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Abstract

The performance of RNA-Seq aligners and
assemblers varies greatly across different organisms
and experiments, and often the optimal approach
is not known beforehand. Here we show that the
accuracy of transcript reconstruction can be
boosted by combining multiple methods, and we
present a novel algorithm to integrate multiple
RNA-Seq assemblies into a coherent transcript
annotation. Our algorithm can remove
redundancies and select the best transcript models
according to user-specified metrics, while solving
common artefacts such as erroneous transcript
chimerisms. We have implemented this method in
an open-source Python3 and Cython program,
Mikado, available at
https://github.com/lucventurini/Mikado.
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Background
The annotation of eukaryotic genomes is typically a
complex process which integrates multiple sources of
extrinsic evidence to guide gene predictions. Improve-
ments and cost reductions in the field of nucleic acid
sequencing now make it feasible to generate a genome
assembly and to obtain deep transcriptome data even
for non-model organisms. However, for many of these
species often there are only minimal EST and cDNA
resources and limited availability of proteins from
closely related species. In these cases, transcriptome
data from high-throughput RNA sequencing (RNA-
Seq) provides a vital source of evidence to aid gene
structure annotation. A detailed map of the transcrip-
tome can be built from a range of tissues, develop-
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mental stages and conditions, aiding the annotation of
transcription start sites, exons, alternative splice vari-
ants and polyadenylation sites.

Currently, one of the most commonly used technol-
ogy for RNA-Seq is Illumina sequencing, which is char-
acterised by extremely high throughput and relatively
short read lengths. Since its introduction, numerous
algorithms have been proposed to analyse its output.
Many of these tools focus on the problem of assigning
reads to known genes to infer their abundance [1–4], or
of aligning them to their genomic locus of origin [5–7].
Another challenging task is the reconstruction of the
original sequence and genomic structure of transcripts
directly from sequencing data. Many approaches de-
veloped for this purpose leverage genomic alignments
[8–11], although there are alternatives based instead
on de novo assembly [9, 12, 13]. While these methods
focus on how to analyse a single dataset, related re-
search has examined how to integrate assemblies from
multiple samples. While some researchers advocate for
merging together reads from multiple samples and as-
sembling them jointly [9], others have developed meth-
ods to integrate multiple assemblies into a single co-
herent annotation [8, 14].

The availability of multiple methods has generated
interest in understanding the relative merits of each
approach [15–17]. The correct reconstruction of tran-
scripts is often hampered by the presence of multiple
isoforms at each locus and the extreme variability of
expression levels, and therefore in sequencing depth,
within and across gene loci. This variability also af-
fects the correct identification of transcription start
and end sites, as sequencing depth typical drops near
the terminal ends of transcripts. The issue is partic-
ularly severe in compact genomes, where genes are
clustered within small intergenic distances. Further,
the presence of tandemly duplicated genes can lead to
alignment artefacts that then result in multiple genes
being incorrectly reconstructed as a fused transcript.
As observed in a comparison performed by the RGASP
consortium [18], the accuracy of each tool depends on
how it corrects for each of these potential sources of
errors. However, it also depends on other external fac-
tors such as the quality of the input sequencing data
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as well as on species-dependent characteristics, such
as intron sizes and the extent of alternative splicing. It
has also been observed that no single method consis-
tently delivers the most accurate transcript set when
tested across different species. Therefore, none of them
can be determined a priori as the most appropriate for
a given experiment [19]. These considerations are an
important concern in the design of genome annota-
tion pipelines, as transcript assemblies are a common
component of evidence guided approaches that inte-
grate data from multiple sources (e.g. cDNAs, protein
or whole genome alignments). The quality and com-
pleteness of the assembled transcript set can therefore
substantially impact on downstream annotation.

Following these studies, various approaches have
been proposed to determine the best assembly using
multiple measures of assembly quality [19, 20] or to
integrate RNA-Seq assemblies generated by compet-
ing methods [21–23]. In this study we show that alter-
native methods not only have different strengths and
weaknesses, but that they also often complement each
other by correctly reconstructing different subsets of
transcripts. Therefore, methods that are not the best
overall might nonetheless be capable of outperforming
the “best” method for a sub-set of loci. An annotation
project typically integrates datasets from a range of
tissues or conditions, or may utilise public data gener-
ated with different technologies (e.g. Illumina, PacBio)
or sequencing characteristics (e.g. read length, strand
specificity, ribo-depletion); in such cases, it is not un-
common to produce at least one set of transcript as-
semblies for each of the different sources of data, as-
semblies which then need to be reconciled. To ad-
dress these challenges, we developed MIKADO, an ap-
proach to integrate transcript assemblies. The tool de-
fines loci, scores transcripts, determines a representa-
tive transcript for each locus, and finally returns a set
of gene models filtered to individual requirements, for
example removing transcripts that are chimeric, frag-
mented or with short or disrupted coding sequences.
Our approach was shown to outperform both stand-
alone methods and those that combine assemblies, by
returning more transcripts reconstructed correctly and
less chimeric and unannotated genes.

Results and discussion
Assessment of RNA-Seq based transcript reconstruction
methods
We evaluated the performance of four commonly
utilised transcript assemblers: Cufflinks, StringTie,
CLASS2 and Trinity. Their behaviour was assessed
in four species, using as input data RNA-Seq reads
aligned with two alternative leading aligners, TopHat2
and STAR. In total, we generated 32 different tran-
script assemblies, eight per species. In line with the

previous RGASP evaluation, we performed our tests
on the three metazoan species of Caenhorabditis el-
egans, Drosophila melanogaster and Homo sapiens,
using RNA-Seq data from that study as input. We
also added to the panel a plant species, Arabidopsis
thaliana, to assess the performance of these tools on
a non-metazoan genome. Each of these species has
undergone extensive manual curation to refine gene
structures, and moreover, these annotations exhibit
very different gene characteristics in terms of their
proportion of single exon genes, average intron lengths
and number of annotated transcripts per gene (Sup-
plementary Table ST1). Similar to previous studies
[18, 24], we based our initial assessment on real rather
than simulated data, to ensure we captured the true
characteristics of RNA-Seq data. Prediction perfor-
mance was benchmarked against the subset of anno-
tated transcripts with all exons and introns (minimum
1X coverage) identified by at least one of the two RNA-
Seq aligners.

The number of transcripts assembled varied sub-
stantially across methods, with StringTie and Trin-
ity generally reconstructing a greater number of tran-
scripts (Supplementary Figure SF1). Assembly with
Trinity was performed using the genome guided de-
novo method, where RNA-Seq reads are first parti-
tioned into loci ahead of de-novo assembly. This ap-
proach is in contrast to the genome guided approaches
employed by the other assemblers that allow small
drops in read coverage to be bridged and enable the
exclusion of retained introns and other lowly expressed
fragments. As expected Trinity annotated more frag-
mented loci, with a higher proportion of mono-exonic
genes (Supplementary Figure SF1).

