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Summary

The heterogeneity of neurodegenerative diseases is a key confound to disease
understanding and treatment development, as study cohorts typically include multiple
phenotypes on distinct disease trajectories. Here we present a new machine learning
technique - Subtype and Stage Inference (SuStaln) - able to uncover data-driven disease
phenotypes with distinct temporal progression patterns, from widely available cross-
sectional patient studies. Results from imaging studies in two neurodegenerative
diseases reveal new subgroups and their distinct trajectories of regional
neurodegeneration. In genetic frontotemporal dementia, SuStaln identifies genotypes
from imaging alone, validating its ability to identify subtypes, and characterises within-
group heterogeneity for the first time. In Alzheimer’s disease, SuStaln uncovers three
subtypes, uniquely revealing their temporal complexity. SuStaln provides fine-grained
patient stratification, which substantially enhances the ability to predict conversion
between diagnostic categories over standard models that ignore subtype (p=7.18x10-4)
or temporal stage (p=3.96x10-5). SuStaln thus offers new promise for enabling disease
subtype discovery and precision medicine.
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Introduction

Neurodegenerative disorders, such as frontotemporal dementia (FTD) and Alzheimer’s
disease (AD), are biologically heterogeneous, producing high variance in in vivo disease
biomarkers, such as volumetric measurements from imaging, protein measurements
from lumbar puncture, or behavioural measurements from psychometrics, which
reduces their utility in disease studies and management. Key contributors to this
heterogeneity are that individuals belong to a range of disease subtypes (giving rise to
phenotypic heterogeneity) and are at different stages of a dynamic disease process
(producing temporal heterogeneity). Previous studies aiming to explain biomarker
variance typically focus on a single aspect of this heterogeneity: phenotypic
heterogeneity at a coarse, typically late, disease stage, or temporal heterogeneity in a
broad population. However, the inability to disentangle the range of subtypes from the
development and progression of each over time limits the biological insight these
techniques can provide, as well as their utility for patient stratification. Constructing a
comprehensive picture separating phenotypic and temporal heterogeneity, i.e.
identifying distinct subtypes and characterising the development and progression of
each remains a major current challenge. However, such a picture would provide novel
insights into underlying disease mechanisms, and enable accurate fine-grained patient
stratification and prognostication, facilitating precision medicine in clinical trials and
healthcare.

Both FTD and AD exhibit substantial pathologic, genetic, and clinical heterogeneity. In
FTD a large proportion of cases (around a third) are inherited on an autosomal
dominant basis, with mutations in progranulin (GRN), microtubule-associated protein
tau (MAPT) and chromosome 9 open reading frame 72 (C90rf72) being the most
common causes. Of the major genetic groups, GRN mutations are associated with TDP-
43 type A pathology, MAPT mutations with tau inclusions, and expansions in C9orf72
with type A or type B TDP-43 pathology!. AD instead has a single pathological
characterisation: the presence of both amyloid plaques and neurofibrillary tangles, and
the proportion of autosomal dominant cases is much smaller, accounting for between
1% and 6% of cases?. The pathological heterogeneity observed in AD consists of
variation in the distribution of neurofibrillary tangles, with 25% of patients having an
atypical distribution of neurofibrillary tangles (described as hippocampal-sparing or
limbic-predominant) on autopsy at the time of death3. Both FTD and AD exhibit a
diverse range of clinical syndromes. FTD has both behavioural and language
presentations, and in genetic FTD the clinical syndromes can further include atypical
parkinsonism and amytrophic lateral sclerosis (ALS). In AD, the major clinical syndrome
is broadly divided into amnestic and rarer non-amnestic variants, with non-amnestic
variants including language variant AD, lopogenic progressive aphasia, visuoperceptive
variant AD, posterior cortical atrophy (PCA), and frontal variant AD*.

Previous studies of neurodegenerative disease heterogeneity have focussed on either
temporal heterogeneity (i.e. subjects appear different at different disease stages) or
phenotypic heterogeneity (i.e. distinct groups of subjects appear different even at the
same disease stage), but rarely both. We refer to these two approaches as stages-only
models, which account for temporal heterogeneity but not phenotypic heterogeneity,
and subtypes-only models, which account for phenotypic heterogeneity but not temporal
heterogeneity. Stages-only models arise for example from regression against disease
stages¢, and data-driven disease progression modelling7-15. Although such models have
provided new understanding of the temporal progression of a range of conditions, the
inherent assumption that all individuals have a single phenotype, i.e. follow
approximately the same trajectory, is a key limitation. At best, this limits the biological
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insight and the accuracy of stratification they can provide, but potentially could also lead
to erroneous conclusions. Subtypes-only models use, for example, clustering (e.g. 16-23)
to identify distinct groups, or group individuals using information independent of the
model, such as genetics (e.g. 24) or post-mortem examination (e.g. 25-28) for models based
on in-vivo imaging. With typical subtypes-only models, the limitation is the inherent
assumption that all subjects are at a common disease stage so that the cohort has no
temporal heterogeneity. This requires a priori staging and selection of individuals,
which is typically crude in practice leaving models that are not specific to subtype
differences. Models of both disease subtype and stage heterogeneity have been
constructed previously for the small proportion of neurodegenerative diseases that are
inherited on an autosomal-dominant basis. For example, Rohrer et al2? investigate
temporal heterogeneity within genetic groups by regressing imaging markers against an
estimated age of onset (from family history). However, such studies lack the ability to
identify novel within-genotype phenotypes, and the temporal resolution of the
recovered genotype progression patterns is limited by inaccuracy of the a-priori staging.

This paper presents Subtype and Stage Inference (SuStaln) (see conceptual overview in
Figure 1): a computational technique that disentangles temporal and phenotypic
heterogeneity to identify population subgroups with common patterns of disease
progression. SuStaln is a new unsupervised machine-learning technique that uniquely
builds on and combines ideas from clustering (e.g. 16-23) and data-driven disease
progression modelling (e.g. 7-10.12), The combination uniquely enables SuStaln to group
individuals with common phenotypes across the range of disease stages. It determines
the number of subtypes that the available data can support, reconstructs the trajectory
of stages within each subtype, and assigns a probability of each subtype and stage to
each subject. These features offer the potential for important new insights into disease
biology, e.g. by revealing the earliest sites of disease and subsequent spreading patterns
and thus supporting mechanistic models (e.g.3031) of disease aetiology without the
confounds of phenotypic heterogeneity. They also provide a mechanism for in vivo fine-
grained stratification at early disease stages, facilitating precision medicine.

