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Abstract 

Background: Childhood-onset attention-deficit hyperactivity disorder (ADHD) in adults is clinically 

heterogeneous and commonly presents with different patterns of cognitive deficits. It is unclear if this 

clinical heterogeneity expresses a dimensional or categorical difference in ADHD. Methods: We first 

studied differences in functional connectivity in multi-echo resting-state functional magnetic resonance 

imaging (rs-fMRI) acquired from 80 medication-naïve adults with ADHD and 123 matched healthy 

controls. We then used canonical correlation analysis (CCA) to identify latent relationships between 

symptoms and patterns of altered functional connectivity (dimensional biotype) in patients. Clustering 

methods were implemented to test if the individual associations between resting-state brain connectivity 

and symptoms reflected a non-overlapping categorical biotype. Results: Adults with ADHD showed 

stronger functional connectivity compared to healthy controls, predominantly between the default-mode, 

cingulo-opercular and subcortical networks. CCA identified a single mode of brain-symptom 

co-variation, corresponding to an ADHD dimensional biotype. This dimensional biotype is 

characterized by a unique combination of altered connectivity correlating with symptoms of 

hyperactivity-impulsivity, inattention, and intelligence. Clustering analyses did not support the 

existence of distinct categorical biotypes of adult ADHD. Conclusions: Overall, our data advance a 

novel finding that the reduced functional segregation between default-mode and cognitive control 

networks supports a clinically important dimensional biotype of childhood-onset adult ADHD. Despite 

the heterogeneity of its presentation, our work suggests that childhood-onset adult ADHD is a single 

disorder characterized by dimensional brain-symptom mediators.   
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Introduction 

Attention-deficit hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder 

whose persistence into adulthood has been increasingly acknowledged (Asherson et al., 2016). ADHD 

in both children and adults manifests as a heterogeneous condition with significantly varied intensity 

and types of inattention and hyperactivity-impulsivity symptoms across individuals (Asherson et al., 

2016). Individuals with ADHD also commonly present with general cognitive deficits (Fair et al., 2012; 

Mostert et al., 2015) interacting with clinical symptoms (Cheung et al., 2015; Rommelse et al., 2016).  

Although the aetiological markers of ADHD remain elusive, the disorder is associated with 

functional alterations in whole-brain resting-state networks (Gallo and Posner, 2016). ADHD symptoms, 

in both adults and children, have consistently been linked to abnormal functional connectivity within 

and between the default-mode network (DMN), cognitive control and attention networks, as well as 

mesocorticolimbic circuits (Cocchi et al., 2012; Lin and Gau, 2015; Castellanos and Aoki, 2016; Cai et 

al., 2017). In line with the clinical expression of ADHD, these networks are widely-known to provide 

crucial support to higher-order cognitive functions (Cole et al., 2016) and general intelligence (Hearne 

et al., 2016).    

Altered resting-state connectivity has been used to parse clinically heterogeneous children with 

ADHD into more coherent subgroups (Gates et al., 2014; Costa Dias et al., 2015). However, attempts to 

stratify ADHD based on resting-state connectivity have so far provided inconsistent results with 

important caveats from a clinical perspective. For example, connectivity-based clusters have not 

converged on symptomatically similar subgroups of ADHD across studies (Gates et al., 2014). Previous 

studies have also isolated subgroups by pooling ADHD and typically developing controls together, 

precluding a distinct assessment of possible categories specific to ADHD (Gates et al., 2014; Costa Dias 

et al., 2015; Marquand et al., 2016). On the other hand, dimensional models of ADHD psychopathology 
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based on behavioral measures are increasingly supported (Marcus and Barry, 2011; Willcutt et al., 2012). 

Nevertheless, the link between existing dimensional models and brain function remains elusive, with 

very limited data in the adult population (Asherson et al., 2016; Gallo and Posner, 2016).  

Recent advances in neuroimaging methods provide new opportunities to test the dimensional and 

categorical models of ADHD by using multivariate analyses (e.g., canonical correlation analysis, CCA) 

of brain-behavior relationships (Smith et al., 2015; Drysdale et al., 2017). Leveraging these new 

methodological developments, the heterogeneity between individuals with ADHD can be addressed by 

borrowing and extending the construct of biotype. Here, a biotype delineates a subgroup of individuals 

with ADHD sharing common symptom patterns and abnormal resting-state connectivity. A dimensional 

biotype is defined by abnormal brain-symptom patterns that vary in severity across individuals on a 

continuum. Conversely, a categorical biotype defines a discrete subgroup of individuals sharing a 

combined pattern of altered functional connectivity and clinical-cognitive features that are unique and 

segregated from other individuals. Breaking down ADHD heterogeneity into dimensional or categorical 

biotypes is important because it will enable the development of targeted research and clinical 

interventions. Prior studies have attempted to define ADHD categorical subtypes based on co-occurring 

psychiatric symptoms (Acosta et al., 2008), neuropsychological profiles (Fair et al., 2012; Mostert et al., 

2015), temperaments (Karalunas et al., 2014), and patterns of functional connectivity (Gates et al., 2014; 

Costa Dias et al., 2015). Karalunas et al. (2014) were the first to use behavioral and physiological 

measures to investigate the existence of ADHD categorical subtypes. In this study, subtypes were 

initially defined using temperamental features and subsequently validated by cardiac and brain 

measures, as well as clinical outcomes. However, to the best of our knowledge, no studies have 

combined symptoms and brain features to assess the existence of categorical and/or dimensional 

biotypes of ADHD. In other psychiatric disorders such as psychosis, neuroimaging and behavioral data 
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have recently been used to parse individuals into separate biotypes. For example, Clementz et al. (2016) 

delineated three categorical psychosis biotypes using cluster analysis applied to electrophysiological 

and neuropsychological data, while Kaczkurkin et al. (2017) applied a constrained factor analysis to 

psychiatric symptoms in a large cohort of youth to delineate orthogonal dimensions of psychopathology. 

 In this study, we assessed complex relationships between clinical and cognitive presentations and 

abnormal resting-state connectivity in a large medication-naïve sample of adults with ADHD. The 

principal aim of our analysis was to uncover the existence of dimensional or/and categorical biotypes of 

childhood-onset adult ADHD. Specifically, we identified distinct alterations in whole-brain resting-state 

connectivity (as estimated by a multi-echo planar imaging, EPI, acquisition) that were associated with 

distinct symptoms of inattention and hyperactivity-impulsivity, as well as general cognitive functioning 

(Wechsler, 1997). To maximize the translational value of our work (Drysdale et al., 2017), we focused 

on a subset of symptom measures which capture the majority of variance in ADHD phenomenology 

(Asherson et al., 2016) and are commonly acquired in clinical settings. Based on recent findings (Barch, 

2017; Drysdale et al., 2017), we hypothesized that biotypes of adult ADHD would involve functional 

connectivity changes in brain networks previously with symptoms of ADHD. Specifically, we expected 

the interaction between the DMN and cognitive control and attention networks to be key to delineation 

of ADHD dimensional or categorical biotypes (Cocchi et al., 2012; Lin and Gau, 2015; Cai et al., 2017). 

  

Methods 

Participants and procedure 

The study included 80 medication-naïve adults with childhood-onset ADHD (24 females) aged 18-39 

years (mean 26.7 years), who fulfilled DSM-IV-TR criteria for ADHD, and 123 age- (mean 25.7 years) 

sex- (44 females) and IQ-matched healthy controls with no clinically significant psychopathology. The 
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participants were assessed at the adult ADHD special clinic of the Department of Psychiatry, National 

Taiwan University Hospital (NTUH), Taipei, Taiwan from March 2014 to December 2016. Compared 

to existing multi-sites studies (Hoogman et al., 2017), we recruited a homogeneous sample that is free 

from medication and multi-site confounds (e.g., different MR scanners and protocols). The detection of 

biotypes in our unique sample is also facilitated because the variance in the data cannot be linked to 

heterogeneous developmental delays and psychiatric comorbidity (Schnack and Kahn, 2016). From a 

methodological viewpoint, our analyses were tailored so that meaningful ADHD biotypes could be 

detected with the given sample size (see Supplementary Methods). 

All participants, including patients and healthy controls, were recruited via advertisements at the 

hospital, colleges, and websites. Adults interested in the study were first telephone-screened using the 

Chinese version of the Adult ADHD Self-Report Scale v1.1 (Yeh et al., 2008). Those identified as 

probable cases of ADHD by telephone interview were excluded from the study if they had ever 

received psychotropic treatment before. All other participants were then clinically assessed and 

diagnosed by a board-certified child psychiatrist (SS Gau) for the presence or absence of ADHD and any 

other psychiatric disorders. The ADHD diagnosis was further confirmed with the Conners’ Adult 

ADHD Diagnostic Interview (Conners et al., 1999) for current ADHD, and the modified adult version 

of the ADHD supplement of the Chinese version of the Kiddie-Schedule for Affective Disorders and 

Schizophrenia–Epidemiological Version (K-SADS-E) for childhood and current ADHD (see 

Supplementary Information) (Lin et al., 2016). Age-matched healthy adult controls without any 

lifetime diagnosis of ADHD received the same clinical assessments as the ADHD group. Exclusion 

criteria for all participants included: Any prior systemic medical illness; a history of affective 

disorders, psychosis, substance use disorder, autism spectrum disorder; current depressive/anxiety 

symptoms or suicidal ideation; a history of psychotropic treatment, including medication for ADHD; 
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and a full IQ (FIQ) <80, as assessed by Wechsler Adult Intelligence Scale-3rd Edition (Wechsler, 1997). 