Accuracy of transcript reconstruction was measured
using recall and precision. For any given feature (nu-
cleotide, exon, transcript, gene), recall is defined as the
percentage of correctly predicted features out of all ex-
pressed reference features, whereas precision is defined
as the percentage of all features that correctly match
a feature present in the reference. In line with previ-
ous evaluations, we found that accuracy varied consid-
erably among methods, with clear trade-offs between
recall and precision (Supplementary Figure SF2). For
instance, CLASS2 emerged as the most precise of all
methods tested, but its precision came at the cost
of reconstructing less transcripts overall. In contrast,
Trinity and StringTie often outperformed the recall of
CLASS2, but were also much more prone to yield er-
roneous transcripts (Supplementary Figure SF2, SF3).
Notably, the performance and the relative ranking of
the methods differed among the four species (Table 1).
We found CLASS2 and StringTie to be overall the
most accurate (with either aligner), however excep-
tions were evident. For instance, the most accurate
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method in D. melanogaster (CLASS2 in conjunction
with Tophat alignments) performed worse than any
other tested method in A. thaliana. The choice of
RNA-Seq aligner also substantially impacted assem-
bly accuracy, with clear differences between the two
when used in conjunction with the same assembler.

Across the four species and depending on the aligner
used, 22 to 35% of transcripts could be reconstructed
by any combination of aligner and assembler (Supple-
mentary Table ST2). However, some genes were recov-
ered only by a subset of the methods (Supplementary
Table ST2), with on average 5% of the genes being
fully reconstructable only by one of the available com-
binations of aligner and assembler.

Taking the union of genes fully reconstructed by any
of the methods shows that an additional 14.92-19.08%
of genes could be recovered by an approach that would
integrate the most sensitive assembly with less com-
prehensive methods. This complementarity manifests
as well in relation to genes missed by any particular
method: while each approach failed to reconstruct sev-
eral hundred genes on average, the majority of these
models could be fully or partially reconstructed by
an alternative method (Supplementary Figure SF3a).
Another class of error are artifactual fusion/chimeric
transcripts that chain together multiple genes. These
artefacts usually arise from an incorrect identification
of start and end sites during transcript reconstruction
- an issue which appears most prominently in compact
genomes with smaller intergenic distances [9]. Among
the methods tested, Cufflinks was particularly prone
to this class of error, while Trinity and CLASS2 as-
sembled far fewer such transcripts. Again, alternative
methods complemented each other, with many genes
fused by one assembler being reconstructed correctly
by another approach (Supplementary Figure SF3b).
Finally, the efficiency of transcript reconstruction de-
pends on coverage, a reflection of sequencing depth and
expression level. Methods in general agree on the re-
construction of well-expressed genes, while they show
greater variability with transcripts that are present at
lower expression levels. Even at high expression levels,
though, only a minority of genes can be reconstructed
correctly by every tested combination of aligner and
assembler (Supplementary Figure SF4). Our results
underscore the difficulty of transcript assembly and
highlight advantageous features of specific methods. A
naive combination of the output of all methods would
yield the greatest sensitivity, but at the cost of a de-
crease in precision as noise from erroneous reconstruc-
tions accumulates. Indeed, this is what we observe:
in all species, while the recall of the naive combina-
tion markedly improves even upon the most sensitive
method, the precision decreases (Supplementary Fig-
ure SF2). As transcript reconstruction methods exhibit

idiosyncratic strengths and weaknesses an approach
that can integrate multiple assemblies can potentially
lead to a more accurate and comprehensive set of gene
models.

Overview of the Mikado method
Mikado provides a framework for integrating tran-
scripts from multiple sources into a consolidated set
of gene annotations. Our approach assesses, scores
(based on user configurable criteria) and selects tran-
scripts from a larger transcript pool, leveraging tran-
script assemblies generated by alternative methods
or from multiple samples and sequencing technolo-
gies. The software takes as input transcript struc-
tures in standard formats such as GTF and GFF3,
with optionally BLAST similarity scores or a set of
high quality splice junctions, and produces a pol-
ished annotation and a rich set of metrics for each
transcript. The software is written in python3 and
Cython, and extensive documentation is available from
https://github.com/lucventurini/mikado.

Mikado is composed of three core programs (pre-
pare, serialise, pick) executed in series. The Mikado
prepare step validates and standardizes transcripts,
removing exact duplicates and artefactual assemblies
such as those with ambiguous strand orientation (as
indicated by canonical splicing). During the Mikado
serialise step, data from multiple sources are brought
together inside a common database. Mikado by de-
fault analyses and integrates three types of data: open-
reading frames (ORFs) currently identified via Trans-
Decoder, protein similarity derived through BLASTX
or Diamond and high quality splice junctions identi-
fied using tools such as Portcullis [25] or Stampy [26].
The selection phase (Mikado pick) groups transcripts
into loci and calculates for each transcript over fifty
numerical and categorical metrics based on either ex-
ternal data (e.g. BLAST support) or intrinsic qualities
relating to CDS, exon, intron or UTR features (sum-
marised in Supplementary Table ST3). While some
metrics are inherent to each transcript (e.g. the cDNA
length), others depend on the context of the locus the
transcript is placed in. A typical example would be
the proportion of introns of the transcript relative to
the number of introns associated to the genomic lo-
cus. Such values are dependent on the loci grouping,
and can change throughout the computation, as tran-
scripts are moved into a different locus or filtered out.
Notably, the presence of open reading frames is used
in conjunction with protein similarity to identify and
resolve fusion transcripts. Transcripts with multiple
ORFs are marked as candidate false-fusions; homology
to reference proteins is then optionally used to deter-
mine whether the ORFs derive from more than one
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gene. If the fusion event is confirmed, the transcript is
split into multiple transcripts (Figure 1).

To determine the primary transcript at a locus,
Mikado assigns a score for each metric of each tran-
script, by assessing its value relatively to all other tran-
scripts associated to the locus. Once the highest scor-
ing transcript for the group has been selected, Mikado
will exclude all transcripts which are directly intersect-
ing it, and if any remain, iteratively select the next best
scoring transcripts pruning the graph until all non-
intersecting transcripts have been selected. This iter-
ative strategy ensures that no locus is excluded if e.g.
there are unresolved read-through events that would
connect two or more gene loci. Grouping and filtering
happen in multiple sequential phases, each defined by
different rules for clustering transcripts into loci (see
methods). The process is controlled by a configuration
file that determines desirable gene features, allowing
the user to define criteria for transcript filtering and
scoring as well as specifying minimum requirements for
potential alternative splicing events.

We also developed a Snakemake-based pipeline, Dai-
jin, in order to drive Mikado, including the calls to ex-
ternal programs to calculate ORFs and protein homol-
ogy. Daijin works in two independent stages, assemble
and mikado. The former stage enables transcript as-
semblies to be generated from the read datasets using
a choice of read alignment and assembly methods. In
parallel, this part of the pipeline will also calculate reli-
able junctions for each alignment using Portcullis. The
latter stage of the pipeline drives the steps necessary
to execute Mikado, both in terms of the required steps
for our program (prepare, serialise, pick) and of the
external programs needed to obtain additional data
for the picking stage (currently, homology search and
ORF detection). A summary of the Daijin pipeline is
reported in Figure .

