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Abstract 

INTRODUCTION: Genetic contributions to Alzheimer’s Disease (AD) are likely polygenic and 

not necessarily explained by the additive model alone. In order to better understand the genetics 

of AD we require statistical techniques to address both polygenic and possible non-additive 

effects.  

METHODS: We used partial least squares-correspondence analysis (PLS-CA). PLS-CA was 

designed to detect multivariate genotypic effects. We used ADNI-1 (N = 756) as a discovery 

sample with two forms of PLS-CA: diagnosis-based and APOE-based. We used ADNI-2 (N = 

791) as a validation sample with a diagnosis-based PLS-CA. 

RESULTS: With PLS-CA we identified some expected genotypic effects (e.g., APOE/TOMM40, 

and APP) and a number of novel effects. Novel effects include for examples: risk-associated 

genotypes in RBFOX1 and GPC6 and control-associated (possibly protective) genotypes in 

PTPN14 and CPNE5. 

DISCUSSION: To better understand the genetic contributions to AD we require techniques 

designed to detect complex (multivariate, genotypic) effects. 

 

Keywords: Genome-wide pattern analysis, partial least squares, correspondence analysis, 

genotypic model, discriminant analysis, statistical methods 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235945doi: bioRxiv preprint 

https://doi.org/10.1101/235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


GW PATTERN ANALYSIS IN AD 6 

Introduction 

The discovery of the functional roles of the APOE genotypes in Alzheimer’s disease 

(AD) [1–3] initiated the exploration of the genetic contributions to late-onset or sporadic AD and 

its many associated traits. Since then numerous studies have identified many genes linked to AD 

such as SORL1 [4], EPHA1 [5], CLU and PICALM [6], all of which have shown effects at much 

larger scales [7]. More recently studies have focused on non-Caucasian [8] or trans-ethnic [9] 

populations in order to reveal genetic contributions to AD across ethnicities. Even though the 

genetic contributions to AD are becoming well understood—as documented by several 

comprehensive reviews [10–12]—there are still some controversial findings. For example, the 

work reported in [13] showed effects of rare variants in PLD3, and some follow up studies 

showed both replication [14] and no replication [15] of PLD3 effects. It is clear that the genetics 

of late-onset or sporadic AD are very complex and almost certainly polygenic [16]. 

Recent work in late-onset or sporadic AD has emphasized polygenic [17,18], epistatic 

[19], and non-linear or non-additive [20] effects. These studies suggest that simple recessive, 

dominant, or additive models do not adequately explain effects in AD; an effect that is well 

known in other complex traits and diseases [21]. But if the genetics of AD are complex why are 

we still using methods (i.e., univariate) with adherence to assumptions (i.e., additivity) unsuited 

to detect complex effects?  

 Here we present a method designed specifically to help address some of the genetic 

complexities (i.e., polygenicity, non-additivity) in AD: partial least squares-correspondence 

analysis (PLS-CA). PLS-CA is a multivariate technique that detects rather than assumes genetic 

effects (e.g., additive vs. recessive). First we provide a review in order to illustrate the 

complexity of genetics in AD, followed by an explanation of our method and finally outline the 
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remainder of our paper. 

Complex genetic effects in AD 

The AD literature documents a number of well-established complex relationships not 

explained by simple effects (i.e., additive, recessive, or dominant). For examples, APOE shows 

different risk factors for AD based on age [22] and TOMM40 is co-dominant [23]. Additionally, 

APOE genotypes show different trajectories of CSF tau and beta-amyloid (Aβ) deposition [24], 

and non-linear effects have also been observed in tau patterns across different brain regions 

based on the MAPT gene [25]. Furthermore, the same genotype can express varying patterns 

dependent on the phenotype of interest, as illustrated, for example, by Figure 2 in [26] which 

shows opposite genotypic effects for functional vs. structural MRI analyses. Patterns become 

even more complex with multiple markers [27,28] and haplotypes [29]. Overall, these results 

suggest that different markers are likely to express different inheritance patterns depending on 

the trait, phenotype, or assessment used in the study.  

Issues with the additive model 

With the advent of genome-wide studies, single nucleotide polymorphisms (SNPs) have 

almost exclusively been analyzed with the additive model. The additive model transforms a SNP 

from base pair letters into a count based on, usually, the number of minor alleles: a major 

homozygote is “0,” a heterozygote is “1,” and a minor homozygote is “2.” This {0,1,2} coding 

scheme has been used in a wide array of studies such as the onset of AD [30], and cerebrospinal 

fluid (CSF) tau levels [31], even though we generally acknowledge that the standard approaches 

cannot detect non-additive or complex effects [32,33]. Furthermore, with open resources such as 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), researchers have the opportunity to 
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analyze genome-wide data in a variety of ways. However, the ADNI genome-wide data have 

been almost exclusively analyzed with the additive model [34–39]. 

The additive model has become popular because it is viewed as both a practical approach 

[40] and a likely model for the inheritance of complex traits [41]. However, the strict 

assumptions of additivity and linearity do not always hold (see responses and comments to [41] 

in [42,43]). Furthermore, the additive model can produce ambiguity across samples or studies. 

This can be directly observed in the ADNI-1 vs. the ADNI-GO/2 data with thousands of SNPs. 

For one example: rs308076 in ADNI-1 ‘T’ is the minor allele (MAF = 47.5%) vs. ADNI-GO/2 

where ‘C’ is the minor allele (MAF = 43.3%); thus when the cohorts are kept separate from one 

another the ‘0’ and ‘2’ are not the same genotypes across both studies. Furthermore, this 

ambiguity of ‘0’ and ‘2’ could possibly lead to the misinterpretation, or the dismissal of effects 

especially between samples or replications. For examples in AD: in [44] the authors reported 

“direction changes” in their own replication analyses, whereas in [45] the authors report effects 

in the opposite direction in their attempt to replicate work in [13]. A possibly extreme case of 

this can be observed in substance use disorders in [46] where direction changes were interpreted 

as “false positives.”   

The a priori choice of a model that does not match the true inheritance pattern can be 

problematic (e.g., using an additive model when the real effect is recessive). For candidate 

studies the work in [47] showed the consequences of such a priori choices, and recommended 

two strategies: (1) test all models (e.g., additive, dominant, and recessive) and apply appropriate 

multiple test corrections, or (2) use a more general model (e.g., co-dominant, or genotypic). Both 

strategies provided comparable power (see Figs. 1 and 2 in [47]). Furthermore more recent work 

(in cholesterol) has shown that the genotypic (“full”) model is better than the additive model to 
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detect genetic contributions to complex traits [48]. While either strategy described in [47] is 

feasible in candidate studies, to test multiple models (e.g., additive, dominant, and recessive) in 

GWAS would lead to even more conservative—and thus unrealistic—thresholds for tests.  