Of the ADHD participants, 47, 32, and one were diagnosed with the DSM-IV inattentive, combined, and 

hyperactivity-impulsive subtypes, respectively (Table 1 and Supplementary Table 1). Notably, only 61 

adults retained the same subtypes across current and childhood presentations (the childhood subtypes 

were ascertained using the K-SADS-E). All study procedures were approved by the Research Ethics 

Committee of the NTUH (201401024RINC; ClinicalTrials.gov number, NCT02642068). All 

participants provided written informed consent. 
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Imaging protocols and preprocessing 

Neuroimaging data were acquired with a Siemens 3T Tim Trio scanner using a 32-channel head coil at 

Advanced Biomedical Imaging Lab of the NTUH. All participants were instructed to relax, clear their 

mind, and remain still with their eyes closed while undergoing a 7 min 39 sec resting-state functional 

magnetic resonance imaging (rs-fMRI) scan. Wakefulness was checked immediately after the sequence 

was completed, and all participants denied falling asleep during rs-fMRI scans. The duration of the 

Table 1. Demographic and clinical features of the participants 

Mean (SD) Control (N=123) ADHD (N=80) Statistics 

Age (18-39 years) 25.7 (4.9) 26.7 (5.6) p=0.171 

Sex (M/F) 79/44 56/24 p=0.394 

Handedness (R/L) 118/5 63/16 p<0.001  

FIQ 
109.8 (9.3)  

(range: 89-138) 

107.5 (10.3) 

(range: 80-137) 
p=0.096 

VIQ 108.2 (9.1) 105.9 (11.2) p=0.120 

PIQ 110.6 (11.4) 108.4 (16.1) p=0.268 

ADHD symptoms    

 Inattentiona 6.5 (4.8) 19.7 (5.0) p<0.001 

 Hyperactivity/Impulsivitya 3.1 (4.3) 13.6 (6.5) p<0.001 

 Opposition-defiancea 3.6 (11.4) 4.2 (5.9) p<0.001 

 ASRS-A 13.2 (5.1) 27.1 (4.8) p<0.001 

 ASRS-B 8.9 (5.0) 19.9 (6.22) p<0.001 

Mean frame-wise displacementb 

(mm) 

0.045 (0.020) 

(range: 0.014-0.123) 

0.049 (0.025) 

(range: 0.017-0.108) 
p=0.233 

a Measured by the Swanson, Nolan, and Pelham, version IV (SNAP-IV) scale.  

b Estimated by the Euclidian norm (enorm: square root of the sum of squares of the differences in motion derivatives), 

computed with AFNI's 1d_tool.py.  

Abbreviation: ADHD=attention-deficit hyperactivity disorder; FIQ=full intelligence quotient; PIQ=performance 

intelligence quotient; VIQ=verbal intelligence quotient; ASRS=Adult ADHD Self-Report Scale; M=male; F=female; 

R=right; L=left; SD=standard deviation. 
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rs-fMRI sequence was decided to limit the chance of possible fluctuations in participants’ wakefulness 

and in-scanner motion while allowing the acquisition of sufficient blood-oxygen-level-dependent 

(BOLD) signal (Van Dijk et al., 2010; Birn et al., 2013). Localizer and rs-fMRI scans were obtained first. 

T1-weighted anatomical scans (MPRAGE pulse sequences) and diffusion spectrum imaging, which was 

not analyzed here, were acquired thereafter. Functional images were acquired with a multi-echo EPI 

sequence (repetition time=2.55 sec; flip angle=90°; matrix size=64 × 64; in-plane resolution=3.75 mm; 

FOV=240 mm; 31 oblique slices, alternating slice acquisition slice thickness 3.75 mm with 10% gap; 

iPAT factor=3; bandwidth=1,698 Hz/pixel; echo time, TE=12, 28, 44 and 60 msec). Anatomical 

images were acquired using a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) 

sequence (repetition time=2 sec; TE=2.98 msec; flip angle=9°; matrix size=256×256; inversion 

time=900 msec; voxel size=1 mm3).  

These fMRI data permit unique denoising and analyses using multi-echo independent components 

analysis (ME-ICA v3.0 beta1; www.bitbucket.org/prantikk/me-ica) (Kundu et al., 2012). In 

comparison to standard single-echo imaging, this approach enhances the signal-to-noise ratio and 

addresses concerns regarding non-neural confounding factors in fMRI acquisitions, particularly head 

motion (Kundu et al., 2017). Preprocessing was carried out using AFNI v16.1.10 and Python v2.7.11 

toolkits. Each individual's denoised EPI was co-registered to their T1 image and then non-linearly 

normalized to the Montreal Neurological Institute template (3-mm isotropic voxel size). Spatial 

smoothing was not conducted for the denoised normalized data as per the recommendation by 

Lombardo et al. (2016). The time course was temporally band-pass filtered (0.01~0.1 Hz). Post-hoc 

analysis showed that levels of framewise displacement (computed using AFNI's 1d_tool.py) did not 

significantly differ between ADHD and controls (F(1, 201)=1.462, p=0.233; Table 1). No participants 

exhibited extreme levels of head motion (translation and rotation rigid-body realignment estimates were 
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<1.5mm and <1.5°). ME-ICA are detailed in Supplementary Methods. 

Whole-brain patterns of altered functional connectivity in ADHD 

We delineated ADHD biotypes based on distinct patterns of abnormal resting-state connectivity 

identified by diagnostic group comparisons (ADHD vs. controls). We reasoned that biologically 

meaningful ADHD subtypes would be best characterized by a subset of the whole-brain resting-state 

connectivity features that comprise group differences between ADHD and controls. A graphic 

representation of the analysis pipeline is presented in Fig. 1.  

 

  

        

 

 

 

 

 

 

We generated a whole-brain correlation matrix for each participant, based on a well-validated 

Figure 1. Overview of data processing and analysis pipeline. Multi-echo independent component 
analysis (ME-ICA) was used to denoise eye-closed resting-state imaging data. Functional connectivity 
matrices were calculated by extracting the average signal time series from validated brain parcellations. 
The network-based statistic (NBS) was used to assess differences in whole-brain connectivity between 
80 drug-naive individuals with ADHD and 123 matched healthy controls. Results from the NBS were 
corroborated by a data-driven functional network connectivity analysis. Following data reduction steps 
(see text) functional connectivity and behavioral data were used to perform a canonical correlation 
analysis (CCA). This analysis allowed to identify hidden relations between resting-state functional 
connectivity and behavior. The CCA assigns a weight for each functional connection and each 
symptom such that the level of linear correlation between connectivity and behavioral data across 
individuals with ADHD is maximized. Permutation testing determined a family-wise error (FWE) 
corrected p-value for this multivariate correlation (i.e., dimensional biotype). Regarding the discovery 
of categorical biotype, two complementary approaches were employed: a. k-means clustering was used 
to test if the individual associations between connectivity and behavior form distinct clusters; b. 
multi-view spectral clustering (Kumar and Daumé, 2011) was implemented using features from 
symptoms and connectivity (NBS results). 
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functional brain parcellation (Power et al., 2011). Eleven of the originally published 264 nodes (mostly 

the inferior temporal areas and cerebellum areas, including 2 regions-of-interest, ROIs, in the DMN; 5 

ROIs in the limbic network; 4 ROIs in the cerebellum) were excluded from analysis owing to 

incomplete MRI coverage. We additionally included the bilateral nucleus accumbens, centered at MNI 

coordinates x=±9,y=9,z=-8 as defined by Costa Dias et al. (2015). These ROIs were included for their 

roles implicated in ADHD. The final parcellation included 255 functional nodes (10-mm-diameter 

spheres). fMRI time series were extracted from each node by averaging over the representative voxels. 

The Fisher z-transformation was applied to each correlation coefficient within the matrix.   

 We employed network-based statistic (NBS) (Zalesky et al., 2010), a validated non-parametric 

algorithm that controls for multiple comparisons (between all possible edges). NBS was performed on 

connectivity matrices to identify bivariate patterns of connectivity that differentiated ADHD from 

healthy controls. NBS is based on the principles underpinning traditional cluster-based thresholding of 

statistical parametric maps and hence proceeds with a preliminary height threshold (pair-wise 

connections) followed by a familywise error (FWE)-corrected cluster threshold (topological 

subnetworks of connections). We used a t-statistic (absolute value) of 3.5 as our initial height threshold 

(corresponding to p<0.0005, two-tailed), followed by a conservative FWE corrected p<0.05 for our 

pair-wise contrasts. This height threshold was decided based on our previous neuroimaging 

investigation in adult ADHD (Cocchi et al., 2012). The inference was performed using permutation 

testing (10,000 permutations).  

To ensure our results are not specific to any particular parcellation template, we repeated the 

analysis with functional networks constructed using parcellation templates of different resolution and 

nature (Supplementary Fig. 1). To further test the robustness of our NBS results, we undertook a 

confirmatory analysis using data-driven group ICA and functional network connectivity (Jafri et al., 
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2008) (see Fig. 1 and Supplementary Information).  

CCA and clustering 

CCA is a multivariate statistical method to identify latent, linear relations between combinations of 

independent and dependent variables (Krzanowski, 2000). The first mode represents canonical 

correlations corresponding to the maximum co-variation between the two sets of variables. Subsequent 

modes represent maximum residual, orthogonal co-variation. We implemented CCA, in steps similar 

to those previously reported (Smith et al., 2015; Perry et al., 2017), to identify modes which relate sets 

of resting-state connectivity patterns to symptom and cognitive measures of ADHD pathology, within 

the ADHD cohort. Connections composing the altered resting-state network as identified by the NBS 

were selected as connectivity features within the CCA. Three symptom measures were included in the 

CCA: factor scores of inattentive and hyperactivity-impulsivity symptoms, and FIQ. As general 

cognitive functions may modify the clinical presentation of ADHD (Rommelse et al., 2016), moderate 

its prognosis (Cheung et al., 2015) and influence its clinical heterogeneity (Fair et al., 2012; Mostert et 

al., 2015), we included FIQ alongside the two main symptom dimensions of ADHD as the CCA 

symptom measures. FIQ is advantageous because it represents a parsimonious account of general 

cognitive functions, and is easily accessible in clinical routines, which was not the case for cognitive 

measures adopted in earlier attempts of clustering ADHD (Marquand et al., 2016). Statistical 

significance at FWE-corrected alpha <0.05 was estimated via 100,000 permutations of the rows of one 

matrix relative to the other. Technical details regarding the CCA are provided in Supplementary 

Methods.   

 To test the existence of ADHD categorical biotypes, we implemented complementary analysis 

strategies using the features derived from CCA modes and combined features from connectivity and 

clinical symptoms. To assess whether the brain-symptom associations identified by the CCA were 
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evenly distributed or clustered in distinct subgroups, we first employed k-means clustering on those 

linearly projected two-dimensional features by the CCA. To further test the existence of categorical 

biotypes, we explored joint clustering of connectivity features and symptom features using multi-view 

spectral clustering. This clustering algorithm maximizes the agreement across clusters identified in 

different feature spaces (connectivity and symptom) (Kumar and Daumé, 2011). The existence of 

valid discrete clusters detected using the k-means method was determined using state-of-the-art 

robustness measures including average silhouette width values  and the Jaccard similarity (Hennig et 

al., 2015), as well as the gap statistic (Tibshirani et al., 2001). For the multi-view spectral clustering, we 

considered the convergence of the number of clusters yielded across different similarity thresholds. 

While there are no clear indications regarding the minimum sample size necessary for clustering 

analyses, broadly accepted guides (Hennig et al., 2015) argue that our sample size (N=80) is 

substantially larger than that required to identify clusters using the number of features we employed. 

Methodological details regarding clustering algorithms are described in the Supplementary Methods.