Performance of Mikado
To provide a more complete assessment we evaluated
the performance of Mikado on both simulated and real
data. While real data represents more fully the true
complexity of the transcriptome simulated data gen-
erates a known set of transcripts to enable a precise
assessment of prediction quality. For our purposes, we
used SPANKI to simulate RNA-Seq reads for all four
species, closely matching the quality and expression
profiles of the corresponding real data. Simulated reads
were aligned and assembled following the same proto-
col that was used for real data, above. Mikado was
then used to integrate the four different transcript as-
semblies for each alignment.

Across the four species and on both simulated and
real data, Mikado was able to successfully combine

the different assemblies, obtaining a higher accuracy
than most individual tools in isolation. Compared with
the best overall combination, CLASS2 on STAR align-
ments, Mikado improved the accuracy on average by
6.58% and 9.23% on simulated and real data at the
transcript level, respectively (Figure 3 and Additional
File 2). Most of this improvement accrues due to an
improved recall rate without significant losses on pre-
cision. We register a single exception, on H. sapiens
simulated data, due to an excess of intronic gene mod-
els which pervade the assemblies of all other tools. On
simulated data, CLASS2 is able to detect these models
and exclude them, most probably using its refined filter
on low-coverage regions [11]; however, this increase in
precision is absent when using TopHat2 as an aligner
and on real data. Aside from the accuracy in cor-
rectly reconstructing transcript structures, in our ex-
periments, merging and filtering the assemblies proved
an effective strategy to produce a comprehensive tran-
script catalogue: Mikado consistently retrieved more
loci than the most accurate tools, while avoiding the
sharp drop in precision of more sensitive methods such
as e.g. Trinity (Figure 3b). Finally, Mikado was capa-
ble to accurately identify and solve cases of artefactual
gene fusions, which mar the performance of many as-
semblers. As this kind of error is more prevalent in our
real data, the increase in precision obtained by using
Mikado was greater using real rather than simulated
data.

We further assessed the performance of Mikado in
comparison with three other methods that are capa-
ble of integrating transcripts from multiple sources:
CuffMerge [27], StringTie-merge [14] and Evidential-
Gene [23, 28]. CuffMerge and StringTie-merge per-
form a meta-assembly of transcript structures, with-
out considering ORFs or homology. In contrast, Ev-
identialGene is similar to Mikado in that it classifies
and selects transcripts, calculating ORFs and associ-
ated quality metrics from each transcript to inform
its choice. In our tests, Mikado consistently performed
better than alternative combiners, in particular when
compared to the two meta-assemblers. The perfor-
mance of StringTie-merge and CuffMerge on simulated
data underscored the advantage of integrating assem-
blies from multiple sources as both methods generally
improved recall over input methods. However, this was
accompanied by a drop in precision, most noticeably
for CuffMerge, as assembly artefacts present in the
input assemblies accumulated in the merged dataset.
In contrast, the classification and filtering based ap-
proach of EvidentialGene led to a more precise dataset,
but at the cost of a decrease in recall. Mikado man-
aged to balance both aspects, thus showing a better
accuracy than any of the alternative approaches (A.
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thaliana +6.24%, C. elegans +7.66%, D. melanogaster
+9.48%, H. sapiens +4.92% F1 improvement over the
best alternative method). On real and simulated data,
Mikado and EvidentialGene generally performed bet-
ter than the two meta-assemblers, with an accuracy
differential that ranged from moderate in H. sapiens
(1.67 to 4.32%) to very marked in A. thaliana (14.87 to
29.58%). An important factor affecting the accuracy of
the meta-assemblers with real data is the prevalence of
erroneous transcript fusions that can result from incor-
rect read alignment, genomic DNA contamination or
bona fide overlap between transcriptional units. Both
StringTie-merge and CuffMerge were extremely prone
to this type of error, as across the four species they
generated on average 2.39 times the number of fusion
genes compared to alternative methods (Figure 3b).
Between the two selection based methods, Evidential-
Gene performed similarly to Mikado on real data but
much worse on simulated data: its accuracy was on
average 2 points lower than Mikado on real data, and
8.13 points lower in the simulations. This is mostly due
to a much higher precision differential between the two
methods in simulated data, with Mikado much better
than EvidentialGene on this front (+8.95% precision
on simulated data).

Filtering lenient assemblies

Although our tests have been conducted using default
parameters for the various assemblers, these parame-
ters can be adjusted to alter the balance between preci-
sion and sensitivity according to the goal of the exper-
iment. In particular, three of the assemblers we tested
provide a parameter to filter out alternative isoforms
with a low abundance. This parameter is commonly
referred to as “minimum isoform fraction”, or MIF,
and sets for each gene a minimum isoform expression
threshold relative to the most expressed isoform. Only
transcripts whose abundance ratio is greater than the
MIF threshold are reported. Therefore, lowering this
parameter will yield a higher number of isoforms per
locus, retaining transcripts that are expressed at low
levels and potentially increasing the number of cor-
rectly reconstructed transcripts. This improved recall
is obtained at the cost of a drop in precision, as more
and more incorrect splicing events are reported (Sup-
plementary Figure 4). Mikado can be applied on top
of these very permissive assemblies to filter out spu-
rious splicing events. In general, filtering with Mikado
yielded transcript datasets that are more precise than
those produced by the assemblers at any level of cho-
sen MIF, or even when comparing the most relaxed
MIF in Mikado with the most conservative in the raw
assembler output (Figure 4).

Multi-sample transcript reconstruction
Unravelling the complexity of the transcriptome re-
quires assessing transcriptional dynamics across many
samples. Projects aimed at transcript discovery and
genome annotation typically utilize datasets gener-
ated across multiple tissues and experimental condi-
tions to provide a more complete representation of
the transcriptional landscape. Even if a single assem-
bly method is chosen, there is often a need to inte-
grate transcript assemblies constructed from multiple
samples. StringTie-merge, CuffMerge and the recently
published TACO [29] have been developed with this
specific purpose in mind. The meta-assembly approach
of these tools can reconstruct full-length transcripts
when they are fragmented in individual assemblies,
but as observed earlier, it is prone to creating fusion
transcripts. TACO directly addresses this issue with
a dedicated algorithmic improvement, ie change-point
detection. This solution is based on fusion transcripts
showing a dip in read coverage in regions of incorrect
assembly; this change in coverage can then be used
to identify the correct breakpoint. A limitation of the
implementation in TACO is that it requires expression
estimates to be encoded in the input GTFs, and some
tools do not provide this information.

