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Abstract 
 
Identification of sequence variation from short-read sequence data is subject to common-yet-
intermittent miscalling that occurs in a sequence intrinsic manner.  We identify that recurrent false 
positive single nucleotide variants are strongly present in databases of human sequence variation 
and demonstrate how each individual sample generates a unique set of recurrent false positive 
variants.  These recurrent miscalls result from known difficulties aligning short-read sequence data 
between redundant genomic regions.  We could replicate, catalogue and remove three quarters of 
these recurrent miscalls for any given exome with as little as ten rounds of read resampling, 
realignment and recalling. The removal of such misleading variants reduces the search space for 
identification of disease causing variants. 
 
 
List of Abbreviations 
 
SNV – single nucleotide variant 
RFP – recurrent false positive 
ENU - N-ethyl-N-nitrosourea 
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Background 
 
 We have recently seen the misinterpretation of spurious single nucleotide variant (SNV) 
calls from resequencing of the mouse genome following introduction of targeted mutations using 
CRISPR-Cas9 technology (1, 2).  This has been the subject of interesting debate regarding the 
reproducibility of results from massively parallel sequencing.  Equally as relevant to this discussion 
is the high clinical value of rare variants to the interpretation of human personal genomes.  Genomic 
sequence can be easily obtained in clinical care but subsequently encounters the difficulty of 
pathogenic variant identification (3).  Generally, pathogenic variants are not found at high 
population frequencies and rare variants are prioritised in searching for causal mutations (3–5).  In 
this context, trace levels of spurious SNV miscalls from short-read sequencing have a 
disproportionately large impact (6) and may lead to an incorrect diagnosis of pathogenicity. 
 
 The history of mammalian genome sequencing has been a progression towards shorter 
sequencing reads and now relies heavily on aligning these to a reference genome (7).  Highly 
similar genomic regions are difficult to resolve with this information and read misalignment is a 
prevailing source of variant miscalls (8).  Algorithmically, for example, the Burrows-Wheeler 
Transformation method implemented by the BWA tool (9) must resort to random read assignment 
between highly similar regions should their mapping quality score fail to differentiate them. 
 
 When mapping short-read data to a reference genome, read misalignment has been 
identified as the predominant source of incorrect variant calls (8).  Misalignment of reads in 
redundant genomic regions is often highly specific to the given genome sequence from which it is 
derived.  It has remained difficult to appraise the quality of single nucleotide variant sets identified 
for any given individual genome sequence obtained from short-read sequencing data.  A small 
number of gold-standard reference variant sets indicate that read misalignment often leads to variant 
miscalls in regions of genomic redundancy. 
 
 Identification of sequence variation from short-read sequence data is subject to common-
yet-intermittent miscalling that occurs in a sequence intrinsic manner.  We could replicate and 
catalogue these recurrent miscalls for any given exome by only ten rounds of read resampling, 
realignment and recalling.  We identify that recurrent false positives are strongly present in 
databases of human sequence variation and demonstrate how each individual sample generates a 
unique set of recurrent false positive variants. 
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Data and Methods 
 
Mouse recurrent false positive variants 
 
Exomes from C57BL6 mice were obtained and variation identified as previously described (10).  
The frequency of variants was ascertained through counting variant occurrence in a population of 
2114 exomes from distinct mice.  Recurrent false positive variants were identified as those that 
were present at frequencies greater than 5% but less that 95%. 
 
Resampling, realignment and recalling 
 
Random reads were sampled from an input genome sequence in Fasta format with the tool WGSim 
(WGSim GitHub repository: http://github.com/lh3/wgsim).  Synthetic exome sequences for both the 
mouse genome (mm10) and the human genome (hg37d5) were derived from EnsEMBL BioMart 
(www.ensembl.org) and consisted of the sequences of all exons and 325bp of padding upstream and 
downstream of each exon.  From these derived sequences, mock sequencing datasets were 
simulated to contain 80 million, 120bp paired-end reads with random sequencing errors at a 
frequency of 1%.  Sequence datasets were aligned to the chosen reference genome with BWA mem 
(9).  Single nucleotide variants were called with SAMtools (17) (http://www.htslib.org) and GATK 
(18)�(http://gatk.broadinstitute.org) using best-practice methodology and parameter sets.  
Individual exome and whole genome sequences were derived as alternative reference sequences 
using the FastaAlternateReferenceMaker tool from the GATK suite. 
 
Non-reference mouse and human sequence data 
 
Exomes of the FVB, C3H and CBA mouse strains were derived by the resampling, alignment and 
recalling procedure from these strain sequences (12, 13). 
 