Multivariate analysis with the genotypic model 

In this study we investigate the ADNI genome-wide data (both ADNI-1 and ADNI-

GO/2) in a more general way (i.e., analogous to a genotypic model; see Methods) and evaluated 

the SNPs and their relations without the assumptions (e.g., linearity, magnitude, and direction of 

effect, and independence of the SNPs) of any particular model. Therefore, in our study we not 

only focus on genotypes, but we also use a multivariate approach to assess which genotypes (1) 

may work together, and (2) are most associated with the each of the groups in our study (i.e., 

AD, Mild Cognitive Impairment [MCI], and control [CON]). 

To achieve this, we used a multivariate technique designed specifically for categorical 

data called partial least squares-correspondence analysis (PLS-CA, [49]). PLS-CA is a 

generalization of two different families of techniques: partial least squares (PLS; as in 

neuroimaging: [50,51]), and correspondence analysis (CA; [52–55]). PLS-CA analyzes the 

relationships between two tables of categorical or mixed data. In our study, we used two specific 

forms of PLS-CA called discriminant PLS-CA (a.k.a., mean-centered PLS-CA or discriminant 

correspondence analysis; [56]) and “seed” PLS-CA (see Methods and [49] for more details). 

Furthermore, as a direct analog to the neuroimaging literature, our approach is akin to “genome-

wide pattern analysis” that identifies how multiple genotypes across the genome (à la multiple 

voxels across the brain) may work together. 

Our paper is outlined as follows. In Methods, we briefly describe the ADNI project, its 

participants, and the measures we used in this study. We then describe the preprocessing and 
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analytical strategies and tools. Finally, we detail the two “phases” of our study. Phase 1 

(“discovery”; ADNI-1) includes two genome-wide association analyses: one where the 

association is with clinical diagnosis (mean-centered/discriminant) and the other where the 

association is with APOE genotype (“seed”). Phase 2 (“validation”) used the genotypes 

identified in Phase 1 to test how well those genotypes (discovered in ADNI-1) could predict 

group relationship (AD, MCI, or CON) in a left-out sample (validated in ADNI-GO/2). Then, the 

Results section reviews the findings from each of the Phases. The Discussion section first 

provides a discussion of the findings within each phase, followed by a general discussion, 

limitations, and conclusions. 

Methods 

Data 

Data used in the preparation of this article come from the ADNI database 

(http://adni.loni.usc.edu). The ADNI project was launched in 2003 as a public-private funding 

partnership and includes public funding by the National Institute on Aging, the National Institute 

of Biomedical Imaging and Bioengineering, and the Food and Drug Administration. The primary 

goal of ADNI has been to collect a wide variety of measures to assess the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). ADNI is the result of efforts of 

many co-investigators from a broad range of academic institutions and private corporations. 

Michael W. Weiner, MD (VA Medical Center and University of California at San Francisco) is 

the ADNI Principal Investigator. Subjects have been recruited from over 50 sites across the U.S. 

and Canada. For up-to-date information, see www.adni-info.org. 

The following studies included genomic data from ADNI-1 and ADNI-GO/2 (in addition 

to APOE genotype, and diagnostic data from the ADNIMERGE R package). Note that the APOE 
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genotype data were collected separately from genome-wide data and that the ADNI genome-

wide data chips were different in ADNI-1 and in ADNI-GO/2. ADNI-1 used the Illumina 

Human610-Quad BeadChip while ADNI-GO/2 used the Illumina HumanOmniExpress 

BeadChip. For more details on ADNI genotyping, see http://adni.loni.usc.edu/data-

samples/genetic-data/ 

Participants 

 We only included participants that had genome-wide data and obtained a final total of 

756 participants from ADNI-1 (AD = 344, MCI = 204, CON = 208) and 791 participants from 

ADNI-GO/2 (AD = 203, MCI = 319, CON = 269). The MCI category was subdivided into two 

groups in ADNI-GO/2 (early and late MCI); we combined both into a single MCI “diagnostic” 

category to align with ADNI-1. Table 1 contains race, ethnicity, sex, and diagnostic distributions 

for ADNI-1 and ADNI-GO/2. We used the ADNIMERGE package to extract APOE genotype (for 

ADNI-1 only), diagnostic, and demographic information. In our analyses, we opted to use the 

full set of participants and correct for stratification effects as opposed to restricting our analyses 

to a particular ethnic and racial group in order to identify genotypes that contribute to AD across 

race and ethnicity. 

Table 1 

Demographics of ADNI 1 and 2. 

(a) Race (non-Hispanic/Latino) 

 ADNI1 ADNI-GO/2 
 

White 703 (685) 732 (700) 
Asian 12 (12) 12 (12) 
Black 37 (36) 30 (30) 
American Indian/Alaskan 1 (1) 2 (2) 
Hawaiian/Other Pacific Islander 0 (0) 2 (2) 
Unknown/More than 1 3 (1) 13 (7) 
Total 756 (735) 791 (753) 
 

(b) Sex 
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 ADNI1 ADNI-GO/2 
 

Female 308 367 
Male 448 424 
Total 756 791 
 

(c) Diagnosis 

 ADNI1 ADNI-GO/2 
 

Control 208 269 
Mild Cognitive Impairment 204 319 
Alzheimer’s Disease 344 203 
Total 756 791 
 

NOTE. Demographics information for ADNI 1 and ADNI-GO/2. All demographics information retrieved from the 

ADNIMERGE package. Diagnosis (Dx) was the last available diagnosis. Table (a) shows the distribution of race 

with the number of non-Hispanic/Latino in parentheses. “Unknown” and “More than 1” were combined into a single 

category. Table (b) shows the distribution of sex for each phase of ADNI. Table (c) shows the distribution of latest-

available diagnosis (at the time of analyses) for each phase of ADNI. 
 

 

Statistical techniques 

Most preprocessing, analyses, and graphics were performed primarily in R [57] and the 

ExPosition, TExPosition, and TInPosition packages [58,59] in R. Some in-house 

MATLAB (Mathworks Inc., Natick, MA) code was used for resampling.  

Data for analyses—e.g., SNPs, diagnoses, APOE E4 status—were recoded into a 

disjunctive format described in Table 2. Because we treat our data categorically we required 

particular multivariate techniques designed specifically for categorical data. We used multiple 

correspondence analysis (MCA) and two forms of partial least squares-correspondence analysis 

(PLS-CA): discriminant PLS-CA and seed PLS-CA [49]. We briefly describe these techniques 

here but also provide more details where necessary. 
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Table 2 

Nominal and disjunctive formats of data. 