   

 

Results 

Altered whole-brain resting-state connectivity in medication-naive adults with ADHD 

The application of NBS identified one significant brain network that differentiated adults with ADHD 

from healthy controls (FWE-corrected p=0.037; Fig. 2 and Supplementary Table 2&3 for details). The 

ADHD cohort showed stronger resting-state connectivity in this network compared to controls, with 

increased correlations between the DMN and frontoparietal network, the DMN and attention networks 

(including both salience/cingulo-opercular and dorsal attention components), the DMN and subcortical 

regions, the salience/cingulo-opercular network and sensory-motor and visual network, as well as the 
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salience/cingulo-opercular network and dorsal attention, alongside frontoparietal networks) (Fig. 2). 

Confirmatory analyses using different brain parcellations yielded similar results (Supplementary Fig. 1).  

In a confirmatory analysis, we repeated the NBS analysis adjusting for subject-specific mean 

framewise displacements, gender, and age. In line with the original results, this analysis identified one 

significant brain network showing hyperconnectivity in adults with ADHD compared to healthy 

controls (Supplementary Fig. 2). This network was similar to the one detected by our main analysis 

(Fig. 2).  

 

To test the stability of connectivity differences detected in our analysis, we undertook 

Figure 2. Group differences in inter-regional 
functional connectivity. The network-based statistic 
(NBS) identified a single network differentiating 
adult ADHD from healthy controls. This network 
was hyper-connected (i.e., higher positive 
correlations) in ADHD compared to controls. 
Functional brain networks were designated 
according to Power and colleagues (Power et al., 
2011). (A) Circular layout of the network 
distribution. Colors are used to define different brain 
networks. (B) Topological representation of brain 
network hyper-connectivity in ADHD compared to 
healthy controls. (C) The proportion of functional 
connections affected by ADHD. The number of 
connections involving each network pair was 
normalized by a total number of altered pair-wise 
connections. Adults with ADHD showed the highest 
positive functional connectivity between (i) the 
default mode (DMN) and the salience (SN) 
networks; (ii) the frontoparietal task control network 
(FPTC) and subcortical (subC) networks. Network 
nodes and edges (connections) were visualized using 
BrainNet Viewer 
(http://www.nitrc.org/projects/bnv/). Circular 
layouts were generalized with NeuroMArVL 
(http://immersive.erc.monash.edu.au/neuromarvl/). 
Networks/modules were assigned based on the 
community information provided by Power et al. 
(2011). The anatomical location was identified by 
the Automatic Anatomical Labeling atlas 
(http://www.gin.cnrs.fr/en/tools/aal-aal2/) and visual 
inspection. COTC=cingulo-opercular network; 
VAN=ventral attention network; DAN=dorsal 
attention network; SSM=somatosensorimotor 
network; Aud=auditory network; Vis=visual 
network; Supp=supplementary; R=right; L=left; 
Sup=superior; Inf=inferior; Mid=middle; 
Oper=opercular. 
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confirmatory analyses using different search thresholds (T values=3; 3.3; 3.9) for the NBS. As shown in 

Supplementary Fig. 3, the confirmatory NBSs identified similar patterns of hyperconnectivity between 

(i) the DMN and attention and cognitive control networks, (ii) the DMN and subcortical regions, and (iii) 

the salience/cingulo-opercular network and sensory processing networks in ADHD compared to 

healthy controls. Consistent with the effect of increasing the network forming threshold, these 

subnetworks become sparser as the serach threshold is increased.  

The main NBS results were replicated using an alternative approach to characterize functional 

brain networks, using maps derived from ICA decomposition of the data rather than a predefined 

parcellation (Jafri et al., 2008). Specifically, results from this additional analysis confirmed that ADHD 

had stronger connectivity between the DMN and the cingulo-opercular/salience/ventral attention 

networks compared to the controls (false discovery rate corrected q=0.044; Supplementary Fig. 4).  

ADHD biotyping 

Dimensional biotype 

The application of CCA identified one significant mode (r=0.430, FWE-corrected p=0.037) of 

interdependences between functional connectivity patterns and the symptom indices of 

hyperactivity-impulsivity, inattention, and general cognitive functioning (FIQ) (Supplementary Table 

4a). Specifically, ADHD adults with high symptoms of hyperactivity and impulsivity showed higher 

resting-state connectivity in a network comprising the strongest increases in positive connectivity in 

ADHD compared to controls (Fig. 3A). Symptoms of inattention were only mildly positively 

associated with ADHD hyper-connectivity. On the other hand, general cognitive functions, as indexed 

by IQ scores, were inversely correlated with greater resting-state connectivity (Fig. 3A). The 

functional connections expressing the strongest positive associations in this mode (mean r=0.59, 

standard deviation=0.09) involved mainly altered DMN-cingulo-opercular and DMN-subcortical 
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connectivity (Fig. 3B&C and Supplementary Table 5). The additional 2 modes were associated with 

very small effect sizes (r=0.18, r=0.02, respectively), and did not capture any additional meaningful 

association between patterns of brain connectivity and symptoms. 

 To test whether the CCA was not confounded by head motion, age or gender, we repeated this 

analysis using the significant subnetwork identified with the NBS in which these confounds were 

included as nuisance factors. This analysis also yielded one significant mode (r=0.415, FWE-corrected 

p=0.034; Supplementary Fig. 6), recapitulating the brain-symptom associations detected in the original 

analysis (Fig. 3).  
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Categorical biotype 

Results of clustering methods failed to show the existence of a non-overlapping ADHD categorical 

biotype. Specifically, the application of k-means clustering analysis to the CCA weighted symptom and 

connectivity values favored a dimensional solution over a categorical one. In particular, the value of the 

clustering index (average silhouette values) was 0.46 for 2 clusters and 0.49 for 3 clusters 

(Supplementary Table 6), both below the range considered to support a stable cluster solution. Based on 

the gap statistic (Supplementary Fig. 7), the suggested optimal number of clusters from the k-means 

algorithm was one. As shown in Supplementary Fig. 8A, ADHD participants were evenly distributed 

without any clear cluster demarcation. In support of this observation, a multi-view spectral clustering 

analysis using combined symptom and connectivity features also failed to converge to a stable 

clustering solution (Supplementary Fig. 8B). The inconsistency in the number of clusters detected 

across different similarity thresholds indicates that no valid categorical biotypes could be identified for 

adult ADHD.    

Comparison between DSM-IV subtypes and ADHD biotype 

NBS and functional network connectivity analyses did not reveal significant differences in resting-state 

Figure 3. Canonical correlation analysis (CCA) and ADHD dimensional biotypes. (A) The CCA 
analysis identified a single significant (FWE-corrected p=0.037) mode of associations between 
resting-state connectivity and the behavioral variables of interest. The strength and direction of the 
variance explained by the CCA mode are indicated in the figure by the vertical position and font size. 
Adults with ADHD having predominant symptoms of hyperactivity and impulsivity showed higher 
resting-state connectivity in a network comprising the most (top 25%) hyper-connected edges in 
ADHD compared to controls (panel B). Conversely, higher cognitive functions (indexed by IQ scores) 
inversely correlated with (hyper) connectivity in the altered network. Symptoms of inattention were 
mildly positively associated with resting-state connectivity. (B) Representation of the top 25% node 
pairs expressed by the CCA mode. (C) This panel represents the circular layout of the top 25% 
node-pairs. This representation highlights that the majority of hyper-connected edges comprise 
functional interactions between the default mode (DMN) and the cingulo-opercular network (COTC) 
and subcortical (subC) networks. (D) Participants with different clinical ADHD subtypes were 
distributed evenly along the one-dimensional axis identified by the CCA. SN=salience network; 
FPTC=frontoparietal task control network; R=right; L=left; Sup=superior; Mid=middle; 
Supp=supplementary. 
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connectivity between the combined (N=32) and inattentive (N=47) clinical subtypes of ADHD.  

We also assessed how the DSM-IV-defined ADHD clinical subtypes mapped on the 

brain-symptom dimensional axis revealed by our biotyping analysis. As shown in Fig. 3D, participants 

with different clinical ADHD subtypes were distributed evenly along the one-dimensional axis 

identified by the CCA.  

Gender effects on ADHD biotype 

NBS did not identify significant connectivity differences between males and females with ADHD. As 

shown in Supplementary Fig. 9, males and females, regardless the clinical subtypes, were also 

distributed evenly along the one-dimensional axis identified by the CCA.  

 

Discussion 

ADHD is characterized by substantial clinical and cognitive heterogeneity. Here, we questioned 

whether this childhood-onset adult ADHD heterogeneity could be parsed into dimensional or 

categorical biotypes. Our multivariate analyses showed that inter-individual differences in brain 

connectivity, clinical symptoms and general cognitive functioning in ADHD define a dimensional 

biotype (Fig. 3A). We found no evidence for a categorical definition of adult ADHD. Results from this 

study support the notion of adult ADHD as a single pathological entity, with altered brain-symptom 

associations varying across a single dimension or spectrum.    

 Data from our sample allowed the isolation of ADHD biotypes, which are not confounded by 

developmental delays, general cognitive dysfunction, history of medication use or confounds related to 

multi-site experiments. Using state-of-the-art multi-echo rs-fMRI data, we showed reduced functional 

segregation (i.e., higher positive functional connectivity) between the DMN and attention, alongside 

cognitive control networks in ADHD compared to healthy controls. One of the most robust findings of 
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the fMRI literature in children and adults with ADHD is the increased functional interplay between the 

DMN and other networks of the brain, especially the cingulo-opercular/salience/ventral attention 

networks (Castellanos and Aoki, 2016; Gallo and Posner, 2016). In healthy controls, these 

between-network interactions are known to support dynamic switches between internal and external 

mental processes (Menon, 2011). Accordingly, studies have shown that the reduced functional 

segregation between the DMN and other brain networks correlated with attention and hyperactivity 

symptoms of ADHD (Cocchi et al., 2012). For example, reduced functional segregation between the 

DMN and cognitive control networks has been linked to inattention (Barber et al., 2015) and poor 

inhibitory control (van Rooij et al., 2015) in ADHD youths. Also, the pharmacological enhancement of 

this between-networks functional segregation improves ADHD symptoms (Lin and Gau, 2015). The 

current study extends these previous findings to a larger sample of medication-naïve adults with clinical 

ADHD. Both NBS and functional network connectivity analyses show increased interactions between 

DMN and attention alongside cognitive control networks (especially the salience/cingulo-opercular 

component), supporting the notion that this deficit represents a key brain signature of ADHD 

(Castellanos and Aoki, 2016; Cai et al., 2017). We also identified increased connectivity between 

salience/cingulo-opercular and all other major brain networks, as well as increased connectivity within 

the salience/cingulo-opercular network in adults with ADHD. This result supports the notion that altered 

salience network function significantly impacts the balance between brain systems activity supporting 

external and internal mental processes (Menon, 2011), and contributes to the emergence of ADHD 

symptoms (Castellanos and Aoki, 2016; Cai et al., 2017).    