To assess the performance of Mikado for multi sam-
ple reconstruction, we individually aligned and assem-
bled the twelve A. thaliana seed development samples
from PRJEB7093, using the four single-sample assem-
blers described previously. The collection of twelve as-
semblies per tool was then integrated into a single
set of assemblies, using different combiners. StringTie-
merge and TACO could not be applied to the Trin-
ity dataset, as they both require embedded expression
data in the GTF files, which is not provided in the
Trinity output. In line with the results published in
the TACO paper [29], we observed a high rate of fusion
events in both StringTie-merge and CuffMerge results
(Figure 5b), which TACO reduced. However, none of
these tools performed as well as EvidentialGene or
Mikado, either in terms of accuracy, or in avoiding gene
fusions (Figure 5). Mikado achieved the highest accu-
racy irrespective of the single sample assembler used,
with an improvement in F1 over the best alternative
method of +8.25% for Cufflinks assemblies, +2.23%
in StringTie, +0.95% with CLASS2 and +6.65% for
Trinity.

Transcript assemblies are commonly incorporated
into evidence-based gene finding pipelines, often in
conjunction with other external evidence such as cross
species protein sequences, proteomics data or synteny.
The quality of transcript assembly can therefore poten-
tially impact on downstream gene prediction. To test
the magnitude of this effect, we used the data from
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these experiments on A. thaliana to perform gene pre-
diction with the popular MAKER annotation pipeline,
using Augustus with default parameters for the species
as a gene predictor. Our results (Supplementary Fig-
ure SF5) show that, as expected, an increased accuracy
in the transcriptomic dataset leads to an increased ac-
curacy in the final annotation. Importantly, MAKER
was not capable of reducing the prevalence of gene fu-
sion events present in the transcript assemblies. This
suggests that ab initio Augustus predictions utilized
by MAKER do not compensate for incorrect fusion
transcripts that are provided as evidence, and stress
the importance of pruning these mistakes from tran-
script assemblies before performing an evidence-guided
gene prediction.

Expansion to long read technologies
Short read technologies, due to their low per-base
cost and extensive breadth and depth of coverage,
are commonly utilised in genome annotation pipelines.
However, like the previous generation Sanger ESTs,
their short size requires the use of sophisticated meth-
ods to reconstruct the structure of the original RNA
molecules. Third-generation sequencing technologies
promise to remove this limitation, by generating full-
length cDNA sequences. These new technologies cur-
rently offer lower throughput and are less cost effective,
but have in recent studies been employed alongside
short read technologies to define the transcriptome of
species with large gene content [30, 31].

We tested the complementarity of the two technolo-
gies by sequencing two samples of a standard human
reference RNA library with the leading technologies
for both approaches, Illumina HiSeq for short-reads
(250 bp, paired-end reads) and the Pacific Bioscience
IsoSeq protocol for long reads. Given the currently
higher per-base costs of long-read sequencing tech-
nologies, read coverage is usually much lower than for
short read sequencing. We found many genes to be re-
constructed by both platforms, but as expected given
the lower sequencing depth there was a clear advan-
tage for the Illumina dataset on genes with expression
lower than 10 TPM (Supplementary Figures SF6a and
SF6b). We verified the feasibility of integrating the re-
sults given by the different sequencing technologies by
combining the long reads with the short read assem-
blies, either simply concatenating them, or by filtering
them with EvidentialGene and Mikado (Supplemen-
tary Figure SF7). An advantage of Mikado over the
two alternative approaches is that it allows to prioritise
PacBio reads over Illumina assemblies, by giving them
a slightly higher base score. In this analysis, we saw
that even PacBio data on its own might require some
filtering, as the original sample contains a mixture of

whole and fragmented molecules, together with imma-
ture transcripts. Both Mikado and EvidentialGene are
capable of identifying mature coding transcripts in the
data, but Mikado shows a better recall and general ac-
curacy rate, albeit at the cost of some precision. How-
ever, Mikado performed much better than Evidential-
Gene in filtering either the Illumina data on its own, or
the combination of the two technologies. Although the
filtering inevitably loses some of the real transcripts,
the loss is compensated by an increased overall accu-
racy. Mikado performed better in this respect than Ev-
identialGene, as the latter did not noticeably improve
in accuracy when given a combination of PacBio and
Illumina data, rather than the Illumina data alone.

Conclusions
Transcriptome assembly is a crucial component of
genome annotation workflows, however, correctly re-
constructing transcripts from short RNA-Seq reads re-
mains a challenging task. Over recent years methods
for both de novo and reference guided transcript re-
construction have accumulated rapidly. When com-
bined with the large number of RNA-seq mapping
tools deciding on the optimal transcriptome assem-
bly strategy for a given organism and RNA-Seq data
set (stranded/unstranded, polyA/ribodepleted) can be
bewildering. In this article we showed that different as-
sembly tools are complementary to each other; fully-
reconstructing genes only partially reconstructed or
missing entirely from alternative approaches. Simi-
larly, when analysing multiple RNA-Seq samples, the
complete transcript catalogue is often only obtained
by collating together different assemblies. For a gene
annotation project it is therefore typical to have mul-
tiple sets of transcripts, be they derived from alterna-
tive assemblers, different assembly parameters or aris-
ing from multiple samples. Our tool, Mikado, provides
a framework for integrating transcript assemblies ex-
ploiting the inherent complementarity of the data to
to produce a high-quality transcript catalogue.

Rather than attempting to capture all transcripts,
our approach aims to mimic the selective process of
manual curation by evaluating and identifying a sub-
set of transcripts from each locus. The criteria for se-
lection can be configured by the user, enabling them
to for example to penalise gene models with trun-
cated ORFs, those with non-canonical splicing, targets
for nonsense mediated decay or chimeric transcripts
spanning multiple genes. Such gene models may repre-
sent bona fide transcripts (with potentially functional
roles), but can also arise from aberrant splicing or,
as seen from our simulated data, from incorrect read
alignment and assembly. Mikado acts as a filter prin-
cipally to identify coding transcripts with complete
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ORFs and is therefore in line with most reference anno-
tation projects that similarly do not attempt to repre-
sent all transcribed sequences. Our approach is made
possible by integrating the data on transcript struc-
tures with additional information generally not utilised
by transcript assemblers such as similarity to known
proteins, the location of open reading frames and in-
formation on the reliability of splicing junctions. This
information aids Mikado in performing operations such
as discarding spurious alternative splicing events, or
detecting chimeric transcripts. This allows Mikado to
greatly improve in precision over the original assem-
blies, with in general minimal drops in recall. More-
over, similarly to TACO, Mikado is capable of iden-
tifying and resolving chimeric assemblies, which nega-
tively affect the precision of many of the most sensitive
tools, such as StringTie or the two meta-assemblers
Cuffmerge and StringTie-merge.

Our experiments show that Mikado can aid genome
annotation by generating a set of high quality tran-
script assemblies across a range of different scenarios.
Rather than having to identify the best aligner/assem-
bly combination for every project, Mikado can be used
to integrate assemblies from multiple methods, with
our approach reliably identifying the most accurate
transcript reconstructions and allowing the user to tai-
lor the gene set to their own requirements. It is also
simple to incorporate assemblies from new tools even if
the new method is not individually the most accurate
approach. Given the challenges associated with short-
read assembly it is desirable (when available) to inte-
grate these with full-length cDNA sequences. Mikado
is capable of correctly integrating analyses coming
from different assemblers and technologies, including
mixtures of Illumina and PacBio data. Our tool has
already been employed for such a task on the large,
repetitive genome of Triticum aestivum [31], where
it was instrumental in selecting a set of gene models
from over ten million transcript assemblies and PacBio
IsoSeq reads. The consolidated dataset returned by
Mikado was almost thirty times smaller than the origi-
nal input dataset, and this polishing was essential both
to ensure a high-quality annotation and to reduce the
running times of downstream processes.