Here, we use SuStaln with structural magnetic resonance imaging (MRI) data sets from
cohorts of genetic FTD and AD patients. In each case, SuStaln provides a novel data-
driven taxonomy (set of subtypes and stages), as well as new and detailed pictures of
the progression of neurodegeneration within each of the data-driven subgroups. The
genetic FTD data set provides a validation of SuStaln’s ability to identify subgroups with
distinct temporal progression patterns, as the different genotypes are known to have
distinct patterns of neurodegeneration visible as brain atrophy in MRI 29. SuStaln
identifies subtypes from imaging alone that map closely onto the genotypes and
reconstructs patterns of neurodegeneration that reflect analysis of the individual
genetic groups. It further uncovers two distinct previously unseen within-genotype
phenotypes for carriers of a mutation in the C9orf72 gene, while finding the MAPT and
GRN mutation groups are more homogeneous. In AD, SuStaln identifies three distinct
subtypes and reconstructs their previously unseen temporal progression. In both
neurodegenerative diseases, we demonstrate strong identifiability of the SuStaln
subtypes, i.e. we can assign patients to subtype, which subtypes-only models in the
literature are unable to do; see e.g. 23. Even at very early disease stages, at least a
proportion of individuals show strong alignment with particular subtypes, which
highlights the potential utility in precision medicine. In AD, we show that SuStaln
subtype and stage enhance the ability to predict conversion between diagnostic
categories substantially beyond subtypes-only or stages-only models.
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Results
Subtype progression patterns

We demonstrate SuStaln in two neurodegenerative diseases, genetic FTD and sporadic
AD, using cross-sectional regional brain volumes from MRI data in the GENetic
Frontotemporal dementia Initiative (GENFI) and the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). GENFI investigates biomarker changes in carriers of mutations in
progranulin (GRN), microtubule-associated protein tau (MAPT), and chromosome 9
open reading frame 72 (C9orf72) genes, which cause FTD. GRN and MAPT mutations are
known to be associated with more distinct phenotypes, whereas C9orf72 is a
heterogeneous group. We used GENFI as a test data set with a partially known ground
truth partly for validation, as we expect SuStaln to identify genetic groups as distinct
phenotypic subtypes, but also to investigate the phenotypic and temporal heterogeneity
within genotypes. Specifically, we tested SuStaln on the combined data set from all
mutation carriers in GENFI (Figure 2A), without using knowledge of their genotype, and
compared the resulting subtype progression patterns with (a) participant’s genotype
labels (Figure 2B), and (b) subtype progression patterns obtained from each genetic
type separately (Figure S1). Next, we used SuStaln to identify sporadic AD subtypes
from ADNI and characterise their progression from early to late disease stages (Figure
3). We tested consistency of the SuStaln subtypes in a largely independent dataset -
ADNI 1.5T MRI scans rather than the main 3T data set (Figure 4). In each disease we
cross-validated our results to test the reproducibility of the subtypes and estimated
progression patterns (Figure S2).

SuStaln reveals novel within genotype phenotypes in FTD

Figure 2 shows that SuStaln successfully identifies the progression patterns of the
different genetic groups in GENFI, without prior knowledge of genotype, and further
reveals that the C9orf72 group is phenotypically heterogeneous, finding two
neuroanatomical subtypes. Figure 2A shows the four subtypes that SuStaln finds from
the full set of all mutation carriers in GENFI. We refer to them as the asymmetric frontal
lobe subtype, temporal lobe subtype, frontotemporal lobe subtype, and subcortical
subtype. Figure 2B reveals that GRN mutation carriers are the main contributors to the
asymmetric frontal lobe subtype, MAPT mutation carriers are the main contributors to
the temporal lobe subtype, and C90rf72 mutation carriers are the main contributors to
both the frontotemporal lobe subtype and the subcortical subtype. This suggests that
there are two distinct subtypes in the C9orf72 group. Application of SuStaln to each
genetic type separately supports this finding by demonstrating that the GRN mutation
carriers are best described as a single asymmetric frontal lobe subtype, the MAPT
mutation carriers are best described as a temporal lobe subtype and the C90rf72
mutation carriers are best described as two distinct disease subtypes: a frontotemporal
lobe subtype and a subcortical subtype. SuStaln additionally finds an outlier cluster in
the MAPT group for which the progression pattern has high uncertainty. This high
uncertainty likely prevents the cluster from being detected when applying SuStaln to all
mutation carriers in Figure 2 as this small proportion of outliers can be sufficiently
modelled by the three alternative subtype progression patterns. Figure S1 shows that
the subtype progression patterns for each genetic type are in good agreement with
those found in the full set of all mutation carriers (Figure 2A). Figure S2A shows that the
four subtypes estimated in Figure 2A are reproducible under cross-validation, with a
high average similarity between cross-validation folds of greater than 93% for each
subtype. Altogether these results provide strong evidence that the C9orf72 group are
phenotypically heterogeneous, expressing two distinct subtypes, whereas the GRN and
MAPT groups express more homogeneous phenotypes.
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SuStaln identifies three subtype progression patterns in AD

Figure 3 shows the temporal progression of the three neuroanatomical subtypes that
SuStaln identifies from ADNI, which we term “typical”, “cortical” and “subcortical”.
SuStaln reveals that for the typical subtype atrophy starts in the hippocampus and
amygdala; for the cortical subtype in the nucleus accumbens, insula and cingulate; and
for the subcortical subtype in the pallidum, putamen, nucleus accumbens and caudate.
Figure S2B shows that these three subtypes are reproducible under cross-validation,
giving an average similarity between cross-validation folds of greater than 92% for each
subtype.

AD subtype progression patterns are reproducible in an independent dataset
Figure 4 shows that the three subtypes in Figure 3 are reproducible in a largely
independent dataset consisting of regional brain volumes derived from 1.5T rather than
3T MRI scans. From the 1.5T data, SuStaln broadly replicates the three major clusters
found in the 3T data, again finding a typical, cortical and subcortical subtype. The origin
of atrophy for each subtype is in general agreement with the 3T data: atrophy begins in
the hippocampus and amygdala for the typical subtype, in the insula and cingulate for
the cortical subtype; and in the pallidum, putamen and caudate for the subcortical
subtype. The main difference compared to the 3T data is that the nucleus accumbens is
not indicated as an early region to atrophy in the 1.5T data for the cortical and
subcortical subtypes. SuStaln additionally identifies a small proportion (4%) of outliers
with a parietal subtype in the 1.5T data.