The CCA showed one significant mode of the population variation that links a pattern of brain 

connectivity to a specific pattern of covariance between core ADHD symptoms and general 

intelligence. This analysis suggests that the heterogeneity of ADHD symptomatology can be described 
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by a dimensional biotype. Symptoms of hyperactivity-impulsivity and inattention loaded onto positive 

associations with connectivity patterns in this mode, whereas IQ loaded onto negative associations. This 

result, despite being correlational in nature, echoes the earlier findings suggesting that preserved 

cognitive function may act as a protective factor for ADHD symptoms in adults (Cheung et al., 2015; 

Rommelse et al., 2016), whereas lower IQ is associated with chronic and persistent symptoms (Cheung 

et al., 2015; Keyes et al., 2017). Longitudinal studies would be required to better tease out any causal 

role in these associations. The result that hyperactivity-impulsivity and IQ loaded onto opposing ends of 

the same axis is in line with previous data on adolescence (Keyes et al., 2017) and highlights the 

presence of this relationship in adulthood. Moreover, the fact that hyperactivity-impulsivity and 

inattention loaded onto the same CCA axis supports existing work suggesting a mildly positive 

correlation between these two ADHD symptom dimensions (Willcutt et al., 2012). The functional 

connectivity patterns that were most strongly expressed by this mode included connections between 

DMN and cingulo-opercular and subcortical brain regions, as well as fronto-parietal-subcortical regions. 

This further supports proposals derived from healthy cohorts that anti-correlated activity between the 

DMN and cognitive-control networks underpins optimal brain functions and behaviors (Menon, 2011). 

Together, results from our CCA analysis highlight that a dimensional biotype defined by 

symptom-connectivity co-variation explains ADHD heterogeneity.     

We revisited prior efforts to utilize neuroimaging or behavioral information to assess the existence 

of distinct subtypes of individuals with ADHD. Existing studies have defined several ADHD subtypes, 

mostly in the child population, characterized by co-occurring psychiatric symptoms (Acosta et al., 

2008), neuropsychological profiles (Fair et al., 2012; Mostert et al., 2015), temperamental features 

(Karalunas et al., 2014), and functional connectivity patterns (Gates et al., 2014; Costa Dias et al., 2015). 

However, these studies have failed to provide a consistent non-overlapping parcellation of ADHD. 
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Herein, we attempted to identify categorical ADHD biotypes by combining resting-state functional 

connectivity and symptom data in the largest sample of childhood-onset adult ADHD to date, but found 

no evidence for categorical biotypes. In keeping with the inconclusive results of previous attempts, our 

work highlights the difficulty in parsing the clinical heterogeneity of ADHD into non-overlapping 

categories. Whereas it could be argued that our clinically homogenous sample may have precluded the 

identification of categorical biotypes, the distribution of the current sample is consistent with 

demographic features of adults with childhood-onset ADHD (Asherson et al., 2016). Likewise, our 

sample allowed the identification of ADHD-specific brain alterations and biotypes. Future studies may 

build upon the present results to interrogate the impact of factors such as comorbidity, developmental 

differences, and medication on the definition of ADHD biotypes. These multi-site endeavors will 

necessarily require significantly larger samples compared to the present work (Schnack and Kahn, 

2016). Besides sample characteristics, we acknowledge that our results are linked to the symptoms 

included, and that we cannot exclude the possibility that ADHD heterogeneity could be parsed using 

different measures. It is therefore possible that more specific cognitive measures, such as those adopted 

in previous attempts (Fair et al., 2012; Mostert et al., 2015), may support the co-existence of categorical 

biotypes.   

Intriguingly, we did not identify functional connectivity differences between the DSM-IV subtypes. 

Moreover, individuals across both clinically defined ADHD subtypes (i.e., combined and inattentive) 

were distributed evenly along the axis identified by the CCA, highlighting the challenges of clustering 

ADHD in non-overlapping subgroups (Marquand et al., 2016). Whether our findings could be 

generalized to recently-identified late-onset ADHD (Faraone and Biederman, 2016) or children and 

adolescents with ADHD awaits further testing.  

In the current study, we acquired multi-echo rs-fMRI, which allows direct measurement of T2* 
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relaxation rates to facilitate the disambiguation of brain signals from noise and artifacts based on their 

different echo time dependence (Kundu et al., 2012). The adopted analysis pipeline (see Supplementary 

Methods) has proven effective in denoising fMRI signal from motion and physiological artifacts in task 

and rest conditions (Kundu et al., 2017). Despite advantages of our approach in detecting neural signals, 

we acknowledge the trade-off in acquiring multi-echo data by sacrificing some levels of spatial and 

temporal resolutions. Future studies are required to assess if dynamic functional connectivity could 

provide new insights into the link between brain and behavior in ADHD. For CCA, it is also important 

to note that, due to its correlational nature, CCA does not allow causal relationships to be inferred 

between brain and behavioral variables. Moreover, classic CCA, as implemented here, rests upon the 

assumptions of normality, which is the case herein. Where such assumptions are violated, variants such 

as sparse CCA, may be more suited.   

Several limitations should be considered in addition to those considered above. The study sample 

was recruited only from one medical center in Taiwan and excluded patients with comorbid psychiatric 

conditions and psychotropic exposures. Future studies will need to assess the generalizability of our 

results to patients with such comorbidities as these are not uncommon in clinical practice. Second, only 

one participant presented with the hyperactive-impulsive subtype of ADHD. This ratio was consistent 

with the observation that the hyperactive-impulsive subtype is infrequent in adult ADHD (Asherson et 

al., 2016). Whether this subtype of ADHD fits within the dimensional biotype identified herein would 

require further testing using a sample skewed to include more patients with this symptom profile. Lastly, 

although the gender ratio of the current adult ADHD cohort was typical (Asherson et al., 2016), the 

small number of females might have precluded the unequivocal assessment of putative gender effects on 

biotyping.  

In summary, we here provide the first biotyping of medication-naïve adults with ADHD using 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 23

neuroimaging and symptom data. Results showed that patterns of co-variation between resting-state 

functional connectivity and clinically tractable symptom measures define a dimensional biotype. 

Despite the heterogeneity of its clinical presentation, the present work supports the notion of 

childhood-onset adult ADHD as a unitary disorder. Specifically, our findings highlight the need to 

consider its dimensional mediators in research and clinical interventions. This view is endorsed by a 

recent genome-wide association meta-analysis (Demontis et al., 2017). As a whole, our findings 

support the importance of mapping the link between brain-behavioral phenotypes and clinical 

diagnosis, echoing the Research Domain Criteria framework to revise clinically defined constructs 

using a neurobiologically informed dimensional approach (Cuthbert, 2015).  
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Brain-behavior patterns define a dimensional biotype in medication-naïve adults with 

attention-deficit hyperactivity disorder 

Hsiang-Yuan Lin, MD1,2+, Luca Cocchi, PhD2+, Andrew Zalesky, PhD3, Jinglei Lv, PhD2, Alistair Perry, 

PhD2, Wen-Yih Isaac Tseng, MD, PhD4,5, Prantik Kundu, PhD6, Michael Breakspear, MBBS, PhD, 

FRANZCP2,7, Susan Shur-Fen Gau, MD, PhD1,5* 

 

1. Supplementary Methods 

1.1. Data 

1.1.1. Measures for ADHD symptoms 

1.1.1.1. The Adult ADHD Self-Report Scales  

The Adult ADHD Self-Report Scales (ASRS), an 18-question scale, was developed in conjunction 

with the revision of the World Health Organization (WHO) Composite International Diagnostic 

Interview (CIDI). The ASRS consists of two subscales, Inattention (nine items) and 

Hyperactivity-Impulsivity (nine items), according to the 18 DSM-IV ADHD symptom criteria. Each 

item asks how often a symptom occurred during the last 6 months on a 5-point Likert scale: 0=never, 

1=rarely, 2=sometimes, 3=often, and 4=very often. The psychometric properties of the Chinese ASRS 

have been established in a sample of 4,329 Taiwanese young adults (Yeh et al., 2008). The intraclass 

correlations (ICCs) for test-retest reliability ranged from 0.80 for the Inattention subscale, 0.82 for the 

Hyperactivity-Impulsivity subscale, and .85 for the total score. The internal consistency (Cronbach’s α) 

was high for the Inattention subscale (0.87), the Hyperactivity-Impulsivity subscale (0.85), and the 

total score (0.91). It has been used in studies on adult ADHD and sleep problems, anxiety/depression 

symptoms, and quality of life in Taiwan (Gau et al., 2007; Chao et al., 2008). 

1.1.1.2. The Swanson, Nolan, and Pelham, Version IV Scale (SNAP-IV)-Parent form 

The SNAP-IV is a 26-item rating instrument including the core DSM-IV-derived ADHD subscales of 

IA, HI and OD subscales (items 1-9, 10-18, and 19-26, respectively) (Swanson et al., 2001). Each item 

is rated on a 4-point Likert scale, 0-3 for “not at all”, “just a little”, “quite a lot”, and “very much” 

based on and parents’ report. The norm and psychometric properties of the Chinese version of 

SNAP-IV have been well established in Taiwan by Gau and colleagues (Gau et al., 2008). The scale 

has good test-retest reliability (ICCs 0.59~0.72), high internal consistency (Cronbach’s α>0.88) and 

discriminative validity (Gau et al., 2008) and is commonly used in clinical evaluation and research in 

Taiwanese child and adolescent populations (Yang et al., 2013).   
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1.1.1.3. The modified adult version of the ADHD supplement of the Chinese version of the Schedule 

for Affective Disorders and Schizophrenia–Epidemiological Version (K-SADS-E) 

The K-SADS-E is a semi-structured interview scale for the systematic assessment of both past and 

current episodes of mental disorders in children and adolescents (Orvaschel et al., 1982). 

Development of the Chinese K-SADS-E was completed by the Child Psychiatry Research Group in 

Taiwan (Gau and Soong, 1999). This included a two-stage translation and modification for several 

items with psycholinguistic equivalents relevant to the Taiwanese culture and further modification to 

meet the DSM-IV diagnostic criteria, with high reliability (generalized kappa coefficients ranging 

from 0.73 to 0.96 for all mental disorders) and validity (sensitivity 78% and specificity 98%) (Gau et 

al., 2005). In order to obtain the information about ADHD symptoms and diagnoses in adulthood 

according to the DSM-IV diagnostic criteria, semi-structured interviews were conducted using both 

the modified adult ADHD supplement and the Conners' Adult ADHD Diagnostic Interview for 

DSM-IV (Takahashi et al., 2014). The results showed that the ADHD diagnosis in childhood and 

current adulthood based on the two clinical instruments achieved total agreement (i.e., people who had 

been diagnosed with ADHD in childhood and/or current adulthood using the modified adult ADHD 

supplement of the K-SADS-E also acquired the ADHD diagnosis based on the Conners' Adult ADHD 

Diagnostic Interview). 