(a) Nominal 

 SNP1 (with minor homozygote > 5%) SNP2 (with minor homozygote < 5%) 
Subj.1 AG CA 
Subj.2 AA CA 
… … … 
Subj.i AG CC 
… … … 
Subj.I-1 <NA> AA 
Subj.I GG AA 
 
(b) Disjunctive SNPs 

 SNP1 (minor homozygote > 5%  SNP2 (minor homozygote < 5%) 
 AG AA GG  CA+CC AA 
Subj.1 1 0 0  1 0 
Subj.2 0 1 0  1 0 
… … … …  … … 
Subj.i 1 0 0  0 0 
… … … …  … … 
Subj.I-1 .2 .7 .1  0 1 
Subj.I 0 0 1  0 1 
 
(c) Dx and APOE 

 Dx #APOE E4 
 

Subj.1 AD 2 
Subj.2 AD 1 
… … … 
Subj.i MCI 1 
… … … 
Subj.I-1 MCI 2 
Subj.I CN 0 
 
(d) Disjunctive Dx and APOE 

 Dx  # APOE E4 Alleles 
 

 AD MCI CN  2  1 0 
Subj.1 1 0 0  1 0 0 
Subj.2 1 0 0  0 1 0 
… … … …  … … … 
Subj.i 0 1 0  0 1 0 
… … … …  … … … 
Subj.I-1 0 1 0  1 0 0 
Subj.I 0 0 1  0 0 1 
 
NOTE. Illustrative example of nominal (a and c) and disjunctive (b and d) coding of illustrative SNPs and diagnosis 

(Dx) plus APOE. For SNP 1, all genotypes have a sufficient frequency and are coded (à la genotypic model), but for 

SNP 2, the minor homozygote (CC) does not occur frequently enough and is thus combined with the heterozygote (à 
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la dominant model). In all tables, a 1 indicates the presence of a particular level of a categorical variable while a 0 

indicates absence (e.g., Subj.1 is an Alzheimer’s Disease patient, with 2 APOE E4 alleles, the AG genotype for 

SNP1 and either a CC or CA [presence of minor allele] for SNP2). Note that one subject has missing data (i.e., 

“<NA>”). This subject’s data for SNP 1 is imputed to the mean of the sample for that SNP (SNP 1) where AA 

occurs in 70% of the sample, AG in 20%, and GG in 10%, therefore the missing data are imputed to those values. 

 

MCA was used to analyze disjunctive tables (see Table 2). MCA is analogous to 

principal components analysis (PCA) tailored for categorical data. Like PCA, MCA uses the 

singular value decomposition and produces orthogonal components that are rank-ordered by their 

explained variance. Also like principal components analysis, MCA produces component (a.k.a. 

factor) scores for individuals (rows) and variables (columns). We used MCA instead of PCA to 

correct for stratification effects (in the preprocessing steps). 

The next set of techniques we used were specific forms of PLS-CA. In general, PLS-CA 

is the generalization of partial least squares—a family of techniques that analyze the information 

common to two data tables [50]—that can be used with virtually any data type [49,60]. We used 

discriminant and seed PLS-CA in our studies here. Discriminant PLS-CA maximizes the 

separation between a priori groups of participants (see also [56]). Seed PLS-CA borrowed its 

name from the functional neuroimaging literature (e.g., [61–63]; see also [50]), where a seed 

(specific region or regions of interest) from the brain is selected as one data set and the 

remaining data are the second data set. In brain imaging, seed analyses look for brain regions 

correlated to the seed, here seed analysis look for genes with distributions of genotypes similar to 

the seed (i.e., high linkage disequilibrium). We used discriminant PLS-CA to maximally separate 

the diagnostic groups (i.e., CON, MCI, AD) and also find the genotypes most associated with 

each group. We used seed PLS-CA to identify genotypes with distributions similar to APOE 

(which is the strongest known genetic risk factor for non-familial, sporadic AD). 
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SNP Preprocessing 

For all analyses we excluded any SNPs in the X and Y chromosomes, the 

pseudoautosomal region (XY), and mitochondrial region (i.e., we only analyzed SNPs in 

Chromosomes 1–22). All SNPs—which were genome-wide in the discovery study, and a much 

smaller subset in the validation study—were preprocessed with PLINK (v1.07; [64]) and in-

house R code. SNP annotation was performed with the NCBI2R package [65], and the 

biomaRt package [66,67]. Regardless of study, SNPs were pre-processed with pipeline 

described below. Any specific information required (e.g., results from preprocessing parameters) 

is reported for each study in their respective sections. 

We used the following quality control (QC) criteria: Participant and SNP call rates (i.e., 

completeness of data) ≥ 90%, minor allele frequency ≥ 5%, Hardy-Weinberg equilibrium p ≤ 10-

6. SNPs were then recoded into a disjunctive format as seen in Table 2 (for more details on 

disjunctive format and PLS-CA see [49]). Some genotypes could occur below a reasonable 

threshold (e.g., 5%) and therefore we performed an additional preprocessing step: genotypes that 

fell below a 5% threshold were combined with another genotype. In our studies, only minor 

homozygotes were below the 5% threshold, and were thus combined with the heterozygotes 

which dichotomized the presence or absence of a minor allele (i.e., AA vs. {Aa or aa}; 

analogous to a dominant model). Missing genotypes were imputed to the mean of the sample in 

disjunctive format (i.e., assigned a probability of genotype occurrence; see Table 2 for an 

example). MCA was then applied to the participant × disjunctive genotypes matrix to detect and 

then remove stratification effects of sex, (2) ethnicity and/or race (à la PCA, multidimensional 

scaling, or other eigen stratification techniques). 

Study design and overview 
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 We conducted a two-part study: discovery and validation. In the discovery phase there 

were two analyses with ADNI-1 genome-wide SNPs. The results from the discovery analyses in 

ADNI-1 were used to create candidate SNP panels for validation in ADNI-GO/2. In the 

validation phase there was one analysis with a specific subset of ADNI-GO/2 SNPs.  

Data from ADNI-1 and ADNI-GO/2 were not combined or preprocessed together at any 

stage in this study. We kept the two data sets completely separate 1) to ensure independence of 

the two data sets and also to ensure that no contamination occurred from or influence of one set 

on the other and 2) to guarantee the independence required for a proper discovery-validation 

pipeline (i.e., replication). Because ADNI-1 and ADNI-GO/2 have two different—and not 

entirely overlapping—chip sets we generated a candidate panel of SNPs for ADNI-GO/2 based 

on the SNPs and their associated genes identified in ADNI-1 (discovery). We describe all 

background required for preprocessing and analyses for discovery, candidate panel creation, and 

validation in the next sections as well as in their respective Results subsections. 

Discovery study preprocessing and analyses 

Discovery analyses were conducted on the ADNI-1 data set. Once data were 

preprocessed, we performed two types of PLS-CA: discriminant and seed PLS-CA. Discriminant 

PLS-CA was performed on diagnostic group (AD, MCI, CN) × genotypes. The goal of the Dx × 

genotype analyses was to detect genotypes most associated with each diagnostic category. The 

seed PLS-CA used APOE E4 alleles as the seed, and thus was performed on APOE (0, 1, or 2 E4 

alleles) × genotypes. The goal of the APOE × genotype analyses was to identify new candidate 

genotypes with a distribution similar to APOE (i.e., high linkage disequilibrium). Both analyses 

identify candidate markers of AD: the discriminant (diagnosis-based) analysis identifies 

genotypes most associated with each group, whereas the seed analysis identifies genotypes 
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similar to APOE (i.e., high linkage disequilibrium), which we refer to as “Dx-GWAS” (i.e., 

diagnosis-based GWAS) and “APOE-GWAS” (i.e., APOE-based GWAS), respectively. All PLS-

CA analyses used bootstrap resampling [68] to identify genotypes that are stable under 

resampling. The distributions around the genotype—via bootstrapping—can be tested with 

“bootstrap ratios” (BSR; [49–51]) which are analogous to t- or Z-tests and thus indicate 

significant and stable genotypes. Significant genotypes in our two GWAS (in ADNI-1) were then 

used to create a new candidate panel of SNPs for validation (in ADNI-GO/2). 