Disease subtyping and staging

We investigated SuStaln’s capability for reliable stratification in each neurodegenerative
disease (Figure 5) to determine the potential for homogeneous cohort identification.
First, we assessed how reliably SuStaln assigns patients to subtypes (Figure 5A and B).
Specifically, in genetic FTD, we tested the consistency of SuStaln subtypes with the
different genetic types in symptomatic mutation carriers. We also compared the
discriminative power of the SuStaln subtypes against a subtypes-only model, i.e.
clustering without progression modelling: a comparable model that accounts for
phenotypic heterogeneity but not temporal heterogeneity (Figure 6 and Table 1).
Second, we assessed the reliability of the SuStaln stages in each disease (Figure 5C and
D) by comparison with clinical diagnostic categories. In ADNI, where clinical follow-up
information is available, we further examined the ability of SuStaln subtypes and stages
to predict relevant outcomes, by determining whether SuStaln subtype and/or stage
modify the risk of conversion between diagnostic categories (Table 2). We compared the
predictive power with a subtypes-only model, and stages-only model, i.e. progression
modelling without clustering: a comparable model that accounts for temporal
heterogeneity but not phenotypic heterogeneity (Table S1).

SuStaln subtypes and stages are identifiable

Figure 5 illustrates the practical utility of SuStaln’s disease subtyping and staging
information for each neurodegenerative disease. Figure 5A shows that the identifiability
of the SuStaln subtypes in genetic FTD increases as the diseases progress, with the
subtypes being strongly identifiable in symptomatic mutation carriers in GENFI. Figure
5B shows that the identifiability of the SuStaln subtypes in AD also increases with
disease progression, with a strong separation of the subtypes in ADNI participants with
an AD diagnosis. The strong identifiability of the AD subtypes that SuStaln achieves by
accounting for temporal heterogeneity is in contrast to previous studies23 that model
phenotypic but not temporal heterogeneity. Moreover, the identifiability is seen even at
early disease stages (MCI), where many subjects cluster around the vertices of the
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triangles. Figures 5C and 5D show that the distribution of SuStaln stages differs between
diagnostic groups in both GENFI and ADN], and provides a good separation of
presymptomatic and symptomatic mutation carriers, and cognitively normal (CN) and
AD.

SuStaln subtypes discriminate FTD genotype

Table 1A shows the classification accuracy obtained using the SuStaln subtypes in
Figure 2 to discriminate the genotype of affected mutation carriers in GENFI. The
SuStaln subtypes give a balanced accuracy of 95% for the two-way classification task of
distinguishing the homogeneous GRN and MAPT carrier groups. For the more
challenging three-way classification task of distinguishing all genotypes in the presence
of heterogeneity, the SuStaln subtypes provide a balanced accuracy of 81%. A high
proportion of the homogeneous GRN and MAPT carrier groups are correctly assigned to
the asymmetric frontal lobe (93% of affected GRN carriers) and temporal lobe subtype
progression patterns (91% of affected MAPT carriers). The heterogeneous C9orf72
carrier group are much more difficult to classify, with a total of 58% of affected C90rf72
carriers being assigned to the frontotemporal lobe and subcortical subtypes. Apart from
heterogeneity, the C90rf72 carriers are also more difficult to classify because the
frontotemporal lobe and subcortical subtype progression patterns are more similar to
the other subtypes; by evaluating the similarity of each pair of subtype progression
patterns (see Methods: Similarity between two subtype progression patterns) we find
that the asymmetric frontal lobe and temporal lobe subtypes have the most distinct
progression patterns of any pair of subtypes; the asymmetric frontal lobe and
frontotemporal lobe subtypes have the most similar progression patterns of any pair of
subtypes.

The assignment to genotype in Table 1A is performed by simply allocating individuals to
their most probable SuStaln subtype and thus to the corresponding genotype. However,
we can improve overall balanced accuracy with alternative choices of decision
thresholds on the subtype probabilities that account for differences in the confidence
with which individuals are assigned to groups (the homogeneous genetic groups are
typically assigned to their corresponding phenotype with much higher confidence than
the C9orf72 group). Table 1C shows the classification accuracy obtained for
discriminating genotype when the probability required for assignment to a particular
subtype is optimised. After increasing the probability required for assignment to the
asymmetric frontal lobe and temporal lobe subtypes corresponding to the homogeneous
GRN and MAPT carrier groups, the overall balanced classification accuracy increases
from 81% to 86%. The classification accuracy for assigning the homogeneous GRN and
MAPT carrier groups to their corresponding phenotype remains high, with 93% of
affected GRN carriers being assigned to the asymmetric frontal lobe subtype and 91% of
affected MAPT carriers being assigned to the temporal lobe subtype. The assignment of
C9orf72 mutation carriers to their genotype improves substantially, with the proportion
of affected C9orf72 mutation carriers being assigned to the frontotemporal lobe and
subcortical subtypes increasing from 58% to 75%. Of note is that the optimised
threshold for assigning affected MAPT carriers to the temporal lobe subtype (probability
of 0.35) is much lower than that for assigning affected GRN carriers to the asymmetric
frontal lobe subtype (probability of 0.65). This is likely due to the presence of outliers in
the MAPT group (Figure S1).

SuStaln out-performs subtypes-only models for discriminating FTD genotype
Table 1B shows the classification accuracy obtained using a subtypes-only model (see
Figure 6), which does not account for temporal heterogeneity, to discriminate the
genotype of affected mutation carriers in GENFI. The SuStaln subtypes out-perform the
subtypes-only model. The subtypes-only model gives a balanced accuracy of 92%
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compared to 95% using SuStaln for the two-way classification task of distinguishing
GRN and MAPT carrier groups; the subtypes-only model gives a balanced accuracy of
65% compared to 81% using SuStaln for the three-way classification task of
distinguishing all genotypes. We further performed the same optimisation of the
probability required to assign individuals to different subtypes for classification of
genotype for the subtypes-only model (shown in Table 1D) as we did for SuStaln (Table
1C). Again the SuStaln subtypes substantially out-perform the subtypes-only model; the
optimised subtypes-only model gives a balanced accuracy of 69% compared to 86%
using SuStaln. In the subtypes-only model the majority of misclassifications arise from
the earlier stage affected GRN and MAPT carriers being assigned to the mild
frontotemporal subtype associated with C9orf72 carriers.