 

1.2. Analyses 

1.2.1. Multi-echo independent component analysis (ME-ICA) 

ME-ICA initially decomposed multi-echo rs-fMRI data into independent components using FastICA 

(Hyvarinen, 1999). Independent components were subsequently categorized as BOLD or non-BOLD 

components based on Kappa and Rho values, which were yielded from signal models reflecting the 

BOLD-like or non-BOLD-like signal decay processes (Kundu et al., 2012). BOLD-related signals 

show linear dependence of percent signal changes on TE, which is the characteristic of the T2* decay 

(Huettel et al., 2008). On the other hand, non-BOLD signal amplitudes demonstrate 

TE-independence. TE dependence of BOLD signal was measured using the pseudo-F-statistic Kappa, 

with components that scaled strongly with TE having high Kappa scores. Non-BOLD components 

were identified by TE independence measured by the pseudo-F-statistic Rho. By removing non-BOLD 

components, data were denoised for head motion, physiological, and scanner artifacts (Kundu et al., 

2013).  
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1.2.2. Functional network connectivity analysis 

1.2.2.1. Independent Component Analysis (ICA) 

After preprocessing, the temporally concatenated probabilistic ICA algorithm (temporally 

concatenated) implemented in FSL MELODIC (Beckmann and Smith, 2004) was used to analyze the 

rs-fMRI data of all participants. Non-brain voxels were masked with voxel-wise demeaning of the data 

and normalization of the voxel-wise variance. Next, the processed data were whitened and projected 

into a 20-dimensional subspace using a Principal Components Analysis (PCA). This step provided a 

fine-grained decomposition of interconnected brain regions (Smith et al., 2009). These whitened 

observations were decomposed into sets of vectors that describe signal variation across (i) the 

temporal domain (time courses), (ii) the session/subject domain, and (iii) the spatial domain (spatial 

maps). This decomposition was implemented through a non-Gaussian spatial source distribution using 

a fixed-point iteration technique (Hyvarinen, 1999). Estimated component maps were divided by the 

standard deviation of the residual noise, with a threshold of 0.5 set (the probability that needed to be 

exceeded by a voxel to be considered ‘active’ in the component of interest) by fitting a mixture model 

to the histogram of intensity values (Beckmann and Smith, 2004). 

We selected resting-state networks according to their known spatial distribution (Smith et al., 

2009; Yeo et al., 2011; Cocchi et al., 2012). We extracted 20 ICA components, 14 of which are 

consistently identified as canonical resting-state networks (Yeo et al., 2011). The similarity of these 14 

resting-state networks with those previously identified was quantified using spatial correlation (all 

spatial correlation values >0.4) and confirmed by visual inspection. Only these 14 components 

(networks) were considered in subsequent analyses (Supplementary Fig. 2A). 

 

1.2.2.2. Functional Network Connectivity 

The summary time-course for each resting-state network was calculated at the individual participant’s 

level by spatial regression of the full set of 20 ICA components against each participant’s denoised 

rs-fMRI data. This approach models are overlapping variance to account for the potential effects of 

residual noise captured by the non-physiological valid components (N=6). We calculated functional 

network connectivity (FNC) (Jafri et al., 2008; Lv et al., 2016) using the Pearson correlation 

coefficient between each other summary time course. This resulted in a 3D FNC matrix with the 

dimensions of 14 × 14 (networks) × 203 (participants). Group differences in FNC were tested for each 

pair of networks using one-way analysis of variance (ANOVA), and FNC with significant group 

differences were further tested by 2-sample t-test to determine the direction of the difference. The 

significance threshold was set at q<0.05, corrected for multiple comparisons using false discovery rate 

(FDR) (Benjamini and Hochberg, 1995). 
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1.2.3. Principal component analysis for ADHD symptoms 

To circumvent reporting biases (Asherson et al., 2016), core ADHD symptoms were encapsulated as 

factor scores (DiStefano et al., 2009) derived from a principal component analysis (PCA) of self-, 

parents-, and clinician-reported measures, including self-rated Adult ASRS (Yeh et al., 2008), 

parent-rated SNAP-IV (Gau et al., 2008), as well as a clinician-rated modified adult version of the 

ADHD supplement of the Chinese version of the K-SADS-E (Chang et al., 2013; Ni et al., 2013a; Ni 

et al., 2013b) (the number of ADHD measures used in the PCA was 3). Two principal components 

were extracted, which explained 88.25% of the total variance. Factors were orthogonalized using 

Varimax rotation. Among them, the first component explained 51.58% of the total variance, and all of 

the hyperactivity-impulsivity subscales from the above three measures were consistently loaded on this 

component. The second component explained 36.67% of the total variance, and scores of inattention 

subdomain across 3 measures were loaded on the component. The principal component analysis was 

implemented using IBM SPSS Statistics for Macintosh, Version 22.0 (IBM Corp., Armonk, NY, USA). 

 

Symptoms scores patterns loaded onto two components (rotated component matrix) 

 

Component 

1 (Hyperactivity-impulsivity) 2 (Inattention) 

SNAP_Inattention 0.244 0.743 

SNAP_Hyperactivity-impulsivity 0.842 0.182 

K-SADS-E_Inattention 0.224 0.806 

K-SADS-E_ Hyperactivity-impulsivity 0.798 0.172 

ASRS-A 0.227 0.871 

ASRS-B 0.754 0.416 

 

1.2.4. Canonical correlation analysis (CCA)  

Both connectivity and behavioral measures were normalized and demeaned. A further regression of 

in-scanner head motion confounds also performed following the approach of Smith and colleagues 

(Smith et al., 2015) (http://www.fmrib.ox.ac.uk/analysis/HCP-CCA). To avoid overfitting the CCA, a 

PCA was undertaken using the FSLNets toolbox (Smith et al., 2014) to reduce the dimensionality of 

the deconfounded functional connectivity matrix to three eigenvectors (explaining 31.83% of the total 

variance in the connectivity matrix; Supplementary Fig. 5). The data was reduced to this resolution to 

keep the methodological steps as per Smith et al. (Smith et al., 2015), given the three behavioral 

measures selected in the CCA. We note that no consensus exists for component number selection 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 35

(Abdi and Williams, 2010). Thus, we also employed a confirmatory CCA analysis based on a larger 

dimensionality of 5 eigenvectors (explaining 43.9% of the variance in the connectivity matrix). The 

primary (3 eigenvectors, r=0.430, FWE-corrected p=0.037) and confirmatory CCA (r=0.446, 

FWE-corrected p=0.049; Supplementary Table 4b) yielded similar results. Thus, only results from the 

primary CCA are reported in the main text.   

We next assessed which functional connections were most strongly expressed by variations in 

the original sets of connections captured by each CCA mode. CCA provides an output vector 

describing the extent (weight) to which a given individual's connectivity pattern correlated with the 

CCA mode. We correlated this vector against the original connectivity matrix identified by the NBS 

analysis to obtain a vector mapping the relative weights and directional signs of the association 

between resting-state connectivity and the CCA mode (weighted feature vector). In line with what 

previously done, the strongest (top 25%) absolute values in this vector were retained to define the 

strongest associations between individual connectivity weights and behavioral measures (Smith et al., 

2015).  

 

1.2.5. Clustering algorithms for categorically subtyping ADHD 

To test the existence of ADHD categorical biotypes, we implemented several complementary analyses 

using the connectivity and clinical features derived from the significant CCA mode, and combined 

features from connectivity and clinical symptoms, respectively. 

1.2.5.1. k-means clustering algorithm based on brain-behavior features derived from the significant 

CCA mode.   

To assess whether the brain-behavior associations identified by the CCA could be clustered into 

non-overlapping subgroups, we first used k-means clustering on the features linearly projected by the 

CCA. This standard clustering procedure uses individual brain-behavior associations to assign each 

participant to exactly one of k clusters (based on clinical ADHD subtypes, a k=2 or 3 was used here) 

(Venkataraman et al., 2009). To reach stable clustering results, for each setting of k, clustering was 

repeated for 10,000 times so that the participants-to-centroid distances within-cluster sum-of-squares 

were minimized.  

1.2.5.2. Multi-view spectral clustering algorithm based on features of functional connectivity and 

clinical symptoms 

With regards to multi-view spectral clustering algorithm (Shi and Malik, 2000; Kumar and Daumé, 

2011), we considered clusters derived from the analysis of altered functional connectivity in ADHD 

compared to controls and features related to clinical symptoms/IQ as two views contributing to the 

clustering. Using the multi-view spectral clustering framework, the substantial variability of 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 36

categorical subgrouping across multimodal features (connectivity and behavior) could be modeled and 

accounted for. This novel clustering method has the advantage of effectively addressing heterogeneity 

in the considered features by maximizing the agreement across multimodal clusters (Shi and Malik, 

2000; Kumar and Daumé, 2011).     

Spectral clustering uses connectivity (denoised NBS results) and clinical features (inattention, 

hyperactivity-impulsivity, and IQ), respectively, to generate two graphs. Nodes within the graphs 

represent individuals with ADHD whereas the edges represent the similarities between nodes 

(individuals). The two graphs (one mapping connectivity and one mapping behavior) were then 

partitioned using the normalized cut strategy, in which the top k eigenvectors of the normalized graph 

Laplacian, which carries the most discriminative information, are adopted to cut the graphs into clusters 

efficiently. Subsequent co-training algorithms search for target clusters that predict same labels for 

co-occurring patterns in each view. The spectral clustering algorithm of bi-partitioning sub-graph 

stopped when the normalized cut value (representing the similarity between the subjects within each 

possible cluster) is larger than the pre-set threshold. There is no consensus regarding the optimal 

threshold to be used. Thus, we examined thresholds ranging from 0.2 to 0.9 (incremental of 0.1) (Chen 

et al., 2013). We used 10,000 iterations for co-training algorithms to converge on stable clusters 

(permuting for each threshold).    

1.2.5.3. Validity of k-means clustering 

We verify the validity of k-means clustering using average silhouette width values (Kononenko and 

Kukar, 2007), the Jaccard similarity (Hennig, 2008), and the gap statistic (Tibshirani et al., 2001). This 

information is provided in Supplementary Table 6 (average silhouette width values and the Jaccard 

similarity) and Supplementary Fig. 7 (the Gap statistic). 