The genome sequence of the human NA12878 individual was obtained from the Illumina Platinum 
Genomes resource (ftp://ftp.1000genomes.ebi.ac.uk).  Omani exome sequences were obtained with 
approved hospital consent for the genetic analysis of these individuals and sequenced as described 
previously (19).  The Indigenous Australian whole genome sequences were obtained with 
appropriate consent granted to SJ Foote (The Australian National University 2014/663).   
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Results 
 
Recurrent false positive variants identified from inbred mice 
 We have previously generated a large dataset of mouse exomes from inbred C57BL6 mice 
harbouring random, N-ethyl-N-nitrosourea (ENU) induced mutations (10). In addition to the 30-60 
induced mutations present per pedigree, we observed a category of variant calls that recurred at 
seemingly random sites in an intermittent mode.  These did not validate with genotyping and were 
not heritable (10).  We refer to these as Recurrent False Positive (RFP) variants.  From 2114 
sequenced mouse exomes, we identified at total of 104,303 unique SNV sites, the bulk of which are 
strain-specific variation, but also include ENU-induced mutations 
(https://databases.apf.edu.au/mutations/) and RFP variants.  Figure 1a shows the frequency 
distribution of all SNVs identified in this population of exome sequences.  Strain-specific variation 
occurs at a frequency approaching 100% and, conversely, ENU induced mutations were pedigree-
specific at very low frequencies (<1%).  RFP variants are comparatively fewer and occur at 
intermediate frequencies between these extremes, conservatively between 5 and 95% in our mouse 
exome population. 
 
 Using these population frequency thresholds, we identified 649,984 variants at 708 unique 
sites at which RFP variants occur in our data.  A distinguishing feature of these variants (compared 
to randomly chosen single nucleotide positions) is they occur in genomic regions with significantly 
lower alignability ((11), t-test p<2.2e-16)).   Previous work has demonstrated that redundant 
genomic sequences correlate with low alignability scores and represent one cause of read 
misalignment (8). Another cause of low alignability is the quality of the reference genome.  With 
variant calling from mouse exomes, we routinely needed to filter 42.5% fewer RFP SNVs when 
aligning to the improved mm10 reference genome compared to the mm9 reference. Collectively, 
these factors provide a cogent explanation for the miscalling of RFP variants. 
 
 We were able to replicate RFP variant calls from any given single mouse exome, through 
multiple rounds of resampling of short reads, realigning these with the mouse reference genome and 
recalling sequence variants. In this process, reads were redundantly and randomly sampled from a 
full exome sequence to extract 80 million 120bp reads.  Each sampled read included randomly 
introduced sequence errors at a base frequency of 1% to mimic the observed error rate encountered 
during resequencing with current short-read sequencing technology.  Each simulated round from the 
same exome produced a number of intermittent variant calls that were not reproduced in every 
round, similar to the RFP variants.  Variants called with >95% frequency were predominantly true 
strain variation and were discarded.  Further rounds of this procedure with the same exome 
incrementally increased the unique RFP variants identified (Figure 1b).  The RFP variants obtained 
in this manner incrementally replicates a subset of the false positive variants observed from actual 
resequencing.  380 iterations of this resampling, realignment and recalling of the colony C57BL6 
genome produced 656 RFP variants, matching 367 (51.8%) of the set observed from actual exome 
data.  A greater number of RFP variants are called when aligning a non-reference mouse strain with 
the reference.  We repeated the resampling, realignment and recalling procedure with three more 
distant strains FVB (12), CBA and C3H (13) (Figure 1b). The incremental increase of RFP variants 
with repeated iteration approximated a Poisson distribution with λ = ~1.  Just 10 rounds of 
resampling, realignment and recalling produced 70% of the final total of intermittent variants 
observed with 100 rounds.   
 
 The FVB, CBA and C3H genetic backgrounds produced thousands of RFP variants per 
genome and these variants variably overlap by between one to two thirds in each mouse strain 
(Figure 1c).  The greater overlap of RFP variants between the more closely related C3H and CBA 
strains demonstrates how sequence divergence of non-reference strains gives rise to strain-specific 
variation.  The degree of this sequence difference between reference and individual genome 
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substantially contributes to the quantity and distribution of RFP variants in any individual.  This has 
large implications for detecting causal variants in human disease, as the genetic background of any 
individual will generate a sample-specific set of RFP variants not relevant to their disease. 
 