In conclusion, Mikado is a flexible tool which is capa-
ble of handling a plethora of data types and formats.
Its novel selection algorithm was shown to perform well
in model organisms and was central in the genome an-
notation pipeline of various species [31–33]. Its deploy-
ment should provide genome annotators with another
powerful tool to improve the accuracy of data for sub-
sequent ab initio training and evidence-guided gene
prediction.

Methods
Input datasets
For C. elegans, D. melanogaster and H. sapiens, we re-
trieved from the European Nucleotide Archive (ENA)
the raw reads used for the evaluation in [18], under
the Bioproject PRJEB4208. We further selected and
downloaded a publicly available strand-specific RNA-
Seq dataset for A. thaliana, PRJEB7093. Congruently
with the assessment in [18], we used genome assemblies
and annotations from EnsEMBL v. 70 for all metazoan
species, while for A. thaliana we used the TAIR10 ver-
sion. For all species, we simulated reads using the input
datasets as templates. Reads were trimmed with Trim-
Galore v0.4.0 [34] and aligned onto the genome with
Bowtie v1.1.2 [35] and HISAT v2.0.4 [7]. The HISAT
alignments were used to calculate the expression lev-
els for each transcript using Cufflinks v2.2.1, while the
Bowtie mappings were used to generate an error model
for the SPANKI Simulator v.0.5.0 [36]. The transcript
coverages and the error model were then used to gen-
erate simulated reads, at a depth of 10X for C. elegans
and D. melanogaster and 3X for A. thaliana and H.
sapiens. A lower coverage multiplier was applied to
the latter species to have a similar number of reads for
all four datasets, given the higher sequencing depth in
the A. thaliana dataset and the higher number of ref-
erence transcripts in H. sapiens. cDNA sequences for
A. thaliana were retrieved from the NCBI Nucleotide
database on the 21st of April 2017, using the query:

‘‘Arabidopsis ’’ [Organism] OR arabidopsis[All

Fields ]) AND ‘‘Arabidopsis thaliana ’’[porgn]

AND biomol\_mrna [PROP]

For the second experiment on H. sapiens, we se-
quenced two samples of the Stratagene Universal Hu-
man Reference RNA (catalogue ID#740000), which
consists of a mixture of RNA derived from ten different
cell lines. One sample was sequenced on an Illumina
HiSeq2000 and the second on a Pacific Biosciences
RSII machine. Sequencing runs were deposited in
ENA, under the project accession code PRJEB22606.

Preparation and sequencing of Illumina libraries
The libraries for this project were constructed us-
ing the NEXTflex�Rapid Directional RNA-Seq Kit
(PN: 5138-08) with the NEXTflex�DNA Barcodes –
48 (PN: 514104) diluted to 6µm. The library prepa-
ration involved an initial QC of the RNA using Qubit
DNA (Life technologies Q32854) and RNA (Life tech-
nologies Q32852) assays as well as a quality check
using the PerkinElmer GX with the RNA assay
(PN:CLS960010)

1 µg of RNA was purified to extract mRNA with a
poly-A pull down using biotin beads, fragmented and
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first strand cDNA was synthesised. This process re-
verse transcribes the cleaved RNA fragments primed
with random hexamers into first strand cDNA using
reverse transcriptase and random primers. The sec-
ond strand synthesis process removes the RNA tem-
plate and synthesizes a replacement strand to gener-
ate dscDNA. The ends of the samples were repaired
using the 3’ to 5’ exonuclease activity to remove the 3’
overhangs and the polymerase activity to fill in the 5’
overhangs creating blunt ends. A single ‘A’ nucleotide
was added to the 3’ ends of the blunt fragments to
prevent them from ligating to one another during the
adapter ligation reaction. A corresponding single ’T’
nucleotide on the 3’ end of the adapter provided a com-
plementary overhang for ligating the adapter to the
fragment. This strategy ensured a low rate of chimera
formation. The ligation of a number indexing adapters
to the ends of the DNA fragments prepared them for
hybridisation onto a flow cell. The ligated products
were subjected to a bead based size selection using
Beckman Coulter XP beads (PN: A63880). As well as
performing a size selection this process removed the
majority of un-ligated adapters. Prior to hybridisa-
tion to the flow cell the samples were PCR’d to enrich
for DNA fragments with adapter molecules on both
ends and to amplify the amount of DNA in the li-
brary. Directionality is retained by adding dUTP dur-
ing the second strand synthesis step and subsequent
cleavage of the uridine containing strand using Uracil
DNA Glycosylase. The strand that was sequenced is
the cDNA strand. The insert size of the libraries was
verified by running an aliquot of the DNA library on a
PerkinElmer GX using the High Sensitivity DNA chip
(PerkinElmer CLS760672) and the concentration was
determined by using a High Sensitivity Qubit assay
and q-PCR.

The constructed stranded RNA libraries were nor-
malised and equimolar pooled into two pools. The
pools were quantified using a KAPA Library Quant
Kit Illumina/ABI (KAPA KK4835) and found to be
6.71 nm and 6.47 nm respectively. A 2 nm dilution of
each pool was prepared with NaOH at a final concen-
tration of 0.1N and incubated for 5 minutes at room
temperature to denature the libraries. 5µl of each 2 nm
dilution was combined with 995µl HT1 (Illumina) to
give a final concentration of 10 pm. 135 µl of the diluted
and denatured library pool was then transferred into
a 200µl strip tube, spiked with 1 % PhiX Control v3
(Illumina FC-110-3001) and placed on ice before load-
ing onto the Illumina cBot with a Rapid v2 Paired-end
flow-cell and HiSeq Rapid Duo cBot Sample Loading
Kit (Illumina CT-403-2001). The flow-cell was loaded
on a HiSeq 2500 (Rapid mode) following the manu-
facturer’s instructions with a HiSeq Rapid SBS Kit

v2 (500 cycles) (Illumina FC-402-4023) and HiSeq PE
Rapid Cluster Kit v2 (Illumina PE-402-4002). The run
set up was as follows: 251 cycles/7 cycles(index)/251
cycles utilizing HiSeq Control Software 2.2.58 and RTA
1.18.64. Reads in .bcl format were demultiplexed based
on the 6bp Illumina index by CASAVA 1.8 (Illumina),
allowing for a one base-pair mismatch per library, and
converted to FASTQ format by bcl2fastq (Illumina).