The silhouette width value is a combination measure assessing intra-cluster homogeneity and 

inter-cluster separation. It is calculated by measuring how similar that point is to points in its own cluster 

when compared to points in other clusters. The cutoffs to interpret the validity of k-means clustering 

based on average silhouette width values are as follows (Kononenko and Kukar, 2007): 

 

0.71-1.0 A strong structure has been found. 

0.51-0.70 A reasonable structure has been found. 

0.26-0.50 The structure is weak and could be artificial. Try additional methods of data 

analysis. 

<0.25 No substantial structure has been found. 

 

Jaccard’s similarity (Hennig, 2008) is defined as the size of the intersection divided by the size of 
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the union of the assigned clusters and the resulting partitions from resampling pipelines. It allows 

estimating the frequency with which similar clusters were recovered in the data. The clustering results 

with Jaccard’s similarity <0.5 are considered unstable (Hennig, 2008).  

The gap statistic (Tibshirani et al., 2001) standardizes the graph of log(Wk), where Wk is the 

within-cluster dispersion defined by the within-cluster sum of squares around the cluster means, by 

comparing it to its expectation under an appropriate null reference distribution of the data. The ’k’ is the 

number of clusters. The estimate of the optimal number of clusters is defined by searching for the local 

maximum of the graph, and selecting the smallest k within one standard error of the local max.   

 

1.2.5.4. The issue of sample size for clustering analyses 

There is no clear indication regarding the minimum sample size necessary for clustering analyses. 

However, it is suggested that the minimal sample size for clustering analyses should not be less than 

2m cases (m=number of features used), with 5*2m considered preferable (Dolnicar, 2002). In the 

present study, we fed features linearly projected by the CCA (i.e., 1 for the brain connectivity feature; 

1 for the behavior feature) into k-means clustering. That is, the minimum sample size for k-means 

clustering is 20 subjects (i.e., 5*22=20). Concerning the multi-view spectral clustering, there has been 

very limited prior work investigating the minimum sample size required to obtain meaningful clusters. 

The multi-view spectral clustering algorithm is, however, considered robust for the high 

dimensionality and small-sample-size problem (Tao et al., 2014). Indeed, a smaller sample size is 

generally required to obtain a solution (i.e., the most robust clustering results) using multi-view 

spectral clustering compared to single-view clustering (Kumar and Daumé, 2011).   

 In keeping with the above, the current sample size (N=80 ADHD) is appropriate for both 

k-means and spectral clustering (Dolnicar, 2002; Kumar and Daumé, 2011; Tao et al., 2014). 
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2. Supplementary Tables  

Supplementary Table 1a. Demographics among attention-deficit hyperactivity subtypes (ADHD) 

(based on the current presentation of ADHD psychopathology)  

Mean (SD) ADHD-C (N=32) ADHD-I (N=47) ADHD-H (N=1) Statisticsc 

Age  27.5 (5.2) 26.3 (5.9) 19.7 p=0.352 

Sex (M/F) 25/7 30/17 1/0 p=0.319 

Handedness (R/L) 24/8 38/9 1/0 p=0.800  

FIQ 108.8 (8.3) 106,4 (11.5) 115 p=0.280 

VIQ 108.8 (11.0) 104.1 (11.1) 103 p=0.069 

PIQ 110.3 (9.9) 106.7 (19.1) 128 p=0.320 

ADHD symptoms     

 Inattentiona 21.4 (3.8) 18.6 (5.4) 3 p=0.011 

 Hyperactivity/Impulsivitya 17.6 (6.4) 11.0 (5.0) 13 p<0.001  

 Opposition-defiancea 13.8 (5.3) 9.9 (5.7) 7 p=0.003 

 ASRS-A 28.5 (3.4) 26.4 (4.9) 4 p=0.037 

 ASRS-B 24.2 (4.0) 17.4 (5.5) 12 p<0.001 

Mean frame-wise 

displacementb (mm) 
0.050 (0.025) 0.048 (0.025) 0.049 p=0.737 
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Supplementary Table 1b. Demographics among attention-deficit hyperactivity (ADHD) subtypes 

(based on the childhood presentation of ADHD psychopathology) 

Mean (SD) ADHD-C (N=51) ADHD-I (N=28) ADHD-H (N=1) Statisticsb 

Age  27.1 (5.9) 26.3 (5.2) 19.7 p=0.557 

Sex (M/F) 39/12 16/12 1/0 p=0.161 

Handedness (R/L) 39/12 24/4 1/0 p=0.564  

FIQ 106.7 (9.6) 108.5 (11.7) 115 p=0.461 

VIQ 105.7 (11.8) 106.5 (10.3) 103 p=0.744 

PIQ 107.1 (17.0) 110.0 (14.4) 128 p=0.443 

ADHD symptoms     

 Inattentiona 19.7 (5.1) 19.9 (4.8) 3 p=0.877 

 Hyperactivity/Impulsivitya 15.5 (6.4) 10.3 (5.2) 13 P<0.001 

 Opposition-defiancea 11.8 (6.0) 10.9 (5.8) 7 p=0.506  

 ASRS-A 27.2 (4.3) 27.4 (4.8) 4 p=0.812 

 ASRS-B 21.7 (5.1) 17.3 (6.5) 12 p=0.001 

Mean frame-wise 

displacementb (mm) 
0.049 (0.024) 0.049 (0.026) 0.049 p=0.917 

a Measured by the Swanson, Nolan, and Pelham, version IV (SNAP-IV) scale. 

b Estimated by the Euclidian norm (enorm: square root of the sum of squares of the differences in motion 

derivatives), computed with AFNI's 1d_tool.py.  

c Statisitcal inference was only made from comparisons between ADHD-C and ADHD-I subgroups. 

Abbreviation: -C=combined subtype; -I=inattentive subtype; -H=hyperactive-impulsive subtype; 

ASRS=Adult ADHD Self-Report Scale; FIQ=full-scale intelligence quotient; PIQ=performance 

intelligence quotient; VIQ=verbal intelligence quotient; M=male; F=female; R=right; L=left; 

SD=standard deviation. 
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Supplementary Table 2. Details of the nodes within the altered network of ADHD (network-based 

statistics, NBS) 

  MNI coordinates 

Nodes x y z 

DMN_Frontal_Sup_R 22  39  39  

DMN_Occipital_Mid_L -41  -75  26  

DMN_ParaHippocampal_L -26  -40  -8  

FPTC_Frontal_Mid_L -23  11  64  

FPTC_Parietal_Inf_R 44  -53  47  

SN_Precentral_R 42  0  47  

SN_Insula_L -35  20  0  

SN_Insula_R 36  22  3  

SN_Cingulum_Mid_L -1  15  44  

SN_Frontal_Mid_R 31  33  26  

SN_Cingulum_Mid_L 5  23  37  

COTC_Frontal_Sup_L -16  -5  71  

COTC_SupraMarginal_R 54  -28  34  

COTC_Rolandic_Oper_L -45  0  9  

COTC_Supp_Motor_Area_R 13  -1  70  

COTC_Insula_R 49  8  -1  

COTC_Temporal_Pole_Sup_L -51  8  -2  

COTC_Supp_Motor_Area_R 7  8  51  

COTC_Insula_R 36  10  1  

COTC_Cingulum_Mid_L -5  18  34  

SN_Frontal_Mid_R 31  33  26  

SN_Cingulum_Mid_L 5  23  37  

COTC_Frontal_Sup_L -16  -5  71  

COTC_SupraMarginal_R 54  -28  34  

COTC_Rolandic_Oper_L -45  0  9  

COTC_Supp_Motor_Area_R 13  -1  70  

COTC_Insula_R 49  8  -1  

COTC_Temporal_Pole_Sup_L -51  8  -2  

COTC_Supp_Motor_Area_R 7  8  51  
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COTC_Insula_R 36  10  1  

COTC_Cingulum_Mid_L -5  18  34  

DAN_Parietal_Inf_L -33  -46  47  

VAN_Frontal_Inf_Tri_L -49  25  -1  

subC_Putamen_L -22  7  -5  

subC_Putamen_R 23  10  1  

subC_Pallidum_R 15  5  7  

subC_Thalamus_R 9  -4  6  

subC_Thalamus_L -2  -13  12  

Vis_Cuneus_R 15  -77  31  

Vis_Cuneus_L -16  -77  34  

Abbreviations: ADHD=attention-deficit hyperactivity disorder; MNI=Montreal Neurological Institute; 

DMN=default mode network; SN=salience network; COTC=cingulo-opercular network; 

FPTC=frontoparietal task control network; VAN=ventral attention network; DAN=dorsal attention 

network; SSM=somatosensorimotor network; Aud=auditory network; Vis=visual network; 

subC=subcortical; Supp=supplementary; R=right; L=left; Sup=superior; Inf=inferior; Mid=middle; 

Oper=opercular.   
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Supplementary Table 3. Average values of functional connectivity in the pairwise connections of 

interest (network-based statistics, NBS) 

Pairs Control ADHD 

Network_Region Network_Region Mean STE STD Mean STE STD 

DMN_Occipital_Mid_L SN_Insula_L 0.211  0.022 0.241 0.339  0.029 0.263 

DMN_Occipital_Mid_L SN_Insula_R 0.118  0.024 0.266 0.298  0.027 0.239 

DMN_Frontal_Sup_R SN_Cingulum_Mid_L 0.249  0.028 0.315 0.420  0.039 0.347 

DMN_ParaHippocampal_L SN_Cingulum_Mid_L 0.108  0.023 0.257 0.249  0.032 0.286 

DMN_Occipital_Mid_L COTC_Frontal_Sup_L 0.238  0.028 0.311 0.420  0.036 0.324 

DMN_Occipital_Mid_L COTC_SupraMarginal_R 0.273  0.023 0.258 0.414  0.031 0.279 

SN_Precentral_R COTC_Rolandic_Oper_L 0.249  0.024 0.266 0.398  0.031 0.280 

DMN_Occipital_Mid_L COTC_Supp_Motor_Area_R 0.114  0.027 0.294 0.278  0.036 0.321 

DMN_Occipital_Mid_L COTC_Insula_R 0.057  0.025 0.279 0.210  0.033 0.293 

DMN_Occipital_Mid_L COTC_Temporal_Pole_Sup_L 0.199  0.026 0.288 0.366  0.037 0.334 

DMN_Occipital_Mid_L COTC_Supp_Motor_Area_R 0.170  0.025 0.276 0.308  0.031 0.275 

DMN_ParaHippocampal_L COTC_Supp_Motor_Area_R 0.156  0.023 0.251 0.284  0.026 0.229 