SuStaln subtypes and stages have predictive utility in AD

Table 2 shows that the SuStaln subtypes and stages have predictive utility for the risk of
conversion between diagnostic categories in ADNI. By fitting a Cox Proportional Hazards
model, we found significant effects of baseline SuStaln subtype (p=2.44x10-3) and stage
(p=8.76x10-11) on an individual’s risk of conversion from mild cognitive impairment
(MCI) to AD. Of the SuStaln subtypes, the subcortical subtype is associated with the
lowest risk of conversion, whilst the typical subtype is associated with the highest risk of
conversion. Table S1 shows that SuStaln out-performs subtypes-only and stages-only
models at predicting the risk of conversion between diagnostic categories in ADNI. By
performing likelihood ratio tests comparing SuStaln to subtypes-only and stages-only
we find that SuStaln provides a significantly better fit than both subtypes-only
(p=3.96x10-5) and stages-only (p=7.18x10-%) models. This shows that both the subtypes
and stages estimated by SuStaln provide additional information for estimating the risk
of conversion from MCI to AD.
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Discussion

In this study we introduce SuStaln - a new and powerful tool for data-driven disease
phenotype discovery, providing new insights into disease aetiology, and new power for
patient stratification in clinical trials and healthcare. Using the GENFI dataset we are
able to show that SuStaln can successfully recover known distinct progression patterns
in genetic FTD that correspond to individuals with different genotypes. SuStaln further
reveals within-group heterogeneity for carriers of a mutation in the C90rf72 gene and
characterises the heterogeneity as distinct temporal progression patterns in two
subtypes. This demonstrates the utility of SuStaln for data-driven disease phenotype
discovery, and provides new biological insight into the C90rf72 mutation. Application of
SuStaln to the 3T ADNI dataset provides data-driven support for post-mortem
neuropathological findings, finding three distinct AD subtypes. These three subtypes are
corroborated using a largely independent data set (ADNI 1.5T). The disease subtype
characterisation SuStaln provides goes much further than post-mortem
neuropathological studies328, or other machine-learning techniques?3, by characterising
the temporal trajectory of each subtype, enabling in vivo classification of subjects by
disease stage as well as disease subtype. We demonstrate the utility of SuStaln for in
vivo patient subtyping and staging in both genetic FTD and AD. In genetic FTD, we show
that the SuStaln neuroimaging subtypes can distinguish affected carriers belonging to
different genetic groups with high classification accuracy. In AD, we demonstrate that
the SuStaln subtypes are identifiable, even at early disease stages (MCI), and that the
SuStaln subtypes and stages have added utility for predicting conversion between
clinical diagnoses, beyond models that do not account for phenotypic heterogeneity (in
disease subtype) or temporal heterogeneity (in disease stage).

Subtype progression patterns

New insights into FTD heterogeneity

The asymmetric frontal lobe subtype and temporal lobe subtype in Figure 2 show clear
similarities with previous studies of regional volume loss in GRN and MAPT mutation
carriers respectively, i.e. asymmetric frontotemporoparietal lobe volume loss in GRN
carriers and temporal lobe volume loss in MAPT carriers24. However, SuStaln provides
much greater detail and accuracy by avoiding reliance on crude a priori staging, e.g. via
mean familial age of onset. The frontotemporal lobe subtype and subcortical subtype in
Figure 2 both have features previously associated with C9orf72 mutation carriers, e.g.
widespread symmetric grey matter atrophy and volume loss in the cerebellum24, but
SuStaln assigns these features to two distinct disease subtypes, and further reveals the
temporal progression of each subtype.

Several biological factors may produce the two subtypes observed in C90rf72 mutation
carriers, either individually or in combination. Clinically, whilst there is significant
overlap, patients typically present with either a behavioural variant frontotemporal
dementia or amyotrophic lateral sclerosis as their main phenotype3?, and they can
progress at various rates; genetically, the expansion length is variable and there are
additional genetic modifiers (e.g. TMEM106B and ATXNZ) that alter phenotype33-35; and
pathologically, most cases have either type A or type B TDP-43 pathology32. Whilst
further study is required to determine the biological factors that influence
neuroanatomical phenotype, these findings demonstrate the power of SuStaln in
identifying hitherto unrecognised disease subtypes using clinical data, to generate
hypotheses that can be tested using basic science approaches.

Outliers in the MAPT mutation carrier group
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We also find evidence for the presence of outliers in the MAPT mutation carrier group,
but numbers are too small to determine whether these outliers have a distinct
progression pattern. We ran a post-hoc analysis to check for differences between the
outliers and the general MAPT carrier population. We assigned MAPT mutation carriers
to their most probable subtype of the two SuStaln subtypes from fitting to the MAPT
mutation carrier group alone. Among individuals with significant evidence of MRI
atrophy (SuStaln stage of greater than or equal to 5), four individuals were identified as
outliers and nine as inliers. Although MAPT mutations have been commonly thought to
have a very specific pattern of atrophy affecting the anterior and medial temporal lobes
predominantly, one previous paper has shown that there can be a second pattern of
atrophy in specific mutations, where the lateral temporal lobes are affected more than
the medial regions3¢. Interestingly, the two pairs of individuals who constitute the
outliers in our analysis all have P301L mutations, a mutation that falls into this second
alternate atrophy pattern group in 36. None of the inliers in our analysis have P301L
mutations, or V337M mutations, the other mutation identified in 36 as having an
alternate atrophy pattern. This suggests that SuStaln may be able to identify particular
MAPT mutations that fall into this alternate group, but larger studies will be required to
confirm this.

SuStaln reveals the temporal progression of subtypes

In contrast to previous work, SuStaln reveals the temporal progression of
neurodegenerative subtypes, and is able to determine the optimal grouping into, and
number of, subtypes supported by the data. In genetic FTD, we identify that the three
genotypes are best described as four major phenotypes with distinct temporal
progression patterns, with the GRN and MAPT mutation carrier groups each constituting
a single major phenotype, but the C90rf72 mutation carrier group best being described
as two phenotypes. In AD, we find that there are three subtypes: a typical subtype for
which atrophy starts in the hippocampus and amygdala; a cortical subtype for which
atrophy begins in the nucleus accumbens, insula and cingulate; and a subcortical
subtype for which atrophy originates in the pallidum, putamen, nucleus accumbens and
caudate, with each subtype having its own distinct progression pattern. These temporal
spreading patterns for distinct subtypes offer new biological insight. For example, the
progression pattern of each subtype provides a view of how neurodegeneration spreads
from a distinct origin over the rest of the brain that is uncorrupted by phenotypic
heterogeneity. A key advantage of SuStaln is that it provides a purely data-driven,
hypothesis-free, reconstruction of the progression of neurodegenerative disease
subtypes. However, these observations also have great potential to inform hypothesis-
based mechanistic models3931 of neurodegenerative disease, which explain the temporal
progression of neurodegenerative diseases via various mechanisms of disease
propagation over brain networks. This allows different hypothesised disease
mechanisms to be evaluated on real data. Current mechanistic models implicitly assume
a single disease progression pattern - an assumption often violated in disease data sets,
but much more reasonable if focussed on particular SuStaln subtypes.