Preparation and sequencing of PacBio libraries
The Iso-Seq libraries were created starting from 1µg
of human total RNA and full-length cDNA was then
generated using the SMARTer PCR cDNA synthe-
sis kit (Clontech, Takara Bio Inc., Shiga, Japan) fol-
lowing PacBio recommendations set out in the Iso-
Seq method (http://goo.gl/1Vo3Sd). PCR optimi-
sation was carried out on the full-length cDNA using
the KAPA HiFi PCR kit (Kapa Biosystems, Boston
USA) and 12 cycles were sufficient to generate the
material required for ELF size selection. A timed
setting was used to fractionate the cDNA into 12
individual sized fractions using the SageELF (Sage
Science Inc., Beverly, USA), on a 0.75 % ELF Cas-
sette. Prior to further PCR, the ELF fractions were
equimolar pooled into the following sized bins: 0.7-
2kb, 2-3kb, 3-5kb and ¿ 5kb. PCR was repeated
on each sized bin to generate enough material for
SMRTbell library preparation, this was completed
following Pacbio recommendations in the Iso-Seq
method. The four libraries generated were quality
checked using Qubit Florometer 2.0 and sized using
the Bioanalyzer HS DNA chip. The loading calcula-
tions for sequencing were completed using the PacBio
Binding Calculator v2.3.1.1 (https://github.com/
PacificBiosciences/BindingCalculator). The se-
quencing primer was used from the SMRTbell Tem-
plate Prep Kit 1.0 and was annealed to the adapter
sequence of the libraries. Each library was bound to
the sequencing polymerase with the DNA/Polymerase
Binding Kit v2 and the complex formed was then
bound to Magbeads in preparation for sequencing us-
ing the MagBead Kit v1. Calculations for primer and
polymerase binding ratios were kept at default values.
The libraries were prepared for sequencing using the
PacBio recommended instructions laid out in the bind-
ing calculator. The sequencing chemistry used to se-
quence all libraries was DNA Sequencing Reagent Kit
4.0 and the Instrument Control Software version was
v2.3.0.0.140640. The libraries were loaded onto PacBio
RS II SMRT Cells 8Pac v3; each library was sequenced
on 3 SMRT Cells. All libraries were run without stage
start and 240 minute movies per cell. Reads for the
four libraries was extracted using SMRT Pipe v2.3.3,
following the instructions provided by the manufac-
turer at https://github.com/PacificBiosciences/
cDNA_primer.
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Alignments and assemblies
Reads from the experiments were aligned using STAR
v2.4.1c and TopHat v2.0.14. For STAR, read align-
ment parameters for all species were as follows:

--outFilterMismatchNmax 4 --alignSJoverhangMin 12 --

alignSJDBoverhangMin 12 --outFilterIntronMotifs

RemoveNoncanonical --alignEndsType EndToEnd --

alignTranscriptsPerReadNmax 100000 --

alignIntronMin MININTRON --alignIntronMax

MAXINTRON --alignMatesGapMax MAXINTRON

whereas for TopHat2 we used the following parame-
ters:

-r 50 -p 4 --min -anchor -length 12 --max -multihits 20

--library -type fr-unstranded -i MININTRON -I

MAXINTRON

The parameters “MINTRON” and “MAXINTRON”
were varied for each species, as follows:
� A. thaliana: minimum 20, maximum 10000
� C. elegans: minimum 30, maximum 15,000
� D. melanogaster : minimum 20, maximum 10,000
� H. sapiens: minimum 20, maximum 10,000
Each dataset was assembled using four different

tools: CLASS v 2.12, Cufflinks 2.1.1, StringTie v. 1.03,
and Trinity r20140717. Command lines for the tools
were as follows:
� CLASS: we executed this tools through a wrap-

per included in Mikado, class run.py, with com-
mand line parameters -F 0.05

� Cufflinks: -u -F 0.05; for the A. thaliana dataset,
we further specified --library-type fr-firststrand.

� StringTie: -m 200 -f 0.05

� Trinity: --genome guided max intron MAXINTRON

(see above)
Trinity assemblies were mapped against the genome

using GMAP v20141229 [37], with parameters -n 0

--min-trimmed-coverage=0.70 --min-identity=0.95.
For simulated data, we elected to use a more modern
version of Trinity (v.2.3.2) as the older version was
unable to assemble transcripts correctly for some of
the datasets. For assembling separately the samples in
PRJBE7093, we used Cufflinks (v.2.2.1) and StringTie
v1.2.3, with default parameters.

Mikado analyses
All analyses were run with Mikado 1.0.1, using Dai-
jin to drive the pipeline. For each species, we built
a separate reference protein dataset, to be used
for the BLAST comparison (see Table ST4). We
used NCBI BLASTX v2.3.0 [38], with a maximum
evalue of 10e-7 and a maximum number of tar-
gets of 10. Open reading frames were predicted us-
ing TransDecoder 3.0.0 [9]. Scoring parameters for

each species can be found in Mikado v1.0.1, at
https://github.com/lucventurini/mikado/tree/

master/Mikado/configuration/scoring_files, with
a name scheme of species name scoring.yaml (eg.
“athaliana scoring.yaml” for A. thaliana). The same
scoring files were used for all runs, both with simulated
and real data. Filtered junctions were calculated using
Portcullis v1.0 beta5, using default parameters.

Mikado was instructed to look for models with -
among other features - a good UTR/CDS proportion
(adjusted per species), homology to known proteins,
and a high proportion of validated splicing junctions.
We further instructed Mikado to remove transcripts
that do not meet minimum criteria such as having at
least a validated splicing junction if any is present in
the locus, and a minimum transcript length or CDS
length. The configuration files are bundled with the
Mikado software as part of the distribution.

Details on the algorithms of Mikado
The Mikado pipeline is divided into three distinct
phases.

Mikado prepare
Mikado prepare is responsible for bringing together
multiple annotations into a single GTF file. This step
of the pipeline is capable of handling both GTF and
GFF3 files, making it adaptable to use data from
most assemblers and cDNA aligners currently avail-
able. Mikado prepare will not just uniform the data
format, but will also perform the following operations:
1 It will optionally discard any model below a user-

specified size (default 200 base pairs).
2 It will analyse the introns present in each model,

and verify their canonicity. If a model is found to
contain introns from both strands, it will be dis-
carded by default, although the user can decide to
override this behaviour and keep such models in.
Each multiexonic transcript will be tagged with
this information, making it possible for Mikado
to understand the number of canonical splicing
events present in a transcript later on.

3 Mikado will also switch the strand of multiexonic
transcripts if it finds that their introns are allo-
cated to the wrong strand, and it will strip the
strand information from any monoexonic tran-
script coming from non-strand specific assemblies

4 Finally, Mikado will sort the models, providing a
coordinate-ordered GTF file as output, together
with a FASTA file of all the cDNAs that have
been retained.

Mikado prepare uses temporary SQLite databases to
perform the sorting operation with a limited amount of
memory. As such, it is capable of handling millions of
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transcripts from multiple assemblies with the memory
found on a regular modern desktop PC (lower than
8GB of RAM).