  

Creation of SNP panels from Discovery for Validation  

Because ADNI-1 and ADNI-GO/2 were used as independent (and thus isolated) data sets 

in our study, and because the data come from two different genome-wide chips, we used the 

significant genotypes from the discovery analyses (i.e., Dx-GWAS and the APOE-GWAS) to 

generate candidate SNPs for validation. We did so with the following procedure. For all 

significant genotypes in the discovery analyses we used their respective SNPs to: (1) compile a 

list of all SNPs within a 50kbase (25+/-) window of those SNPs, and (2) retrieve all stable 

ensembl gene (ENSG) IDs associated with those SNPs from the discovery analyses and in turn 

retrieved all possible SNPs associated those ENSG IDs. Both steps were performed with 

biomaRt and NCBI2R. All SNPs from the steps (1) and (2) were then aggregated. We then 

extracted all SNPs from the ADNI-GO/2 data that were from the discovery-derived aggregate 

set. These extracted SNPs were then used in the validation phase. 

Validation study preprocessing and analyses 

Validation analyses were conducted on the ADNI-GO/2 data set. Once the data were 

preprocessed, we performed one final PLS-CA: a discriminant PLS-CA on the validation SNPs 
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based on diagnosis. As in the discovery phase, the goal of the validation Dx × genotype analysis 

was to detect genotypes most associated with each diagnostic category. However, in the 

validation set we have a smaller and restricted set of SNPs in the candidate panel (derived from 

the discovery analyses). As in the discovery phase, we used bootstrap resampling and the BSR 

test to identify genotypes stable under resampling.  

Results 

The goal of discovery phase was to identify potential genotypic candidates of AD and 

CON through two analyses conducted on the ADNI-1 data set: (1) a GWAS to identify 

genotypes most associated with Dx and (2) a GWAS to identify genotypes in high linkage 

disequilibrium with APOE. Results from discovery analyses were used to generate a candidate 

set of SNPs for further analyses in a validation phase in ADNI-GO/2. For all PLS-CA 

component maps we use what is called the “asymmetric plot” of component scores.  

Discovery (ADNI-1) 

ADNI-1 genome-wide data contains 620,901 SNPs and 757 participants.  

 After QC and preprocessing 756 participants (AD = 344, MCI = 204, CON = 208) and 517,441 

SNPs (in chromosomes 1–22) remained. The data matrix we analyzed was 756 participants × 

1,332,455 genotypes. MCA was applied to the 756 × 1,332,455 matrix to identify confounding 

effects. The first two components displayed a strong effect of race, a minor effect of ethnicity, 

and no effect of sex and were thus removed from (i.e., regressed out of) the data. Subsequent 

components showed no apparent effects of stratification. 

Two discriminant PLS-CAs were performed: one on Dx × genotypes and another on 

APOE × genotypes. We describe each analysis in turn. For the discovery GWAS, we used a 
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cutoff of ±5 for the BSR tests which is slightly below the traditional GWAS significance 

threshold (p < .05 × 10–8 would correspond to a BSR ≈ 5.33).  

Dx-GWAS. Because there were only three groups (AD, MCI, and CON), the discriminant 

PLS-CA produced only two components. Component 1 explained 50.25% and was driven by the 

separation of the AD group from the MCI group (see Supplemental Figure 1). Component 2 

explained 49.76% of the variance and separates the CON group from the other two groups (see 

Supplemental Figure 1). Supplemental Figure 1 shows the distribution of all significant 

genotypes (based on BSRs) on the component map, with respect to the groups. Figure 1 shows 

all genotypes plotted with their BSR values in a Manhattan-like plot. BSR values can be positive 

or negative—because the sign matches their component score—we call this plot “Manhattan on 

the Hudson” (MotH; like a city skyline on a river). Figure 1a shows the BSRs for all genotypes 

for Dx-GWAS Component 1 and Figure 1b shows the BSRs for all genotypes for Dx-GWAS 

Component 2. In the component map, most significant genotypes appear in the upper left 

quadrant (Supplemental Figure 1), and are thus more related to the AD group than the other 

groups. Significant genotypes, and additional information about their SNPs, are listed in Table 

S1a for Component 1 and Table S1b for Component 2. 

APOE-GWAS. Because there were only 3 groups (respectively, “0 E4,” “1 E4,” and “2 

E4” alleles), seed PLS-CA produced only two components. Component 1 explained 51.24% of 

the total variance and is driven by the presence (left) vs. absence (right) of E4 alleles (see 

Supplemental Figure 2). Component 2 explained 48.76% of the variance and separates the two 

E4 alleles group from the other two groups (see Supplemental Figure 2). Supplemental Figure 2 

shows the distribution of all significant genotypes on the component map, with respect to the 

groups. Note that rs2075650 genotypes map almost exactly onto the APOE categories; alone 
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rs2075650 is an almost perfect proxy of APOE genotype. Figure 2 shows the BSRs for all 

genotypes from this analysis in a “Manhattan on the Hudson” plot. Figure 2a shows the BSRs for 

all genotypes for APOE-GWAS Component 1 and Figure 2b shows the BSRs for all genotypes 

for APOE-GWAS Component 2.  In the component map, the most significant genotypes appear 

in the upper part of Component 2 (Supplemental Figure 2). Significant genotypes, and additional 

information about their SNPs, are listed in Table S2a for Component 1 and Table S2b for 

Component 2 (and genotypes significant on both components are listed in Table S2c). 
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Figure 1. Manhattan (on the Hudson) plots for the multivariate Diagnosis (Dx)-GWAS (via DiCA). 

Horizontal axes are each genotype ordered by Chromosome (Chr), where each Chr is color-coded (1–22). The 

vertical axes are bootstrap ratio values (BSRs). Both panels show BSRs (analogous to t- or Z-scores; which can be 

positive or negative) for each genotype along Component 1 (a.k.a. Latent Variable (LV) 1; panel a, top) and 

Component 2 (a.k.a. Latent Variable (LV) 2; panel b, bottom) – the same components as in Figure 2. With respect to 

the multivariate Dx-GWAS a wide variety of genotypes show significant, and similar, effects and are not 

concentrated in any particular region (see also Table S1 and Figure S1). 
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Figure 2. Manhattan (on the Hudson) plots for the multivariate APOE-GWAS (via DiCA). Horizontal axes are each 

genotype ordered by Chromosome (Chr), where each Chr is color-coded (1–22). The vertical axis is bootstrap ratio 

values (BSRs). Both panels show BSRs (analogous to t- or Z-scores; which can be positive or negative) for each 

genotype along Component 1 (a.k.a. Latent Variable (LV) 1; panel a, left) and Component 2 (a.k.a. Latent Variable 

(LV) 2; panel b, right) – the same components as in Figure 4. With respect to the multivariate APOE-GWAS, many 
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of the effects are concentrated, generally, in Chr19 (see also Table S2) across both components, but much more so 

for Component 1 (a; left). While Component 2 (b; right) shows a variety of effects, some of the strongest are still in 

Chr19. 