Comparison of AD subtype progression patterns with neuropathological studies
Post-mortem histology3 and retrospectively-analysed MRI scans close to the time of
death?8 observe three distinct patterns of atrophy in late-stage AD patients: one
focussed on the temporal lobe that is similar to the late stages of the typical SuStaln
subtype; one affecting predominantly cortical regions cf. late stages of the cortical
SuStaln subtype; and one with stronger subcortical involvement cf. late stages of the
subcortical SuStaln subtype. This gives confidence in the SuStaln subtypes, which
provide much greater information by revealing the progression of each subtype over
time, including the earliest sites of regional volume loss. Moreover, and importantly for
practical utility, the SuStaln subtypes are identifiable in vivo using MRI.

10


https://doi.org/10.1101/236604

bioRxiv preprint doi: https://doi.org/10.1101/236604; this version posted December 21, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Reproducibility of AD subtypes in an independent dataset

The three AD subtypes found in the 3T MRI data set are corroborated by the largely
independent 1.5T MRI data set. However, there are some small differences between the
subtype progression patterns of the three subtypes recovered in each data set. These
differences are predominantly found in how early the nucleus accumbens begins to
atrophy in the different subtypes: across all three subtypes the nucleus accumbens is
found to atrophy earlier in the 3T subtypes than the 1.5T subtypes. A possible
explanation for this is that the volume of the nucleus accumbens can be estimated more
accurately using the higher field strength 3T MRI scans than the 1.5T MRI scans, and
thus atrophy in the nucleus accumbens can be identified from an earlier stage in the 3T
data set compared to the 1.5T data set.

AD outliers with a parietal subtype

In the 1.5T MRI data set we additionally find a small proportion (4%) of outliers with a
parietal subtype. This small subgroup may represent outliers with a posterior cortical
atrophy phenotype: comparing the Alzheimer’s disease Assessment Scale-cognitive
subscale (ADAS-cog) scores between individuals with an AD diagnosis that are assigned
to the parietal subgroup (N=6) and the typical AD subgroup (N=65), we find that the
parietal subgroup have worse performance (Mann-Whitney U test) on certain praxic
(Q6. Ideational Praxis, p=6.1x10-3, z=2.7) and spatially-demanding (Q14. Number
Cancellation, p=4.9x10-3, z=2.8) subtests, but similar performance in memory domains
(Q8. Word Recognition, p=0.81, z=-0.2; Q1. Word Recall, p=0.48, z=0.70). Additionally,
the parietal subgroup is on average 10.3 years younger (Mann-Whitney U test, p=2.8x10-
3,7z=-3.0) than the typical AD subgroup.

Disease subtyping and staging

Identifiability of SuStaln subtypes

The previous study of Zhang et al. 23 also looked at the identifiability of AD subtypes
using a subtypes-only model that does not account for temporal heterogeneity in
disease stage. In contrast to the study of Zhang et al. 23, we observe strong identifiability
of the subtypes in AD patients by accounting for heterogeneity in disease stage. This
identifiability clearly increases with disease progression, with the subtypes being most
identifiable in AD patients. However, even at early stages (MCI), many subjects cluster
around the vertices of the triangles showing strong potential for identifying cohorts
representative of each subtype.

Utility of SuStaln subtypes and stages

SuStaln shows strong capabilities for patient stratification in both genetic FTD and AD.
SuStaln provides high classification accuracy for differentiating the different mutation
types in genetic FTD, and the AD subtypes are clearly identifiable. SuStaln out-performs
a subtypes-only model, giving a balanced classification accuracy of 81% for
distinguishing genotype compared to 65% for the subtypes-only model. This provides
compelling evidence that there is substantial heterogeneity in disease stage within
different phenotypes, and that modelling this disease stage heterogeneity is important
for better patient stratification. This is further demonstrated in AD, in which SuStaln’s
subtypes and stages substantially out-perform subtypes-only and stages-only models for
predicting conversion between diagnostic categories. These early results are highly
promising, particularly given that the particular choice of biomarkers used here (coarse
regional brain volumes) is not optimised for stratification. Inclusion of a wider range of
biomarkers in future will further improve the patient stratification provided by SuStaln.
For example in AD, incorporation of amyloid and neurofibrillary tangle measures, e.g.
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from amyloid and tau positron emission tomography (PET) scans, will enable
stratification of individuals at the very earliest disease stages.

Conclusion

We introduce SuStaln - a new tool to disentangle and characterise the temporal and
phenotypic heterogeneity of neurodegenerative diseases. We use it to uncover novel
within-genotype phenotypes in genetic FTD and to characterise the temporal
heterogeneity of both genetic FTD and AD subtypes with previously unseen detail. We
further demonstrate SuStaln’s potential as a patient stratification tool by showing that
SuStaln provides high classification accuracy for discriminating genotype in genetic FTD,
as well as added utility for predicting conversion between clinical diagnoses in AD.
SuStaln has the potential to make substantial clinical impact as a tool for precision
medicine and is readily applicable to any progressive disease, including other
neurodegenerative diseases, lung diseases and cancer.
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Materials and Methods
Data description

GENFI dataset

We used cross-sectional volumetric MRI data from GENFI (http://www.genfi.org.uk/).
Subjects were included from the second data freeze of GENFI, which in total consisted of
365 participants recruited across 13 centres in the United Kingdom, Canada, Italy,
Netherlands, Sweden, and Portugal. 313 had a usable volumetric T1-weighted MRI scan
for analysis (15 participants did not have a scan and the other participants were
excluded as the scans were of unsuitable quality due to motion, other imaging artefacts,
or pathology unlikely to be attributed to frontotemporal dementia). The 313
participants included 141 non-carriers, 123 presymptomatic carriers, and 49
symptomatic carriers. Of the 123 presymptomatic mutation carriers there were 62 GRN,
39 C9orf72, and 22 MAPT carriers. Of the 49 symptomatic carriers, there were 14 GRN,
24 C90rf72,and 11 MAPT carriers. The acquisition and post-processing procedures for
GENFI have been previously described in 29. Briefly, cortical and subcortical volumes
were generated using a multi-atlas segmentation propagation approach3?, combining
cortical regions of interest to calculate grey matter volumes of the entire cortex,
separated into the frontal, temporal, parietal, occipital, cingulate, and insula cortices. In
addition to regional volumetric measures, we also included a measure of asymmetry,
which is calculated as the absolute value of the difference between the volumes of the
right and left hemispheres, normalised by the total volume of both hemispheres. This
asymmetry measure was log transformed to improve normality.