Recurrent false positive variants from human sequence data 
 RFP variants in human sequences could also be identified with the same sampling, 
realignment and calling method applied to mouse sequences.  We generated a catalogue of RFP 
variants for the HapMap individual NA12878 and compared these with the Genome Aggregation 
Database (GnomAD; gnomad.broadinstitute.org).  Almost, but not all, RFP variants for this 
individual (96.7%)were present in this database, noting that the NA12878 individual is already 
present in GnomAD and that RFP variants arise stochastically due to the random sampling of short 
reads and sequencing error.  Further RFP variant cataloguing analysis was also performed on three 
additional human exomes of ethnicities not dominant in the GnomAD set (an Omani and an 
Indigenous Australian; Figure 1d).  The number of RFP variants in each of these individuals was 
broadly similar, with an average of 334.5 per individual.  The majority are unique to each individual 
and the proportion of RFP variants that are unique to a given individual varies substantially, though 
not predictably with, say, sequence divergence from the human reference sequence.  The RFP 
variants per individual were also almost entirely present in the GnomAD database, with population 
frequencies ranging from common to rare – and importantly, each individual possessed a small 
number that were unique (Omani, 1.8%; Indigenous Australian, 3.1%; NA12878, 3.3%). 
 
 While read mismapping is related to the difficulty an aligner encounters with short-read data, 
variant callers may differ in their propensity to make RFP variant calls from the same alignment.  
Our mouse variant calls made with real exomes derived from a mutagenised population of 
thousands of laboratory mice were performed over time using SAMtools, and we have not 
replicated these.  However, the variant calls for the resampled human data here were made with 
both SAMtools and GATK (see Methods).  Direct comparison was made by making variant calls on 
the NA12878 individual using the same alignments generated by 30 rounds of read resampling and 
realignment.  Hence, variant callers were working from the same set of read misalignments in each 
replicate.  Interestingly, both variant callers produce RFP variant calls of similar propensity 
(SAMtools: 334; GATK: 398) but these only overlap by 64 variants, less than a fifth in both cases.  
Clearly, more four-fifths of RFP variants could be identified and removed by excluding variants not 
identified by both callers. 
 
 The sequence-specificity and covariation with ethnicity of RFP variants was further 
investigated within single ethnic groups.   We repeated the analysis with exomes from ten Omani 
individuals from pedigrees with an inherited predisposition to autoimmune disease and ten 
Indigenous Australian individuals with a predisposition to kidney disease.  The RFP variants from 
these individuals of the same ethnicity show more similarity than with other groups (Figure 1e).  
This is especially apparent for the Indigenous Australian individuals, for whom the RFP variants 
they hold do not intersect overly with, say, the Omani or NA12878 individuals.  The Omani 
individuals show a strong tendency towards unique RFPs in every individual and less overlap 
between individuals.  Hence there are clear differences between the representative ethnic groups 
shown here - and this reflects the sequence similarity between the individuals included in each 
group.  In this instance, the catalogue of RFP variants for the Omani individuals is of substantial 
practical clinical value.  Autoimmunity in these individuals could plausibly have been ascribed to 
predicted-damaging RFP variants in genes with strong associations to lupus (IRF5, LILRB3) or 
autoimmune hepatitis (C4A).  The IRF5 variant in particular was a strong candidate, yet was proven 
to be miscalled on subsequent genotyping. 
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Discussion 
 