Mikado serialise
Mikado serialise is the part of the pipeline whose role
is to collect all additional data on the models, and
store it into a standard database. Currently Mikado is
capable of handling the following types of data:
1 FASTAs, ie the cDNA sequences produced by

Mikado prepare, and the genome sequence.
2 Genomic BED files, containing the location of

trusted introns. Usually these are either output di-
rectly from the aligners themselves (eg the “junc-
tions.bed” file produced by TopHat) or derived
from the alignment using a specialised program
such as Portcullis.

3 Transcriptomic BED or GFF3 files, containing the
location of the ORFs on the transcripts. These
can be calculated with any program chosen by
the user. We highly recommend using a pro-
gram capable of indicating more than one ORF
per transcript, if more than one is present, as
Mikado relies on this information to detect and
solve chimeric transcripts. Both TransDecoder
and Prodigal have such capability.

4 Homology match files in XML format. These can
be produced either by BLAST+ or by DIAMOND
(v 0.8.7 and later) with the option “-outfmt 5”.

Mikado serialise will try to keep the memory con-
sumption at a minimum, by limiting the amount of
maximum objects present in memory (the threshold
can be specified by the user, with the default being
at 20,000). XML files can be analysed in parallel, so
Mikado serialise can operate more efficiently if BLAST
or DIAMOND runs are performed by pre-chunking the
cDNA FASTA file and producing corresponding mul-
tiple output files.

Mikado serialise will output a database with the
structure in SF8.

Mikado pick
Mikado pick selects the final transcript models and
outputs them in GFF3 format. In contrast with many
ab initio predictors, currently Mikado does not pro-
vide an automated system to learn the best parame-
ters for a species. Rather, the choice of what types of
models should be prioritised for inclusion in the final
annotation is left to the experimenter, depending on
her needs and goals. For the experiments detailed in
this article, we configured Mikado to prioritise com-
plete protein-coding models, and to apply only a lim-
ited upfront filtering to transcripts. A stricter upfront
hard-filtering of transcripts, for example involving dis-
carding any monoexonic transcript without sufficient

homology support, might have yielded a more precise
collated annotation at the price of discarding any po-
tentially novel monoexonic genes. Although we pro-
vide the scoring files used for this paper in the soft-
ware distribution, we encourage users to inspect them
and adjust them to their specific needs. As part of
the workflow, Mikado also produces tabular files with
all the metrics calculated for each transcript, and the
relative scores. It is therefore possible for the user to
use this information to adjust the scoring model. The
GFF3 files produced by Mikado comply with the for-
mal specification of GFF3, as defined by the Sequence
Ontology and verified using GenomeTools v.1.5.9 or
later. Earlier versions of GenomeTools would not vali-
date completely Mikado files due to a bug in their cal-
culation of CDS phases for truncated models, see issue
#793 on GenomeTools github: https://github.com/
genometools/genometools/issues/793.

Integration of multiple transcript assemblies
Evidential Gene v20160320 [23] was run with de-
fault parameters, in conjunction with CDHIT v4.6.4
[39]. Models selected by the tools were extracted
from the combined GTFs using a mikado utility,
mikado grep, and further clustered into gene loci us-
ing gffread from Cufflinks v2.2.1. StringTie-merge and
Cuffmerge were run with default parameters. Limit-
edly to the experiment regarding the integration of as-
semblies from multiple samples, we used TACO v0.7.
For all these three tools, we used their default iso-
form fraction parameter. The GTFs produced by the
TACO meta-assemblies were reordered using a custom
script (“sort taco assemblies.py”), present in the script
repository.

MAKER runs
We used MAKER v2.31.8 [40], in combination with
Augustus 3.2.2 [41], for all our runs. GFFs and GTFs
were converted to a match/match part format for
MAKER using the internal script of the tool “cuf-
flinks2gff3.pl”. MAKER was run using MPI and de-
fault parameters; the only input files were the different
assemblies produced by the tested tools.

Comparison with reference annotations
All comparisons have been made using Mikado com-
pare v1.0.1. Briefly, Mikado compare creates an inter-
val tree structure of the reference annotation, which
is used to find matches in the vicinity of any given
prediction annotation. All possible matches are then
evaluated in terms of nucleotide, junction and ex-
onic recall and precision; the best one is reported as
the best match for each prediction in a transcript
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map (TMAP) file. After exhausting all possible pre-
dictions, Mikado reports the best match for each ref-
erence transcript in the “reference map” (REFMAP)
file, and general statistics about the run in a statis-
tics file. Mikado compare is capable of detecting fu-
sion genes in the prediction, defined as events where
a prediction transcripts intersects at least one tran-
script per gene from at least two different genes, with
either a junction in common with the transcript, or
an overlap over 10% of the length of the shorter be-
tween the prediction or the reference transcripts. Fu-
sion events are reported using a modified class code,
with a “f,” prepending it. For a full introduction to
the program, we direct the reader to the online docu-
mentation at https://mikado.readthedocs.io/en/

latest/Usage/Compare.html.

Creation of reference and filtered datasets for the
comparisons
For A. thaliana, we filtered the TAIR10 GFF3 to retain
only protein coding genes. For the other three species,
reference GTF files obtained through EnsEMBL were
filtered using the “clean reference.py” python script
present in the “Assemblies” folder of the script reposi-
tory (see the “Script availability” section). The YAML
configuration files used for each species can be found in
the “Biotypes” folder. The retained models constitute
our reference transcriptome for comparisons.

For all our analyses, we deemed a transcript recon-
structable if all of its splicing junctions (if any) and
all its internal bases could be covered by at least one
read. As read coverage typically decreases or disap-
pears at the end of transcripts, we used the mikado
utility “trim” to truncate the terminal UTR exons un-
til their lengths reaches the maximum allowed value
(50 bps for our analysis) or the beginning of the
CDS section is found. BEDTools v. 2.27 beta (commit
6114307 [42]) was then used to calculate the cover-
age of each region. Detected junctions were calculated
using Portcullis, specifically using the BED file pro-
vided at the end of Portcullis junction analysis step.
The “get filtered reference.py” was then used to iden-
tify reconstructable transcripts.

For simulated datasets, we used the BAM file pro-
vided by SPANKI to derive the list of reconstructable
transcripts. For the non-simulated datasets, we used
the union of transcripts found to be reconstructable
from each of the alignment methods. The utility
“mikado util grep” was used to extract the relevant
transcripts from the reference files. Details of the
process can be found in the two snakemakes “com-
pare.snakefile” and “compare simulations.snakefile”
present in the “Snakemake” directory of the script
repository.

Calculation of comparison statistics
“Mikado compare” was used to assess the similarity
of each transcript set against both the complete ref-
erence, and the reference filtered for reconstructable
transcripts. Precision statistics were calculated from
the former, while recall statistics were calculated from
the latter.

Script availability
Scripts and configuration files used for the analyses in
this paper can be accessed at https://github.com/

lucventurini/mikado-analysis.