 

Candidate panel creation 

All SNPs associated with significant genotypes were used for creation of the candidate 

panel, regardless of the effects with which there were most associated (e.g., CON, or 2 E4 APOE 

alleles). A total of 105 genotypes from 96 SNPs exceeded the ±5 BSR threshold (see 

Supplemental Tables 1 and 2). From these 96 SNPs, we created a candidate panel of SNPs in two 

steps: (1) we identified all SNPs within a 50kbase (25+/–) window of these 96 SNPs, and (2) we 

retrieved all stable ENSG IDs associated with these 96 SNPs and in turn retrieved all possible 

SNPs associated with stable ENSG IDs. From step (1) there were 232,120 possible SNPs, and 

from step (2) there were 956,013 SNPs from 72 ENSG IDs. Steps (1) and (2) identified 

1,045,360 possible SNPs. From this large set we extracted all available SNPs in the ADNI-GO/2 

chip (see next section).  

Validation (ADNI-GO/2) 

ADNI-GO/2 genome-wide data contains 730,525 SNPs and 791 participants. From the 

candidate panel, we extracted 5,508 SNPs from the 730,525 available SNPs and performed the 

QC and preprocessing steps. After QC and preprocessing 791 participants (AD = 203, MCI = 

319, CON = 269) and 5,508 SNPs remained. The data matrix we analyzed was 791 participants × 

14,200 genotypes. MCA was applied to the 791 × 14,200 matrix to identify confounding effects. 

The first two components had a strong effect of race, a minor effect of ethnicity, and no effect of 

sex and were thus removed from (i.e., regressed out of) the data. Subsequent components showed 

no apparent effects of stratification. 
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A discriminant PLS-CA (Dx × genotypes) was performed on the 791 × 14,200 matrix. 

For the validation analysis, we used a cutoff of ±3.25 for the BSR tests. This value corresponds 

to a Bonferroni cutoff for the number of unique ENSG IDs tested. Because there were only 3 

groups (AD, MCI, and CON), the discriminant PLS-CA produced only two components. 

Component 1 explained 50.41% and was driven by the separation of the MCI group from the AD 

and CON groups (see Figure 3). Component 2 explained 49.59% of the variance and separated 

the CON group from the AD group (see Figure 3). 

 

Figure 3. Diagnosis-based DiCA in the Validation phase. The groups form a boundary region on the components. 

We denoted portions of this subspace as “control” associated (blue) or “risk” associated (red); anything outside the 
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control or risk regions is ambiguous. Genotypes that fall in the “control” region are more associated with the control 

group than the other groups and genotypes that fall in the “risk” region are more associated with {MCI or AD} than 

the CON group. 
 
Table 3 

Validation set: significant genotypes on either component 

rsid genotype BSR - 1 BSR - 2 chr Gene symbol Risk / Control Region 

rs10494979 AA 0.95 -3.422 1 PTPN14 CON 
rs11122374 AA 1.985 3.255 1 TSNAX-DISC1,DISC1 

 rs11122374 GA+GG -1.995 -3.346 1 TSNAX-DISC1,DISC1 
 rs1501158 AA 3.319 -0.409 4 LINC00504 CON 

rs1065261 TT -1.971 -3.451 6 CPNE5 
 rs3213537 TC+TT 1.345 -3.31 6 CPNE5 CON 

rs11777456 AA -3.366 -1.615 8 NCALD 
 rs10990353 AA -3.374 1.483 9 ZYG11AP1 / LOC100421294 RISK 

rs10990353 GA+GG 3.496 -1.482 9 ZYG11AP1 / LOC100421294 CON 
rs7093342 GA -3.395 -0.848 10 ITIH5 

 rs7093342 AA 3.904 1.5 10 ITIH5 
 rs1979522 AG+AA 3.275 2.298 12 LRMP 
 rs4773782 GG -3.608 0.185 13 GPC6 RISK 

rs17105992 GG -3.513 -0.847 14 LOC107984016,RAD51B 
 rs17105992 AG+AA 3.55 0.844 14 LOC107984016,RAD51B 
 rs4902611 AA -3.93 -1.293 14 LOC107984016,RAD51B 
 rs8052288 GA -3.476 -0.692 16 RBFOX1 RISK 

rs1553614 AA -0.278 -3.272 16 RBFOX1 
 rs6859 GG 0.415 -3.895 19 NECTIN2* CON 

rs2075650 GA -0.656 3.5 19 TOMM40 RISK 
rs2075650 AA 1.555 -5.558 19 TOMM40 CON 
rs2075650 GG -2.12 4.338 19 TOMM40 RISK 
rs157582 GG 0.162 -5.297 19 TOMM40 CON 
rs157582 AA -1.773 3.72 19 TOMM40 RISK 

rs1160985 CC 0.344 4.349 19 TOMM40 RISK 
rs1160985 TT 0.048 -4.101 19 TOMM40 CON 
rs769449 GG 1.749 -6.527 19 APOE CON 
rs769449 AA -1.792 5.195 19 APOE RISK 
rs769449 AG -0.995 4.194 19 APOE RISK 
rs439401 TT 0.678 -3.277 19 

 
CON 

rs4420638 GA 0.207 3.95 19 APOC1 RISK 
rs4420638 AA 0.803 -6.458 19 APOC1 CON 
rs4420638 GG -1.637 3.913 19 APOC1 RISK 
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rs383700 GG -0.179 3.314 21 APP RISK 
rs383700 AG+AA 0.179 -3.436 21 APP CON 
rs440666 TT 0.631 -3.88 21 APP CON 

rs1127721 TT -0.789 -3.543 22 PARVG 
 NOTE. * rs6859 previously associated with PVRL2. Significant genotypes for both components from the validation 

set. Component 1 primarily separated CON from AD, whereas Component 2 primarily separated AD from the other 

two groups. In the validation analysis, we used the asymmetric version of correspondence analysis (CA) to help 

visualize which genotypes are most associated with each group, and to create identify “control” (CON) and “risk” 

(RISK) regions within the CA components (see Figure 3). Genotypes labeled as CON or RISK indicate which 

region they are in, otherwise their association is more ambiguous in terms of association with risk or control 

(“protective”) factors.  

 

All significant genotypes from the validation analysis are found in Table 3. In figure 3, 

we used the triangle (i.e., the “simplex” from CA) whose vertices were generated by the groups 

and where the component axes (horizontal and vertical lines) are plotted to create boundaries in 

order to interpret genotypic effects. We focused specifically on two boundaries: (1) the boundary 

associated mostly with the CON group (lower right, blue) and (2) the boundary associated with 

“risk status” (i.e., AD or MCI; upper middle to middle left, red). The relevant SNPs are 

highlighted in their boundary colors (blue for CON; red for “risk status”) in Figure 3, and 

identified as part of the “RISK” or “CON” region in Table 3.  