 Our results identify a class of false variant calls that are an inherent factor in reliably 
realigning short read sequence information to a complex mammalian genome. This class of variants 
was shown to arise from analysis of both mouse and human sequences.   Significantly, we find that 
human recurrent false positive SNVs are strongly represented in human population sequence 
databases, such as GnomAD.  Further, these recurrent false positive SNVs may be identified for any 
given genome sequence through repeated sampling and realignment against a reference sequence.  
Hence, from this work we show that it is possible to computationally remove the bulk of these 
spurious SNV calls. 
 At the heart of these variant miscalls is misalignment of reads between redundant regions of 
the genome.  These redundant regions differ very slightly, so as that the low level of sequencing 
error inherent in short read data will similar to the true variation that exists between near duplicate 
sequences in the genome reference.  Hence, reads may be stochastically misassigned between these 
redundant regions and when calling sequence variation, the true differences present in the 
misaligned reads become called as sequence variation between the re-sequenced and reference 
genomes.  Hence, these miscalls will be recurrent to specific nucleotide sites in any given re-
sequenced genome, yet will recur in an intermittent manner due to the stochastic way in which 
sequencing error and misalignment occurs.  Importantly, this will produce some miscalled variants 
with what will appear as rare sequence variation when these variants are aggregated in human 
population variation databases.  This mechanism of RFP genesis suggests that their removal can be 
achieved by both exhaustive cataloguing of RFP variants and/or identifying for a given genome the 
near-identical regions and the minor sequence differences that exist between them.  In practice, the 
exhaustive cataloguing through similation is simple to achieve.  Even more simply, a quick work-
around that will remove more than 80% of RFP variants is to remove variant calls that are not 
replicated by both of SAMtools and GATK.  This work-around is a methodology that has 
increasingly been gaining acceptance for many other purposes also (14) and is further reason for 
clinical variants to be made from the union of calls made with multiple callers (15, 16). 
 Simulation and cataloguing of RFP variants is technically simple, but does substantially 
increase the computation required to perform this analysis for any given genome.  Each simulation 
round requires computation to simulate a population of reads from a given genome, subsequent 
realignment of these reads and the calling of sequence variation between this alignment and the 
reference genome.  This is effectively (at least) a ten-times increase in computation for a single 
genome.  However, the cost of computing a single exome or genome (in the order of tens of dollars) 
is relatively small compared to the cost of generating this sequence data (two orders of magnitude 
more, at current costs).  Hence, increasing this compute cost by a factor of ten is inconsequential 
should this improve the quality of the derived information substantially.  Furthermore, the costs of a 
misidentified variant that leads to misdiagnosis in a clinical context is difficult to quantify.  Yet 
practically this will easily dwarf both the cost of computation and sequence data generation. 
 Having identified this source of error in variant identification, there may be better ways 
found to produce reference datasets of RFP variation that can routinely be filtered from variant call 
sets.  As we have shown, these will be specific to the ethnic background of any given genome and 
argues for the ascertainment of reference population datasets of genomes from diverse ethnic 
groups.  While any reference dataset of RFP variants for a given ethnic group, unless exhaustively 
ascertained, will almost certainly be incomplete.  However, it is evident from our analysis that the 
sequences of other members of a population, even if only a handful, will likely catalogue the 
majority of the most prevalent RFP variants specific to a given population.  This by itself, without 
multiple rounds of resampling, realignment and recalling on a given genome, may be sufficient to 
ameliorate the risk of RFP variant-related misdiagnosis to acceptable levels.  Generation of such 
RFP variant reference sets might be most efficiently performed by databases of genomic variation 
on a routine basis, and comparison of a given personal genome to this data corpus will annotate 
variation likely to be due to read misalignment.  
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Conclusions 
 

Sequence variation identified by short-read resequencing includes recurrent false positive 
miscalls, which arise due to read misalignment to redundant regions with high sequence identity.  
Variants called due to read misalignment are recurrent and can be catalogued for any given genome 
sequence.  Miscalled variants catalogued for diverse individual sequences are show to be almost 
entirely present in growing population databases of human genomic information.  The recurrent 
false positive variants miscalled in any given genome can be removed by two non-exclusive 
strategies: i) through cataloguing intermittent variant calls for a single genome or exome, by a 
resampling, realignment and recalling procedure, and ii) by excluding calls that are not replicated 
by multiple variant calling tools, in this case, both GATK and SAMtools. 
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Figures 
 
Figure 1 – Recurrent false positive variant calls result from difficulties encountered with alignment 
of short reads to complex mammalian genomes. a) The frequencies of observed variant calls from 
2314 exomes of inbred mice show an intermediate category of recurrent-yet-intermittent SNVs, 
between the frequency extremes of fixed strain-specific variation and the rare, pedigree-specific 
induced mutation. b) Recurrent false positive variants can be replicated for a given individual 
sequence through randomly sampling short reads, realigning these to a reference genome and 
recalling sequence variants.  Variants that are only intermittently called accumulate after multiple 
cycles of this process and increase in number following an approximately Poisson distribution.  
Blue dots show the smaller number of recurrent false positive variants obtained from sampling a 
C57BL6 mouse and realigning it to itself.  Greater numbers are obtained through simulation with 
three non-reference mouse strains FVB (orange), CBA (red), and C3H (grey). c) Recurrent false 
positive variants arise in a sequence-specific manner in three mouse strains.  Similarities between 
these variant sets closely mirror the sequence similarity and relatedness between individual 
genomes. d)  Likewise, with human sequences, while a small set of recurrent false positive variants 
are common between all four individuals, the majority are highly ethnically-dependent to 
individual-specific. e) Further to this, simulation of recurrent false positive variants from a closely 
related group of Omani individuals indicates that most are individual-specific, with a smaller 
number being population-specific. 
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