ADNI dataset

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million,
5-year public-private partnership. For up-to-date information, see http://www.adni-
info.org. Written consent was obtained from all participants, and the study was
approved by the Institutional Review Board at each participating institution.

We downloaded data from Laboratory Of Neuro Imaging (LONI;
http://adni.loni.usc.edu) on 11 May 2016 and constructed two cross-sectional
volumetric MRI datasets for SuStaln model fitting: those with higher (3T) and lower
(1.5T) field strength. The inclusion criteria for the 3T and 1.5T datasets were having
cross-sectional FreeSurfer volumes available that passed overall quality control from
either a 3T (processed using FreeSurfer Version 5.1) or a 1.5T (processed using
FreeSurfer Version 4.3) MRI scan. The 3T dataset consisted of 793 subjects (183
cognitively normal, 86 significant memory concern, 243 early mild cognitive
impairment, 164 late mild cognitive impairment, 117 Alzheimer’s disease), of which 73
were enrolled in ADNI-1, 99 were enrolled in ADNI-GO, and 621 were enrolled in ADNI-
2. The 1.5T dataset consisted of 576 ADNI-1 subjects (180 cognitively normal, 274 late
mild cognitive impairment, 122 Alzheimer’s disease). The 1.5T and 3T datasets are
largely independent: only 59 subjects (14 cognitively normal, 33 late mild cognitive
impairment, 12 Alzheimer’s disease) have both 1.5T and 3T scans. We downloaded
processed cross-sectional FreeSurfer volumes for 1.5T and 3T scans, using FreeSurfer
Versions 4.3 and 5.1, and quality control ratings. We retained only the volumes that
passed overall quality control, and normalised them by regressing against total
intracranial volume. We further downloaded demographic information for covariate
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correction: age, sex, education, and APOE genotype from the ADNIMERGE table. We
downloaded follow-up information to test the association of the SuStaln model subtypes
and stages with longitudinal outcomes, consisting of diagnostic follow-up data and
cognitive test scores from the mini-mental state examination (MMSE). We also
downloaded baseline CSF measurements of AB1-42, which we used to identify a control
population.

Z-scores

We expressed each regional volume measurement as a z-score relative to a control
population: in GENFI we used data from all non-carriers, in ADNI we used amyloid-
negative cognitively normal subjects, defined as those with a CSF AB1-42 measurement
greater than 192 pg/mL38. This gave us a control population of 48 amyloid-negative
cognitively normal subjects for the 3T dataset, and 56 amyloid-negative cognitively
normal subjects for the 1.5T dataset. We used these control populations to determine
whether the effects of age, sex, education, or number of APOE4 alleles (ADNI only) were
significant, and if so to regress them out. We then normalised each dataset relative to its
control population, so that the control population had a mean of 0 and standard
deviation of 1. Because regional brain volumes decrease over time the z-scores become
negative with disease progression, so for simplicity we took the negative value of the z-
scores so that the z-scores would increase as the brain volumes became more abnormal.

Mathematical modelling

SuStaln modelling

We formulate the model underlying SuStaln as groups of subjects with distinct patterns
of biomarker evolution (see Mathematical Model). We refer to a group of subjects with a
particular biomarker progression pattern as a subtype. The biomarker evolution of each
subgroup is described as a series of events, where each event corresponds to a
biomarker reaching a particular z-score compared to a control group. This linear z-score
event-based model is based on the event-based model in 7839, but reformulates the
events so that they represent the continuous linear accumulation of a biomarker from
one z-score to another, rather than an instantaneous switch from a normal to an
abnormal level. The resulting mixture of linear z-score event-based models describes
the biomarker evolution of each subgroup as a piecewise linear trajectory, with a
constant noise level that is derived from a control population (see Mathematical model).
The model assumes a fixed number of subtypes C, for which we estimate the proportion
of subjects fthat belong to each subtype, and the order Sc in which biomarkers reach
each z-score for each subtype c = 1...C. We determine the optimal number of subtypes C
for a particular dataset through 10-fold cross-validation (see Cross-validation).

Mathematical model
The linear z-score event-based model underlying SuStaln is based on a continuous
generalisation of the original event-based model”8, which we describe first.

The event-based model in 7.8 describes disease progression as a series of events, where
each event corresponds to a biomarker transitioning from a normal to an abnormal
level. The occurrence of an event, E;, for biomarker i = 1 ..., is informed by the
measurements x;; of biomarker i in subject j, j = 1...J. The whole dataset X =

{xij |i=1..1,j =1..]}is the set of measurements of each biomarker in each subject.
The most likely ordering of the events is the sequence S that maximises the data
likelihood
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i=k+1
where P(x|E;) and P(x|—E;) are the likelihoods of measurement x given that
biomarker i has or has not become abnormal, respectively. P(k) is the prior likelihood
of being at stage k, at which the events Ey, ..., E; have occurred, and the events
Ek41, -, E; have yet to occur. The model uses a uniform prior, so that P (k) = 1/1 k=
0 ...1. The likelihoods P(x|E;) and P(x|—=E;) are modelled as normal distributions.