Discussion 

Recently there has been an increased interest in multivariate approaches for the genetics 

of AD [69]. However many of these studies in AD still only use the additive model contrary to 

expected non-additive effects and work that illustrated that the genotypic [48] or co-dominant 

[47] models are better suited for complex effects. Furthermore, multivariate approaches—also 

based on correspondence analysis—that emphasize the genotypic model have been used 

extensively to understand populations in animals (see, e.g., [70]) and—albeit rarely—some 
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studies in humans [71–75]. Note that throughout the discussion we denote gene names in fully 

capital and italicized font. 

Our newly developed technique (PLS-CA) gave us a much more specific view of the 

genetics of AD than other studies: with emphasis on the genotypes instead of to the SNPs. We 

found a wide array of genotypes from SNPs (and their respective genes) across both Discovery 

and Validation. We provide only a brief discussion of the Discovery phase itself, with emphasis 

on particularly interesting effects and how the Discovery phase leads to the Validation phase. 

Our discussion emphasizes the results from the Validation phase and in particular the effects we 

have identified “risk” or “control” associated effects (see Fig. 3 and Table 3).  

Discovery 

 The aim of Discovery was to identify the genotypes that express patterns that match, as 

closely as possible, the (1) diagnostic groups (i.e., “Dx-GWAS”) or (2) APOE E4 distribution 

(i.e., “APOE-GWAS”). Both analyses aimed to reveal new candidate genotypes from two 

different perspectives: top down (Dx) and bottom up (APOE).  

The APOE-GWAS revealed fewer effects than the Dx-GWAS but these effects were 

almost uniformly stronger than the Dx-GWAS and were generally in high disequilibrium with 

the presences vs. absence of APOE E4 (see Fig. 2, Supplemental Fig. 2, and Supplemental Table 

2a and 2c). There were two striking effects in the APOE-GWAS: First, the TOMM40 genotypes 

for rs2075650 express an pattern almost identical to APOE. This suggests that rs2075650 has 

almost the same predictive power as, and is in almost perfect linkage disequilibrium with, the 

two biallelic SNPs used to genotype for APOE. While the relationship between APOE and 

TOMM40 is not surprising [23,76] the effect we observed (i.e., near perfect disequilibrium with 
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APOE) was surprising. The second striking effect was that the GG genotype of rs10830213 in 

the RAB38 gene in Chromosome 11 was one of the strongest non-Chromosome 19 effects and 

GG genotype of rs10830213 was strongly associated with the absence of APOE E4 and thus 

suggested a protective effect (in ADNI-1). The RAB38 gene has recently been associated with 

frontotemporal dementia [77], whereas other RAB-family genes have been associated with 

multiple neurodegenerative disorders [78]. RAB38 is of particular interest because it has also 

been associated with the production of Aβ [79].  

The Dx-GWAS revealed a very wide array of effects across the genome (see Fig. 1, 

Supplemental Fig. 1 and Supplemental Table 1). The wide array of genotypic effects suggests 

that very many genes are specifically associated with AD, MCI, or CON groups within ADNI-1. 

Some example effects include contributions of: EFNA5 which is broadly associated with AD 

[80] and hippocampal atrophy in AD [40]. Interestingly and somewhat contrary to our 

expectations the “APOE-GWAS” did not detect any genotypes specifically associated with 

APP—a well-known causal factor to some forms of AD [81,82]—rather, effects of APP were 

observed in the “Dx-GWAS”. 

Validation 

 While there were a number of very interesting effects in Discovery, the Validation phase 

was critical to identify the most likely reproducible effects.  Our Validation phase (ADNI-GO/2) 

was similar to the Dx-GWAS in Discovery, in that we aimed to identify genotypes most 

associated with diagnosis. However, the set of genotypes for Validation were derived from a 

candidate panel creation process (see Methods) based on the significant markers from the Dx-

GWAS and the APOE-GWAS. Our discussion of the Validation phase is focused on the 
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genotypes we have identified as “risk” or “control” associated effects, though we do provide 

some discussion of significant genotypes that are, from our analyses, ambiguous or undetermined 

in how they contribute to the overall effects.  

 Chromosome 19. Some of the strongest effects in our validation analyses were 

associated with genotypes in Chromosome 19 (Chr19). Specifically, there were strong effects in 

APOE or strong effects in disequilibrium with APOE, such as APOC, and NECTIN2 (by way of a 

SNP previously associated with PVRL2; see Table 3). For AD, the effects of APOE and Chr19 in 

general are fairly well known. However, our results for these genotypes are important for two 

reasons: (1) these findings support our development and use of PLS-CA, as they found some of 

the most well-known effects and identified them as the strongest sources, and (2) our approach 

provides a specificity of the effects beyond the usual SNP-based analyses; specifically, we have 

identified exactly which genotypes contribute to these effects and we can characterize the 

genotypes as “risk” or “control” associated (see Fig. 3 and Table 3). For examples, the ‘AA’ 

genotype of rs769449 (APOE) and the ‘GG’ genotype of rs2075650 (TOMM40) are at the 

extreme of our asymmetric plot almost exactly half way between AD and MCI and directly 

opposite of the CON group (Fig. 3). This means that AA in rs769449 and GG in rs2075650 

rarely occur in CON, and tend to occur roughly equally in both AD and MCI. Furthermore, and 

most importantly for Chr19 effects: our Discovery phase identified ‘AA’ of rs6859 associated 

with the presence of APOE E4, whereas our Validation phase identified ‘GG’ of rs6859 

associated with the CON group. While the “direction” of the effect is the same across both 

studies, the source of the effect (i.e., minor allele vs. major allele) differs across both studies and 

may reflect, to some degree, the make-up of each study (i.e., because ADNI-1 is more risk prone, 

where as ADNI-GO/2 is not).  
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 APP. As previously noted, APP was identified in the Dx-GWAS—not the APOE-

GWAS—in Discovery. APP markers continued to show an effect in the validation analyses (see 

Table 3). However, like with some of the markers in Chromosome 19, we find a nuanced story 

about the genotypes associated with APP. In Validation, we see APP markers associated both 

with “risk” and “control” (Fig. 3 and Table 3). The same kind of effect was observed in 

rs440666: ‘TT’ was associated with “control” in our validation study (Table 3 and Fig. 3). Given 

the findings across both our Discovery and Validation phases, our findings here suggest that APP 

is more related to diagnostic criteria than to APOE distribution, and that specific APP genotypes 

are likely protective.  

RBFOX1 and GPC6. In our analyses, we found risk specific genotypes in the GPC6 and 

RBFOX1 genes (Table 3; Fig. 3). These two genes are not commonly identified in Alzheimer’s 

or in other dementias. However, contributions of both of these genes have been reported very 

recently. RBFOX1 has been associated with neurofibrillary tangles in AD [83]. RBFOX1 has also 

been associated (structural) imaging phenotypes [84] and hippocampal volume [85]. GPC6 has 

been associated with AD at the whole genome scale [86] as well as the decline in ADAS-cog 

measure [87].  