DMN_Occipital_Mid_L COTC_Insula_R 0.180  0.023 0.253 0.310  0.029 0.255 

FPTC_Frontal_Mid_L COTC_Cingulum_Mid_L 0.472  0.029 0.317 0.630  0.030 0.268 

SN_Cingulum_Mid_L DAN_Parietal_Inf_L 0.332  0.023 0.257 0.494  0.032 0.290 

FPTC_Parietal_Inf_R VAN_Frontal_Inf_Tri_L 0.073  0.025 0.273 0.212  0.029 0.264 

SN_Insula_R VAN_Frontal_Inf_Tri_L 0.129  0.027 0.303 0.283  0.029 0.260 

SN_Frontal_Mid_R VAN_Frontal_Inf_Tri_L 0.062  0.022 0.244 0.193  0.026 0.228 

COTC_Temporal_Pole_Sup_L VAN_Frontal_Inf_Tri_L 0.362  0.028 0.307 0.541  0.032 0.288 

FPTC_Frontal_Mid_L subC_Putamen_L 0.264  0.019 0.209 0.384  0.026 0.234 

DMN_Occipital_Mid_L subC_Putamen_R 0.172  0.020 0.219 0.292  0.026 0.233 

FPTC_Frontal_Mid_L subC_Putamen_R 0.283  0.020 0.219 0.419  0.022 0.199 

DMN_ParaHippocampal_L subC_Putamen_L 0.281  0.020 0.224 0.407  0.028 0.253 

DMN_Frontal_Sup_R subC_Pallidum_R 0.212  0.020 0.221 0.347  0.033 0.291 

DMN_Frontal_Sup_R subC_Thalamus_R 0.210  0.022 0.242 0.364  0.033 0.295 

DMN_Frontal_Sup_R subC_Thalamus_L 0.163  0.024 0.266 0.323  0.033 0.292 

SN_Insula_R SSM_Postcentral_L 0.316  0.021 0.232 0.437  0.027 0.237 

COTC_Rolandic_Oper_L SSM_Postcentral_L 0.451  0.027 0.299 0.596  0.027 0.243 

COTC_Temporal_Pole_Sup_L SSM_Postcentral_L 0.462  0.026 0.290 0.616  0.034 0.305 
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COTC_Supp_Motor_Area_R SSM_Postcentral_R 0.295  0.028 0.308 0.449  0.031 0.279 

SN_Insula_R SSM_Precentral_R 0.332  0.024 0.261 0.472  0.026 0.234 

COTC_Supp_Motor_Area_R SSM_Precentral_R 0.364  0.027 0.300 0.537  0.029 0.260 

COTC_Temporal_Pole_Sup_L SSM_Postcentral_L 0.397  0.026 0.284 0.566  0.036 0.326 

SN_Cingulum_Mid_L SSM_Insula_R 0.322  0.024 0.264 0.468  0.033 0.294 

COTC_Supp_Motor_Area_R SSM_Insula_R 0.319  0.025 0.272 0.478  0.032 0.290 

COTC_Supp_Motor_Area_R SSM_Postcentral_L 0.243  0.025 0.272 0.389  0.032 0.286 

COTC_Supp_Motor_Area_R Aud_Rolandic_Oper_L 0.337  0.025 0.279 0.481  0.031 0.280 

SN_Insula_R Vis_Cuneus_R 0.212  0.022 0.247 0.337  0.028 0.251 

SN_Cingulum_Mid_L Vis_Cuneus_R 0.257  0.023 0.255 0.396  0.030 0.267 

SN_Insula_R Vis_Cuneus_L 0.260  0.023 0.257 0.390  0.028 0.249 

COTC_Supp_Motor_Area_R Vis_Cuneus_L 0.268  0.022 0.247 0.409  0.025 0.224 

Abbreviations: ADHD=attention-deficit hyperactivity disorder; STE=standard error; STD=standard 

deviation; DMN=default mode network; SN=salience network; COTC=cingulo-opercular network; 

FPTC=frontoparietal task control network; VAN=ventral attention network; DAN=dorsal attention 

network; SSM=somatosensorimotor network; Aud=auditory network; Vis=visual network; 

subC=subcortical; Supp=supplementary; R=right; L=left; Sup=superior; Inf=inferior; Mid=middle; 

Oper=opercular.   

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 44

Supplementary Table 4a. The significant canonical correlation analysis (CCA) mode (p<0.05, 

family-wise error corrected) of the primary analysis.  

CCA mode  One 

df1 9 

df2 180.25 

F 2.03 

r 0.430 

Wilk’s lambda 0.7740 

Familywise error corrected p 0.0367 

 

 

================================================================== 

 

Supplementary Table 4b. The significant CCA mode (p<0.05, family-wise error corrected) based on 

the 5 eigenvectors derived from the connectivity matrix.  

 

CCA mode  One 

df1 15 

df2 199.17 

F 1.61 

r 0.446 

Wilk’s lambda 0.7030 

Familywise error corrected p 0.0491 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 45

Supplementary Table 5. Canonical correlation analysis (CCA) mode connectivity weight and 

associated interregional pairs  

Pairs CCA edge strength 

modulation Network_Region Network_Region 

DMN_Occipital_Mid_L SN_Insula_R 0.549  

DMN_Occipital_Mid_L COTC_Supp_Motor_Area_R 0.656  

DMN_Occipital_Mid_L COTC_Insula_R 0.757  

DMN_Occipital_Mid_L COTC_Temporal_Pole_Sup_L 0.755  

DMN_Occipital_Mid_L COTC_Insula_R 0.623  

FPTC_Frontal_Mid_L COTC_Cingulum_Mid_L 0.568  

FPTC_Frontal_Mid_L subC_Putamen_L 0.510  

DMN_Occipital_Mid_L subC_Putamen_R 0.643  

FPTC_Frontal_Mid_L subC_Putamen_R 0.510  

DMN_Frontal_Sup_R subC_Pallidum_R 0.502  

DMN_Frontal_Sup_R subC_Thalamus_R 0.500  

DMN_Frontal_Sup_R subC_Thalamus_L 0.564  

Abbreviations: DMN=default mode network; SN=salience network; COTC=cingulo-opercular 

network; FPTC=frontoparietal task control network; subC=subcortical; R=right; L=left; Sup=superior; 

Mid=middle; Supp=supplementary.   
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Supplementary Table 6. Validity indices of k-means clustering method (based on the feature vectors of 

individual participant’s weight derived from the connectivity and symptoms matrices of canonical 

correlation analysis) 

k-means clustering 

  

2 

clusters 

3 

clusters 

Jaccard similarity 0.3385 0.5737 

Average silhouette width values 0.4640 0.4861 
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3. Supplementary Figures 

 
Supplementary Figure 1. Changes in functional connectivity between adult ADHD and matched 

healthy controls across different brain parcellations. The network-based statistic (NBS) showed 

stronger (generally stronger positive correlations, see Supplementary Table 3) functional connectivity 

in a single whole-brain network in ADHD compared to healthy controls. (A) 255 regions of interest 

parcellation (Power et al., 2011). (B) 160 regions of interest parcellation (Dosenbach et al., 2010). (C) 

200 regions of interest parcellation (Craddock et al., 2012). (D) the anatomical parcellation based on 

The Harvard-Oxford probabilistic cortical and subcortical atlases (www.fmrib.ox.ac.uk/fsl). Overall, 

the results obtained from different brain parcellations were similar. 
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Supplementary Figure 2. With additional adjusting for demographic features, group differences in 

inter-regional functional connectivity. The network-based statistic (NBS) adjusting for gender/sex, 

levels of in-scanner head motion, and age identified a single network differentiating adult ADHD from 

healthy controls. This network was of largely the same pattern with the main analysis as shown in 

Figure 2: Adults with ADHD showed increased correlations between the DMN and frontoparietal 

network, the DMN and attention networks (including both salience/cingulo-opercular and dorsal 

attention components), the DMN and subcortical regions, the salience/cingulo-opercular network and 

sensory-motor and visual network, as well as the salience/cingulo-opercular network and dorsal 

attention alongside frontoparietal networks. 
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Supplementary Figure 3. Group differences in functional connectivity based on different height thresholds in the network-based statistic (NBS). Across different 

t-statistics height thresholds (namely t=3 corresponding to uncorrected p=0.003; t=3.3 corresponding to uncorrected p=0.001; t=3.9 corresponding to uncorrected 

p=0.0001), the NBS consistently identified the similar patterns of hyperconnectivity between the DMN and attention and cognitive control networks, the DMN and 

subcortical regions, and the salience/cingulo-opercular network and sensory processing networks. These results were in line with the main discovered connectivity 

differences based on t=3.5 corresponding to uncorrected p=0.0005.  

not certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as
this version posted D

ecem
ber 19, 2017. 

; 
https://doi.org/10.1101/190660

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 50

 

 

Supplementary Figure 4. Independent component analysis (ICA) on neuroimaging data. (A) Based 

on the group ICA, we identified 20 spatial components. The topology of 14 components related to 

recognized functional brain networks (Yeo et al., 2011; Cocchi et al., 2012). These 14 components 

were used for the confirmatory functional network connectivity analysis (see text) (Jafri et al., 2008). 

(B) Results from the functional network connectivity analysis are presented. Relative to the controls, 

adults with ADHD exhibited a significantly increased positive interaction between the default-mode 

and cingulo-opercular/salience networks (false discovery rate corrected q=0.044). 
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Supplementary Figure 5. The proportion of variance explained by the eigenvectors defined by a 

principal component analysis on functional connectivity differences between ADHD and controls 

(derived from the network-based statistics). The three eigenvectors (red) used in the canonical 

correlation analysis (CCA, see text) explained 31.83% of the total variance in between-groups 

connectivity. Including two extra eigenvectors allows to explain 43.90% of the variance. CCA based on 

both three and five eigenvectors yielded a similarly significant CCA mode. 
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Supplementary Figure 6. Supplementary canonical correlation analysis (CCA) based on the altered 

functional connectivity identified by the supplementary network-based statistic (NBS) adjusting for 

gender/sex, levels of in-scanner head motion, and age. This supplementary CCA yielded one 

significant mode, similar to the main result (Figure 3), which linked the brain connectivity and clinical 

symptoms-intelligence. The functional connections expressing the strongest positive associations in 

this mode from the supplementary analysis also implicated connectivity between the DMN and 

cingulo-opercular, as well as the DMN and subcortical regions.
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Supplementary Figure 7. The gap statistic for the k-means clustering method (based on the feature 

vectors of individual participant’s weight derived from the connectivity and symptoms matrices of 

canonical correlation analysis). The gap statistic estimates the optimal number of clusters by searching 

the local maximum of the graph, then selecting the smallest k within one standard error (as indicated by the 

bars in the figure) of the local max [Gap(k) ≥ Gap(k+1) – SEk+1]. Based on the gap statistic, the suggested 

optimal number of clusters was one. 
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Supplementary Figure 8. Test for ADHD categorical biotypes. (A) K-means analysis failed to reveal 

valid clusters based on the individual associations between functional connectivity and behavior. The 

absence of clear clusters in the data is evident from visual inspection of the figure. (B) The number 

(No.) of clusters detected by the multi-view spectral clustering algorithm changed as a function of the 

preset cut threshold, indicating that no stable decomposition was achievable. Overall, results from 

these analyses provide compelling evidence for the absence of non-overlapping clusters in the data. 

