for each neuron. Both the spike count and occupancy 
maps were smoothed by convolving them with a common Gaussian window whose width was optimized to 
maximize reliability (see below), and the response profile was calculated as the ratio of the smoothed spike 
count map and the occupancy map (Saleem et al., 2013). 

Response profile reliability was calculated as the fraction of variance in firing rate explained by the response 
profile: 

Reliability = 1 −
∑ (𝑦(𝑡) − 𝑦′(𝑡))2

𝑡

∑ (𝑦(𝑡) − 𝜇)2
𝑡

 

where 𝑦(𝑡) is the firing rate of the neuron at time t, 𝑦′(𝑡) was the prediction by the place-field for the same time bin and 

𝜇 is the mean firing rate of the training data(Saleem et al., 2013). We used five-fold cross-validation to calculate place 

fields and reliability. Only neurons with a reliability greater than 0.01 were considered for further analysis. 

Analysis of response profiles for two-photon data 

To obtain response profiles as a function of position along the corridor, we averaged the neuropil-corrected 
activity of each cell in 1-cm-wide bins (100 bins in total) and smoothed with a 5cm Gaussian window. Only 
time points with running speeds greater than 1 cm/s were included in further analyses. For consistency with 
the response profiles obtained from electrophysiological data, we only looked at responses for which the 
cross-validated reliability was higher than 0.01. These cells were considered to have activity significantly 
modulated by position in the corridor. To model single-cell activity under the assumption that responses are 
identical in the two segments of the corridor, we fit (using least squares) a model function to the response 
profile along the visually-matching segment where the cell peaked. The model function was the sum of two 
Gaussians that meet at the peak. To obtain a prediction along the whole corridor, we then duplicated the 
fitted response at ± 40 cm away from the maximum. Cells which had a maximal response too close to the start 
or the end of the corridor (0-15 cm or 85-100cm) were not considered for analysis of the ratio of responses. 
This excluded cells which responded too close to the start or the end of the corridor, which were outside the 
visually-matching segments  Two-dimensional response profiles with respect to position and speed 
(Supplementary Figure 5c) were calculated as previously described (Saleem et al., 2013).  

Decoding population activity & using position decoded from other cells 

Population activity was decoded using an independent Bayes decoder. For every time bin, we calculated the probability 

of being at a location 𝑥 given population response 𝑅 as: 

𝑃(𝑥|𝑅) =
1

𝑍
 𝑃(𝑥) (∏ 𝑓𝑖(𝑥)𝑟𝑖

𝑀

𝑖=1

) 𝑒𝑥𝑝 (−𝑡 ∑ 𝑓𝑖(𝑥)

𝑀

𝑖=1

) 

where 𝑓𝑖(𝑥) is the response profile and 𝑟𝑖  is the spike count of the ith neuron in a time bin, M is the number of neurons 

and t is the time window. Z is a normalizing constant, which makes the probabilities across all positions sum to one (Zhang 

et al., 1998; Bendor and Wilson, 2012). The probability of being in the reward zone was calculated by summing the 

posterior probabilities in the reward zone, and normalized relative to the value in correct trials (Figure 3c and 3f). When 

calculating joint distributions (Figures 2 and 3), we smoothed the distribution by a Gaussian window with a width of 4 

spatial bins. To account for the effects of position and speed on calculating the correlations between V1 and CA1 decoding 

errors, we shuffled the data within the time points when the animal was at the same position (within 2cm) and ran in a 

specific speed range (5 cm/s bins: 5-10 cm/s to 30-35 cm/s). 
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Simulation of V1 complex cells 

Response profiles expected from purely visual neurons were obtained from simulations of a population of 
complex receptive fields. Complex receptive fields were modelled as two Gabor filters in spatial quadrature 
(i.e. shifted in spatial phase by 90 deg) having the same orientation and spatial frequency. Responses were 
simulated by convolving the VR images at successive positions along the corridor with the pair of Gabor filters 
and taking the sum of their squared outputs (energy model (Movshon et al., 1978; Carandini, 2006)). The 
receptive fields were designed so to simulate different orientation selectivity (from 0o, 15o, …, 165o; we 
overrepresented the cardinal orientations) spatial frequency selectivity (0.04, 0.05, 0.06 and 0.07 cycles/deg), 
which are the ranges typically observed in the mouse visual system (Niell and Stryker, 2010; Andermann et al., 
2011; Marshel et al., 2011).  The receptive fields were simulated to cover azimuths from 40o to 80o, matching 
the receptive field position of the cells we focused on in our recordings.   
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