For the linear z-score event-based model we use in this work we reformulate the event-
based model in (1) by replacing the instantaneous normal to abnormal events with
events that represent the (much more biologically plausible) linear accumulation of a
biomarker from one z-score to another. The linear z-score event-based model consists of
a set of N z-score events E;,, which correspond to the linear increase of biomarker

i =1..1toaz-score z; = zj; ... Zip,, i.6. each biomarker is associated with its own set of
z-scores, and so N = ; R;. Each biomarker also has an associated maximum z-score,
Zmax» Which it accumulates to at the end of stage N. We consider a continuous time axis,
t, which we choose to go from t = 0 to t = 1 for simplicity (the scaling is arbitrary). At

. . k k+1
each disease stage k, which goes from t = ~a1 tot = azscoreevent E;, occurs. The
biomarkers evolve as time t progresses according to a piecewise linear function g;(t),

where
( Z1
—t, 0<t<tg
tg “1
Z1
Z; — 21
Zq + —(t—tE ), tE <t< tE
tEZZ — thl Z1 Zq Zp
g(©) = e,
R — ZR-1
— = (t- <
ZR—1 + tE — tE (t tEZR—1)' tEZR—l <t< tEZR
ZR ZR-1
Zmax — %R
Zp + ﬁ(t—thR), thR <t<1
ZR
Thus, the times tg, are determined by the position of the z-score event E;;, in the
. . s . k+1
sequence S, so if event E;, occurs in position k in the sequence then ¢z, = Vit

To formulate the model likelihood for the linear z-score event-based model we replace

(1) with
J | N t=% 1
i = [ 11200 ) (P(t)l_[P(xijlt)>6t . 2)
j=1 [k=0 \"*=~+1 i=1
where,

P(xl-j |t) = NormPDF(xij, gi(t), O'L-).
NormPDF(x, u, o) is the normal probability distribution function, with mean g and
standard deviation o, evaluated at x. We assume the prior on the disease time is
uniform, i.e. P(t) = 1, as in the original event-based model.

The SuStaln model is a mixture of linear z-score event-based models, hence we have

C
P(XIM) = )" f. P(XIS.)

c=1
where C is the number of clusters (subtypes), f is the proportion of subjects assigned to
a particular cluster (subtype), and M is the overall SuStaln model.
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Model fitting

We fit the SuStaln model hierarchically by initialising the fitting of the C cluster
(subtype) model from the C-1 cluster model, i.e. we solve the clustering problem
sequentially from C = 1...Cinax, Where Cmay is the maximum number of clusters we would
like to fit, initialising each model using the previous model. To fit the C cluster model
using the C-1 cluster model, we generate C-1 candidate C cluster models by going
through each of the C-1 clusters in turn and finding their optimal split into two clusters;
we then use this two cluster solution together with the other C-2 clusters to initialise the
fitting of the C cluster model. To optimise the C cluster model we use expectation
maximisation, alternating between updating the sequences S, for each cluster and the
fractions f.. Of these C-1 candidate C cluster models, we choose the model with the
highest likelihood as the solution to the clustering problem.

To find the optimal split of a cluster into two clusters, we initialise the assignments of
data points to the two clusters randomly, find the optimal model parameters for these
two data subsets, and use these cluster parameters to initialise the fitting of the two
clusters. We repeat this procedure for 25 different start points (random cluster
assignments) to find the maximum likelihood solution (see Convergence).

To find the optimal model parameters (the sequence S in which the biomarkers reach
each z-score) for a single cluster we perform a greedy procedure whereby we initialise
the sequence S randomly and then we go through each z-score event e in turn and find
its optimal position in the sequence relative to the other z-score events, i.e. we fix the
order of the subsequence T = S\ e and evaluate the likelihood of the sequence in which
the event e is placed at each possible position in the subsequence T. We keep updating
the sequence S until convergence. Again we optimise the single cluster sequence S from
25 different random starting sequences to find the maximum likelihood solution (see
Convergence).

Convergence

At several points in the model fitting we perform a greedy optimisation from a number
of different starting points to find the maximum likelihood (the global optimum across
the local optima reached from each start point) sequence or set of sequences. We find
that the optimisation displays good convergence: all start points converge to a solution
that is within a 1xX10-4% tolerance level (as a percentage of the maximum likelihood),
and within the uncertainty estimated by the uncertainty estimation procedure (see
Uncertainty estimation), meaning that each solution is sufficiently close to the maximum
likelihood solution to be used for initialisation of the uncertainty estimation procedure.

Uncertainty estimation

In addition to estimating the most probable sequence S, for each subtype, we can
determine the relative likelihood of all sequences for each subtype by evaluating the
probability of each possible sequence. This gives us an estimate of the uncertainty in the
ordering S, which we summarise by plotting the probability that each z-score event
appears at each position in the sequence for each subtype. We visualise this probability
(see Figure 2 for example) using different colours to indicate the cumulative probability
each region has reached a particular z-score: the cumulative probability of a region
going from a z-score of 0-sigma to 1-sigma ranges from 0 in white to 1 in red, the
cumulative probability of a region going from a z-score of 1-sigma to 2-sigma ranges
from 0 in red to 1 in magenta, and the cumulative probability of a region going from a z-
score of 2-sigma to 3-sigma ranges from 0 in magenta to 1 in blue. In practise the
number of sequences is too large to evaluate all possible sequences so we use Markov
Chain Monte Carlo (MCMC) sampling to provide an approximation to this uncertainty, as
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in 78. As in 78, we take 1,000,000 MCMC samples initialised from the maximum
likelihood solution, checking that the MCMC trace shows good mixing properties.

Cross-validation

We performed 10-fold cross validation of the SuStaln modelling results by dividing the
data into 10 folds and re-fitting the model to each subset of the data, with one of the
folds retained for testing each time. We report the consistency of the models across folds
by computing the similarity between the progression patterns of two subtypes (see
Similarity between two subtype progression patterns): the model fitted to each fold and
the model fitted to the whole dataset. We evaluated the optimal number of subtypes
using the Cross-Validation Information Criterion (CVIC)49, i.e. by evaluating the
likelihood of each c-subtype model from c = 1...C on the test data for each fold and
choosing the model with the highest out-of-sample likelihood P (X|M), or equivalently
the lowest value of the CVIC, across all folds. The CVIC is defined as CVIC = —2 X

log (P(X|M)), where P(X|M) is the probability of the data for a particular SuStaln
model, M, i.e. P(X|M) = ¥¢_; P(X|S.)P(S,). In cases where the evidence for a more
complex model was not strong (a difference of less than 6 between the CVIC and the
minimum CVIC across models, or equivalently a difference of less than 3 between the
out-of-sample log-likelihood and the minimum out-of-sample log-likelihood across
models), we favoured the less complex model to avoid over-fitting*!.

Similarity between two subtype progression patterns

We measure the similarity of two subtype progression patterns using the Bhattacharyya
coefficient*2 between the position of each biomarker event in the two subtype
progression patterns, averaged across biomarker events and MCMC samples. The
Bhattacharyya coefficient measures the similarity of the distribution of the position of
biomarker events in the subtype sequences and ranges from 0 (maximum dissimilarity)
to 1 (maximum similarity).