FIQ=full-scale IQ; HI=hyperactivity-impulsivity.
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Supplementary Figure 9. (A) Males and females with ADHD, (B) regardless of the clinical subtypes, 

were distributed evenly along the one-dimensional axis identified by the main CCA. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 56

4. References for Supplementary Materials  

Abdi, H. and Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary 

reviews: computational statistics 2, 433-459. 

Asherson, P., Buitelaar, J., Faraone, S. V. and Rohde, L. A. (2016). Adult attention-deficit 

hyperactivity disorder: key conceptual issues. Lancet Psychiatry 3, 568-578. 

Beckmann, C. F. and Smith, S. M. (2004). Probabilistic independent component analysis for 

functional magnetic resonance imaging. IEEE Trans Med Imaging 23, 137-152. 

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. Journal of the royal statistical society. Series B 

(Methodological), 289-300. 

Chang, L. R., Chiu, Y. N., Wu, Y. Y. and Gau, S. S. (2013). Father's parenting and 

father-child relationship among children and adolescents with 

attention-deficit/hyperactivity disorder. Compr Psychiatry 54, 128-140. 

Chao, C. Y., Gau, S. S., Mao, W. C., Shyu, J. F., Chen, Y. C. and Yeh, C. B. (2008). 

Relationship of attention-deficit-hyperactivity disorder symptoms, depressive/anxiety 

symptoms, and life quality in young men. Psychiatry Clin Neurosci 62, 421-426. 

Chen, H., Li, K., Zhu, D., Jiang, X., Yuan, Y., Lv, P., Zhang, T., Guo, L., Shen, D. and Liu, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 57

T. (2013). Inferring group-wise consistent multimodal brain networks via multi-view 

spectral clustering. IEEE Trans Med Imaging 32, 1576-1586. 

Cocchi, L., Harrison, B. J., Pujol, J., Harding, I. H., Fornito, A., Pantelis, C. and Yucel, M. 

(2012). Functional alterations of large-scale brain networks related to cognitive 

control in obsessive-compulsive disorder. Hum Brain Mapp 33, 1089-1106. 

Craddock, R. C., James, G. A., Holtzheimer, P. E., 3rd, Hu, X. P. and Mayberg, H. S. 

(2012). A whole brain fMRI atlas generated via spatially constrained spectral 

clustering. Hum Brain Mapp 33, 1914-1928. 

DiStefano, C., Zhu, M. and Mindrila, D. (2009). Understanding and using factor scores: 

Considerations for the applied researcher. Practical Assessment, Research & 

Evaluation 14, 1-11. 

Dolnicar, S. (2002). A review of unquestioned standards in using cluster analysis for 

data-driven market segmentation. In CD Conference Proceedings of the Australian 

and New Zealand Marketing Academy Conference 2002 (ANZMAC 2002): Deakin 

University, Melbourne. 

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 58

Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., Barnes, K. A., 

Dubis, J. W., Feczko, E., Coalson, R. S., Pruett, J. R., Jr., Barch, D. M., Petersen, 

S. E. and Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. 

Science 329, 1358-1361. 

Gau, S. F. and Soong, W. T. (1999). Psychiatric comorbidity of adolescents with sleep terrors 

or sleepwalking: a case-control study. Aust N Z J Psychiatry 33, 734-739. 

Gau, S. S., Chong, M. Y., Chen, T. H. and Cheng, A. T. (2005). A 3-year panel study of 

mental disorders among adolescents in Taiwan. Am J Psychiatry 162, 1344-1350. 

Gau, S. S., Kessler, R. C., Tseng, W. L., Wu, Y. Y., Chiu, Y. N., Yeh, C. B. and Hwu, H. G. 

(2007). Association between sleep problems and symptoms of 

attention-deficit/hyperactivity disorder in young adults. Sleep 30, 195-201. 

Gau, S. S., Shang, C. Y., Liu, S. K., Lin, C. H., Swanson, J. M., Liu, Y. C. and Tu, C. L. 

(2008). Psychometric properties of the Chinese version of the Swanson, Nolan, and 

Pelham, version IV scale - parent form. Int J Methods Psychiatr Res 17, 35-44. 

Hennig, C. (2008). Dissolution point and isolation robustness: robustness criteria for general 

cluster analysis methods. Journal of multivariate analysis 99, 1154-1176. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 59

Huettel, S. A., Song, A. W. and McCarthy, G. (2008). Functional magnetic resonance 

imaging. Sinauer Associates: Sunderland. 

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component 

analysis. IEEE Trans Neural Netw 10, 626-634. 

Jafri, M. J., Pearlson, G. D., Stevens, M. and Calhoun, V. D. (2008). A method for 

functional network connectivity among spatially independent resting-state 

components in schizophrenia. Neuroimage 39, 1666-1681. 

Kononenko, I. and Kukar, M. (2007). Machine learning and data mining: introduction to 

principles and algorithms. Horwood Publishing. 

Kumar, A. and Daumé, H. (2011). A co-training approach for multi-view spectral clustering. 

In Proceedings of the 28th International Conference on Machine Learning 

(ICML-11)pp. 393-400. 

Kundu, P., Brenowitz, N. D., Voon, V., Worbe, Y., Vertes, P. E., Inati, S. J., Saad, Z. S., 

Bandettini, P. A. and Bullmore, E. T. (2013). Integrated strategy for improving 

functional connectivity mapping using multiecho fMRI. Proc Natl Acad Sci U S A 

110, 16187-16192. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 60

Kundu, P., Inati, S. J., Evans, J. W., Luh, W. M. and Bandettini, P. A. (2012). 

Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo 

EPI. Neuroimage 60, 1759-1770. 

Lv, J., Iraji, A., Ge, F., Zhao, S., Hu, X., Zhang, T., Han, J., Guo, L., Kou, Z. and Liu, T. 

(2016). Temporal Concatenated Sparse Coding of Resting State fMRI Data Reveal 

Network Interaction Changes in mTBI. In International Conference on Medical 

Image Computing and Computer-Assisted Interventionpp. 46-54. Springer. 

Ni, H. C., Lin, Y. J., Gau, S. S., Huang, H. C. and Yang, L. K. (2013a). An Open-Label, 

Randomized Trial of Methylphenidate and Atomoxetine Treatment in Adults With 

ADHD. J Atten Disord. 

Ni, H. C., Shang, C. Y., Gau, S. S., Lin, Y. J., Huang, H. C. and Yang, L. K. (2013b). A 

head-to-head randomized clinical trial of methylphenidate and atomoxetine treatment 

for executive function in adults with attention-deficit hyperactivity disorder. Int J 

Neuropsychopharmacol 16, 1959-1973. 

Orvaschel, H., Puig-Antich, J., Chambers, W., Tabrizi, M. A. and Johnson, R. (1982). 

Retrospective assessment of prepubertal major depression with the Kiddie-SADS-e. J 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 61

Am Acad Child Psychiatry 21, 392-397. 

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, 

A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L. and Petersen, S. E. (2011). 

Functional network organization of the human brain. Neuron 72, 665-678. 

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on 

pattern analysis and machine intelligence 22, 888-905. 

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., 

Watkins, K. E., Toro, R., Laird, A. R. and Beckmann, C. F. (2009). 

Correspondence of the brain's functional architecture during activation and rest. Proc 

Natl Acad Sci U S A 106, 13040-13045. 

Smith, S. M., Hyvarinen, A., Varoquaux, G., Miller, K. L. and Beckmann, C. F. (2014). 

Group-PCA for very large fMRI datasets. Neuroimage 101, 738-749. 

Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., 

Ugurbil, K., Barch, D. M., Van Essen, D. C. and Miller, K. L. (2015). A 

positive-negative mode of population covariation links brain connectivity, 

demographics and behavior. Nat Neurosci 18, 1565-1567. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 62

Swanson, J. M., Kraemer, H. C., Hinshaw, S. P., Arnold, L. E., Conners, C. K., Abikoff, H. 

B., Clevenger, W., Davies, M., Elliott, G. R., Greenhill, L. L., Hechtman, L., Hoza, 

B., Jensen, P. S., March, J. S., Newcorn, J. H., Owens, E. B., Pelham, W. E., 

Schiller, E., Severe, J. B., Simpson, S., Vitiello, B., Wells, K., Wigal, T. and Wu, M. 

(2001). Clinical relevance of the primary findings of the MTA: success rates based on 

severity of ADHD and ODD symptoms at the end of treatment. J Am Acad Child 

Adolesc Psychiatry 40, 168-179. 

Takahashi, M., Goto, T., Takita, Y., Chung, S. K., Wang, Y. and Gau, S. S. (2014). 

Open-label, dose-titration tolerability study of atomoxetine hydrochloride in Korean, 

Chinese, and Taiwanese adults with attention-deficit/hyperactivity disorder. Asia Pac 

Psychiatry 6, 62-70. 

Tao, H., Hou, C. and Yi, D. (2014). Multiple-view spectral embedded clustering using a 

co-training approach. In Computer Engineering and Networkingpp. 979-987. 

Springer. 

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of clusters in a 

data set via the gap statistic. Journal of the Royal Statistical Society: Series B 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660


Lin et al. 

 63

(Statistical Methodology) 63, 411-423. 

Venkataraman, A., Van Dijk, K. R., Buckner, R. L. and Golland, P. (2009). Exploring 

Functional Connectivity in Fmri Via Clustering. Proc IEEE Int Conf Acoust Speech 

Signal Process 2009, 441-444. 

Yang, H. N., Tai, Y. M., Yang, L. K. and Gau, S. S. (2013). Prediction of childhood ADHD 

symptoms to quality of life in young adults: adult ADHD and anxiety/depression as 

mediators. Res Dev Disabil 34, 3168-3181. 

Yeh, C. B., Gau, S. S., Kessler, R. C. and Wu, Y. Y. (2008). Psychometric properties of the 

Chinese version of the adult ADHD Self-report Scale. Int J Methods Psychiatr Res 17, 

45-54. 

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., 

Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H. and 

Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by 

intrinsic functional connectivity. J Neurophysiol 106, 1125-1165. 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2017. ; https://doi.org/10.1101/190660doi: bioRxiv preprint 

https://doi.org/10.1101/190660