Customization and further development
Mikado allows to customize its run mode through the
use of detailed configuration files. There are two basic
configuration files: one is dedicated to the scoring sys-
tem, while the latter contains run-specific details. The
scoring file is divided in four different sections, and al-
lows the user to specify which transcripts should be fil-
tered out outright at any of the stages during picking,
and how to prioritise transcripts through a scoring sys-
tem. Details on the metrics, and on how to write a valid
configuration file, can be found in the SI and at the on-
line documentation (http://mikado.readthedocs.
io/en/latest/Algorithms.html). These configura-
tion files are intended to be used across runs, akin to
how standard parameter sets are re-used in ab initio
gene prediction programs, e.g. Augustus. The second
configuration file contains parameters pertaining each
run, such as the position of the input files, the type of
database to be used, or the desired location for out-
put files. As such, they are meant to be customised by
the user for each experiment. Mikado provides a com-
mand, “mikado configure”, which will generate this
configuration file automatically when given basic in-
structions.
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Guigó, R., Bertone, P.: Systematic evaluation of spliced alignment

programs for RNA-seq data. Nature Methods 10(12), 1185–1191

(2013). doi:10.1038/nmeth.2722. arXiv:1011.1669v3

25. Mapleson, D., Venturini, L., Kaithakottil, G., Swarbreck, D.: Efficient

and accurate detection of splice junctions from RNAseq with

Portcullis. bioRxiv (2017)

26. Lunter, G., Goodson, M.: Stampy: A statistical algorithm for sensitive

and fast mapping of Illumina sequence reads. Genome research 21(6),

936–9 (2011). doi:10.1101/gr.111120.110

27. Roberts, A., Pimentel, H., Trapnell, C., Pachter, L.: Identification of

novel transcripts in annotated genomes using RNA-Seq. Bioinformatics

27(17), 2325–2329 (2011). doi:10.1093/bioinformatics/btr355

28. Nakasugi, K., Crowhurst, R., Bally, J., Waterhouse, P.: Combining

Transcriptome Assemblies from Multiple De Novo Assemblers in the

Allo-Tetraploid Plant Nicotiana benthamiana. PLoS ONE 9(3), 91776

(2014). doi:10.1371/journal.pone.0091776

29. Niknafs, Y.S., Pandian, B., Iyer, H.K., Chinnaiyan, A.M., Iyer, M.K.:

TACO produces robust multisample transcriptome assemblies from

RNA-seq. Nature Methods 14(1), 68–70 (2016).

doi:10.1038/nmeth.4078

30. Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B.,

Campbell, M.S., Stein, J.C., Wei, X., Chin, C.-S., Guill, K., Regulski,

M., Kumari, S., Olson, A., Gent, J., Schneider, K.L., Wolfgruber,

T.K., May, M.R., Springer, N.M., Antoniou, E., McCombie, W.R.,

Presting, G.G., McMullen, M., Ross-Ibarra, J., Dawe, R.K., Hastie, A.,

Rank, D.R., Ware, D.: Improved maize reference genome with

single-molecule technologies. Nature (2017). doi:10.1038/nature22971

31. Clavijo, B.J., Venturini, L., Schudoma, C., Accinelli, G.G.,

Kaithakottil, G., Wright, J., Borrill, P., Kettleborough, G., Heavens,

D., Chapman, H., Lipscombe, J., Barker, T., Lu, F.-H., McKenzie, N.,

Raats, D., Ramirez-Gonzalez, R.H., Coince, A., Peel, N.,

Percival-Alwyn, L., Duncan, O., Trösch, J., Yu, G., Bolser, D.M.,
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Figures

Reference
annotation

Mikado

CLASS2

Cufflinks

StringTie

Trinity

Missed geneArtefactual
gene fusionsArtefactual

gene fusion

Figure 1: Example region. The algorithm employed by Mikado is capable of solving complex loci, with
multiple potential assemblies. This locus in A. thaliana is particularly challenging as an ancestral gene in
the locus tandemly duplicated into the current AT5G66610, AT5G66620 and AT5G66630 genes. Due to these
difficulties, no single assembler was capable of reconstructing correctly all loci. For instance, Trinity was the only
method which correctly assembled AT5G66631, but it failed to reconstruct correctly any other transcript. The
reverse was true for Cufflinks, which correctly assembled the three duplicated genes, but completely missed the
monoexonic AT566631. By choosing between different alternative assemblies, Mikado was capable to provide an
evidence-based annotation congruent to the TAIR10 models.

Tables

Table 1: Cumulative z-score for each method aggregating individual z-scores based on base, exon, intron, intron
chain, transcript and gene F1 score (top ranked method in light gray, bottom ranked method in dark gray).

A. thaliana C. elegans D. melanogaster H. sapiens All methods
Method Z-score Rank Z-score Rank Z-score Rank Z-score Rank Z-score Rank
CLASS2 (STAR) 7.627 1 7.309 1 -3.310 6 5.258 1 16.884 1
StringTie (TopHat2) 0.584 4 5.502 3 6.612 2 3.199 3 15.897 2
CLASS2 (TopHat2) -5.542 8 6.698 2 9.314 1 4.998 2 15.738 3
StringTie (STAR) 2.621 3 -2.197 4 1.587 3 2.991 4 5.001 4
Cufflinks (STAR) 2.716 2 -2.306 5 -1.730 5 1.037 5 -0.283 5
Cufflinks (TopHat2) -0.526 5 -5.363 8 -1.504 4 -0.993 6 -8.386 6
Trinity (STAR) -4.120 7 -5.079 7 -4.762 7 -3.417 7 -17.458 7
Trinity (TopHat2) -3.280 6 -4.833 6 -6.206 8 -13.073 8 -27.392 8

Additional Files
Additional file 1 — Supplemental Information

Additional information for the main article, including supplemental figures and tables.

Additional file 2 — Reconstruction statistics for the input methods

This Excel file contains precision, recall and F1 statistics for the various methods tested.
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Figure 2: Schematic representation of the Mikado workflow.
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A. thaliana C. elegans D. melanogaster H. sapiens
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A. thaliana C. elegans D. melanogaster H. sapiens

Figure 3: Performance of Mikado on simulated and real data. a We evaluated the performance of Mikado
using both simulated data and the original real data. The method with the best transcript-level F1 is marked
by a circle. b Number of reconstructed, missed and chimeric genes in each of the assemblies. Notice the lower
level of chimeric events in simulated data.
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Figure 4: Performance of Mikado while varying the Minimum Isoform Fraction parameter.. Preci-
sion/recall plot at the gene and transcript level for CLASS and StringTie at varying minimum isoform fraction
thresholds in A. thaliana, with and without applying Mikado. Dashed lines mark the F1 levels at different pre-
cision and recall values. CLASS sets MIF to 5% by default (red), while StringTie uses a slightly more stringent
default value of 10% (cyan).
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Figure 5: Integrating assemblies coming from multiple samples. a Mikado performs consistently better
than other merging tools. StringTie-merge and TACO are not compatible with Trinity results and as such have
not been included in the comparison. b Rate of recovered, missed, and fused genes for all the assembler and
combiner combinations.
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