Novel genetic risk and “protective” factors. Our analyses revealed several novel genetic 

contributions to either risk or control (possibly “protective”) associated effects. Those effects 

are: PTPN14 (“control”), CPNE5 (“control”), LINC00504 (“control”), and intergenic between 

ZYG11AP1 and LOC100421294 (both “control” and “risk”). As of now, there is no reported 

effect of rs1501158 (LINC00504) and rs10990353 (intergenic, ZYG11AP1 / LOC100421294) in 

AD, other dementias, or in general the cognitive aging literature. Additionally, neither CPNE5 

nor PTPN14 have been reported in AD but have been reported in other domains. However, 
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CPNE5 has been associated with a variety of other neurodegenerative diseases [88] and with 

CPNE5 expression levels in the frontal cortex with respect to aging [89]. Furthermore, brain-

specific variants of PTPN14 have been reported in AD (postmortem; [90]). Finally, PTPN14 is 

known to interact with KIBRA [91], which is a gene often implicated in memory [92].  

Stable but ambiguous effects. Finally, there were a number of significant and stable effects 

through both the discovery and validation analyses. In the validation analysis, these effects were 

“ambiguous” in that we have not classified them as “risk” or “control” factors because they fall 

outside of our designated regions (i.e., ambiguous because effects were either in a region 

between CON and AD or between CON and MCI). LRMP has been reported both in 

Huntington’s Disease [93] and with substantial down-regulation in HIV neuroblastoma cell lines 

[94]. PARVG has been associated with Parkinson’s Disease [95] and neurodegeneration [96]. 

Though ITIH5 has no reported effects in the AD literature, it is amongst a small number of 

candidates for CSF in AD [97]. While the remaining genes—RAD51B, NCALD, and DISC1—are 

rarely reported in AD, they share a common trait: they have been associated with the amyloid 

precursor gene APP [98,99]. Furthermore, it has been suggested that DISC1 plays a much 

broader role than “disrupted in schizophrenia” for DISC1 [100]. DISC1 has been reported in late-

onset AD [101] and has also been associated with both APP and Aβ production [102]. 

Furthermore, DISC1 plays a broad role in a common phenotype across many neurological and 

psychiatry disorders: cortical thickness in many brain regions [103]. Finally, RAD51B has been 

associated with macular degeneration [104,105].  

Limitations 
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 While our study presents a first of its kind analysis that reveals both novel genetic 

contributions and more specificity of known genetic effects in AD there are some limitations. 

First, the ADNI data sets are, by today’s standards, relatively small samples for such a study. 

However, our Discovery and Validation sets were kept completely separate from one another 

(i.e., never combined and no shared preprocessing). That being said an optimal study would 

include a third completely independent data set to explicitly test the sensitivity and specificity of 

diagnosis based on the genotypes we discovered; this could be done either with a simple coding 

of risk vs. non-risk genotypes or by using weighted genotypes (via our bootstrap ratios) which 

would be akin to a polygenic risk score. Additionally, in our Validation phase we could have 

weighted the candidates based on aggregate bootstrap ratios from the Discovery phase. However, 

we specifically chose not to and opted for a more data-driven strategy. Ultimately this was 

beneficial: for example, if we had used weighted values in the Validation phase we may have 

missed the effects of rs6859. Recall that different genotypes of rs6859 expressed different effects 

in Discovery compared to Validation. 

Conclusions  

 Like in our work here [84–87] use the ADNI sample. However, all of these papers, as 

well as [83] all use more complex study designs or more complex methods, which in some cases 

[84,85] demand vast computational resources. Other work, such as [87], also have more data and 

larger samples. Yet our much simpler and computationally less expensive strategies with PLS-

CA found many of the same effects reported in all of the aforementioned papers, such as the 

contributions of GPC6 and RBFOX1.  

 Furthermore, PLS-CA found a number of long-studied and already well-known genetic 
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effects in AD such as the contributions across Chr. 19 and the strong disequilibrium of APOE-

TOMM40. While these findings are not surprising, it is important that new methods—such as 

ours—identify well-known and robust effects in order to illustrate validity and appropriateness 

for the problems at hand. 

 We had initially developed PLS-CA specifically to handle the complexities of genetics in 

AD (see [49]). With our application of PLS-CA here it is clear that PLS-CA has many clear 

advantages over traditional and more recent approaches to GWAS. First, PLS-CA does not make 

assumptions about genotypic effects; rather, PLS-CA will reveal what type of genotypic effects 

exists (e.g., dominant vs. additive) and the directions of these effects. More importantly, another 

major advantage PLS-CA has over traditional approaches is that PLS-CA is a multivariate 

technique and thus actually suited for discovery of polygenic effects. Together these features will 

help to more reliably identify complex effects and thus hopefully reduce false positives and non-

replications in the literature. 
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Supplemental Material 

Table S1 
Dx DiCA Significant genotypes  
 
(a) Dx DiCA Component 1 (AD vs. MCI) – significant genotypes 
 

rsid genotype BSR –1 BSR –2 Chr Gene Symbol 
rs1061622 GG -5.32 -1.059 1 TNFRSF1B 
rs6696924 GG -5.516 -0.177 1 C8A 
rs679350 TT -5.007 -0.244 1 C8A 
rs1522551 TT -5.075 -0.197 3  

rs7626449 AA -5.332 0.454 3  
rs13157174 GG -5.17 -0.074 5 LINC02216 
rs2875382 TT -5.057 -1.29 6 MRAP2 
rs4501410 GG -6.05 1.185 6  
rs11783013 GG -5.498 -0.397 8  
rs902466 TT -5.44 0.23 10 ARHGAP19-SLIT1 

rs16977252 GG -5.617 -0.471 15 AKAP13 
rs12934725 GG -5.23 0.536 16 RBFOX1 
rs9952815 GG -6.027 0.745 18 NOL4 
rs283168 TT -5.331 -0.389 19  
rs916326 GG 5.356 0.315 20 PTPRT 

rs13054435 AA -5.541 -0.213 22 NUP50-AS1 
rs4820946 CC -5.641 -0.5 22 MIR3928 
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(b) Dx DiCA Component 2 (CON vs. {AD & MCI}) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene 
rs1115763 CC -1.001 5.97 2  AC007682.1 
rs12618595 AC+AA 1.418 5.474 2  OSBPL6 
rs1470524 TT -1.144 5.178 2  

 rs1387089 CT+CC -0.701 5.015 3  
 rs1387094 GT+GG -0.541 5.004 3  
 rs4685465 GT+GG -0.765 5.136 3  
 rs9821034 GG 0.905 5.37 3  
 rs3846336 AG+AA 0.462 5.329 4  CCDC149 

rs6448119 TT 0.027 5.711 4  
 rs6812046 TT 0.355 5.462 4  
 rs6851636 GG -0.371 5.457 4  
 rs7656406 AA 0.184 5.48 4  
 rs6882277 GG 0.23 5.867 5  
 rs13236754 GG -0.163 5.234 7  ZNF398 

rs1557664 GG 1.43 5.924 7  
 rs9640538 AA -0.297 5.487 7  
 rs10814567 GG 0.16 5.36 9  POLR1E 

rs10814571 AA -0.128 6.816 9  POLR1E 
rs1590255 CA+CC -0.732 5.042 9  

 rs3739574 TT -0.121 6.805 9  POLR1E 
rs7468695 GA+GG -1.168 5.073 9  

 rs11598825 AA -0.487 5.257 10  ITIH5 
rs947696 TT 1.4 5.473 10  

 rs11160481 CC 0.013 5.017 14  
 rs1243473 TT 0.439 5.782 14  ARHGEF40 

rs4635275 AA 0.002 5.028 14  
 rs7146951 GG 0.005 5.764 14  
 rs9806693 AA -0.668 5.969 15  MORF4L1 

rs4789240 TT 1.051 5.089 17  SDK2 
rs9892996 AA -1.531 6.928 17  

 rs9949152 CC -3.019 5.005 18  
 rs2075650 AA 3.295 -5.584 19  TOMM40 

rs7251241 AA 0.937 5.282 19  UNC13A 
rs2830052 CC -0.086 5.614 21  APP 
rs8141950 TC+TT 0.767 5.674 22  PARVB 

 
 
Note. Significant genotypes from Dx DiCA Components 1 (a) and 2 (b). Gene symbols via 

NCBI2R. Component 1 separated AD from MCI, thus, most genotypes here are more associated 
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with AD than MCI; the exception is rs916326 where GG is more associated with MCI than AD. 

Component 2 separates CON from {AD & MCI}, thus, most genotypes here are more associated 

with disorder status (AD or MCI) than CON; the exception is rs2075650 where AA is more 

associated with CON than disease status. 
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Table S2 
APOE DiCA Significant genotypes  
 
(a) APOE DiCA Component 1 (Presence vs. Absence of E4) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene Symbol 
rs10830213 GG 6.537 -0.724 11  RAB38 
rs157580 AA -7.842 -2.918 19  TOMM40 
rs157580 GG 14.612 -2.13 19  TOMM40 
rs2075650 AA 15.323 -0.619 19  TOMM40 
rs405509 AA -6.101 -2.567 19  APOE 
rs405509 CC 6.701 -1.244 19  APOE 
rs439401 CC -8.703 -2.63 19  

 rs6859 AA -5.614 -3.096 19  NECTIN2/PVRL2 
rs8106922 AA -7.514 -3.49 19  TOMM40 
rs8106922 GG 20.928 -4.43 19  TOMM40 

 
 
 
 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 18, 2017. ; https://doi.org/10.1101/235945doi: bioRxiv preprint 

https://doi.org/10.1101/235945
http://creativecommons.org/licenses/by-nc-nd/4.0/


GW PATTERN ANALYSIS IN AD 49 

(b) APOE DiCA Component 2 (2 E4 alleles vs. {0 or 1}) – significant genotypes 
 

rsid genotype BSR - 1 BSR - 2 Chr Gene Symbol 
rs2000072 AA -0.211 5.066 1 LINC00624 
rs4253890 CC -1.077 5.985 1 PTPN14 
rs6681032 TC+TT 0.157 5.439 1 

 rs6703696 GA+GG 0.169 5.604 1 
 rs7541019 GG 0.576 5.069 1 TSNAX-DISC1,DISC1 

rs11899115 AA -0.64 5.996 2 
 rs13009482 CT+CC -1.383 5.696 2 
 rs722963 TT -0.288 5.093 2 
 rs10019637 CC -0.964 5.412 4 
 rs10804966 AA -0.151 5.267 4 EVC 

rs300574 TT 0.275 5.86 4 SPRY1 
rs7678082 TC+TT -0.105 5.196 4 WWC2 
rs7681283 GG -0.168 5.278 4 EVC 
rs868082 TC+TT -0.187 6.13 4 

 rs10041935 CC -0.895 5.75 5 
 rs236444 TT -1.938 7.117 6 CPNE5 

rs1673206 TT -1.294 5.026 7 
 rs6960851 AA -0.713 5.079 7 
 rs537941 TT -0.73 5.27 8 NCALD 

rs1492598 AA -0.933 5.119 9 
 rs4935847 TT -0.247 6.085 11 
 rs1647147 GG -1.396 5.407 12 
 rs16928445 TT 0.609 5.015 12 LRMP 

rs4759955 TT -0.49 5.903 12 TMEM132D 
rs6582412 AA -1.433 5.113 12 

 rs944838 CC 0.373 5.917 13 GPC6 
rs9549831 AA 0.454 5.082 13 

 rs4905290 GG -0.457 5.019 14 CLMN 
rs6573852 GG 0.438 5.294 14 RAD51B 
rs7148010 TT 1.018 5.112 14 SMOC1 
rs10519492 GA+GG -0.468 5.537 15 

 rs6496431 GG -0.087 5.072 15 
 rs714900 TC+TT -0.627 5.611 15 
 rs7177541 AA -0.664 5.299 15 
 rs4500815 AA -0.28 5.3 18 CTIF 

rs9955327 CC -1.958 5.021 18 CELF4 
rs10423685 TT -0.479 5.053 19 ZNF600 
rs157580 GA 4.603 8.591 19 TOMM40 
rs6509238 CC 0.056 5.038 19 
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rs8106922 GA 3.703 9.456 19 TOMM40 

 
(c) APOE DiCA Significant genotypes on both Components. 
 

rsid genotype BSR - 1 BSR - 2 Chr 
rs2075650 GA -17.593 7.374 19 
rs2075650 GG -25.132 -13.27 19 
rs439401 TC 5.052 7.92 19 
rs439401 TT 25.848 -5.79 19 

 
 

Note. Significant genotypes from APOE DiCA Components 1 (a), 2 (b), and on both 

Components (c). Gene symbols via NCBI2R. Component 1 separated presence from absence of 

E4 alleles. Genotypes that have a negative bootstrap ratio (BSR) were more associated with the 

presence of an E4 allele. Component 2 separated, essentially, the 2 E4 alleles from the other (0 or 

1) E4 alleles. In (b) all genotypes were more related to the absence of 2 E4 alleles. In (c) these 

genotypes contribute to both components and suggest that these genotypes are in very high 

linkage disequilibrium with APOE (note that the GG genotype of rs2075650 strongly contributes 

to both components and in the same direction as the presence 2 E4 alleles). 
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Supplemental Figure 1. The component map from the Dx-DICA (discovery phase). The 

component map shows significant genotypes and the group configuration to illustrate—as a 

biplot—the relationship between the genotypes and groups. 
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Supplemental Figure 2. The component map from the APOE-DICA (discovery phase). The 

component map shows significant genotypes and the group configuration to illustrate—as a 

biplot—the relationship between the genotypes and groups. 
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