Patient subtyping and staging

We assigned subjects to subtypes and stages predicted by the SuStaln model by first
evaluating the likelihood that they belonged to each subtype (by integrating over
disease stage) and choosing the subtype with the highest likelihood, and then evaluating
the probability they belonged to each stage of the most probable subtype and choosing
the stage with the highest likelihood. When evaluating the likelihood we integrated over
the set of MCMC samples to account for the uncertainty in the model parameters, rather
than just evaluating the likelihood at the maximum likelihood parameters. This means
that a patient’s model stage indicates the average position over the posterior
distribution on the sequence given the data.

Comparison to subtypes-only and stages-only models

We compared our SuStaln model to a subtypes-only model and a stages-only model. In
the subtypes-only model, individuals are clustered together into groups based on the
similarity of their biomarker measurements - without accounting for heterogeneity in
disease stage. The stages-only model is a disease progression model where all subjects
are assumed to be samples of a single common progression pattern - without
accounting for heterogeneity in disease subtype. We formulated the subtypes-only and
stages-only models so that they were as close as possible to the SuStaln model, but did
not model heterogeneity in disease stage or disease subtype, respectively. This allows us
to assess the benefit of accounting for this disease stage or subtype heterogeneity in the
SuStaln model. The subtypes-only model consists of a mixture of Gaussians with
unknown mean and variance. The subtypes-only model is fitted to symptomatic
mutation carriers for GENFI, and Alzheimer’s disease subjects for ADNI, so that the
subtypes correspond to a single diagnostic group. As done for the SuStaln model, we
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evaluated the optimal number of clusters (subtypes) using the Cross-Validation
Information Criterion0. The stages-only model is a special case of the SuStaln model
outlined in Mathematical Model, where only a single subtype is modelled.

Classification of mutation groups using subtypes

We performed two experiments to compare the ability of subtypes obtained from
SuStaln and the subtypes-only model to classify mutation carriers in GENFI into their
different mutation groups. In the first experiment we simply assigned individuals to
their most probable subtype and compared their assigned subtype with their mutation
group. In the second experiment we optimised the probability required for assignment
to each of the subtypes. This accounts for different amounts of heterogeneity within the
different subtypes. In both experiments the classification results are reported as out-of-
sample accuracies obtained through 10-fold cross-validation.

Experiments

SuStaln modelling of GENFI dataset

We applied SuStaln modelling to various subgroups of the GENFI dataset: all 172
mutation carriers, 76 GRN mutation carriers, 63 C9orf72 mutation carriers, 33 MAPT
mutation carriers. For all the mutation carriers we fitted SuStaln models of up to a
maximum of 5 subtypes. For the GRN, C90rf72 and MAPT mutation carriers we fitted
SuStaln models of up to a maximum of 3 subtypes. We chose the z-score events for the
GENFI dataset to include z-scores of 1, 2, and 3 for each volume, but excluded z-score
events where fewer than 10 mutation carriers had values that were greater than that z-
score. The maximum z-score, which is reached at the final stage of the progression, was
set to be 2, 3, or 5 depending on whether the maximum z-score event was 1, 2 or 3
respectively. We maintained the same z-score events across each of the GENFI
experiments.

SuStaln modelling of ADNI dataset

We applied SuStaln modelling to the ADNI dataset, for which we tested SuStaln models
of up to a maximum of 5 subtypes. As for GENFI, we chose the z-score events to include
z-scores of 1, 2, or 3 for each volume, but excluded z-score events where fewer than 10
subjects had values that were greater than that z-score. Again the maximum z-score,
which is reached at the final stage of the progression, was set to be 2, 3, or 5 depending
on whether the maximum z-score event was 1, 2 or 3 respectively.
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Figures and Tables

Figure 1

UNDERLYING MODEL APPLICATION: subtyping and staging new patients
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Conceptual overview of SuStaln. The Underlying Model panel (top left) considers a
patient cohort to consist of an unknown set of disease subtypes. The input data (Input
Data panel, bottom left), which can be entirely cross-sectional, contains snapshots of
biomarker measurements from each subject with unknown subtype and unknown
temporal stage. SuStaln recovers the set of disease subtypes and their temporal
progression (as shown in Output panel, bottom right) via simultaneous clustering and
disease progression modelling. Given a new snapshot, SuStaln can estimate the
probability the subject belongs to each subtype and stage, by comparing the snapshot
with the reconstruction (as shown in Application panel, top right). In this figure two
hypothetical disease subtypes are modelled, labelled I and 1], and the biomarkers are
regional brain volumes, but SuStaln is readily applicable to any scalar disease
biomarker. The colour of each region indicates the amount of pathology in that region,
ranging from white (no pathology) to red to magenta to blue (maximum pathology).
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Figure 2
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SuStaln modelling of genetic frontotemporal dementia using GENFI data. Subfigure A
shows the progression pattern of each of four subtypes that SuStaln identifies. Each
progression pattern consists of a sequence of stages in which regional brain volumes in
mutation carriers (symptomatic and presymptomatic) reach different z-scores relative
to non-carriers. Intuitively (for a more precise description see Methods: Uncertainty
Estimation), at each stage the colour in each region indicates the level of severity of
volume loss: white is unaffected; red is mildly affected (z-score of 1); magenta is
moderately affected (z-score of 2); and blue is severely affected (z-score of 3 or more).
The circle labelled ‘A’ indicates the asymmetry of the atrophy pattern (absolute value of
the difference in volume between the left and right hemispheres divided by the total
volume of the left and right hemispheres) at each stage for each subtype. CVS is the
model cross-validation similarity (see Methods: Similarity between two progression
patterns): the average similarity of the subtype progression patterns across cross-
validation folds, which ranges from 0 (no similarity) to 1 (maximum similarity). f is the
proportion of participants estimated to belong to each subtype. Subfigure B shows the
contribution of each genotype to each of the SuStaln subtypes. This is calculated as the
probability an individual has a particular genotype given that they belong to a particular
subtype.
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Figure 3
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SuStaln modelling of sporadic Alzheimer’s disease using ADNI data. Each row shows the
progression pattern of each of the three subtypes identified by SuStaln. Diagrams as in
Figure 2, but the z-scores are measured relative to amyloid-negative (cerebrospinal fluid
(CSF) AP1-42>192pg/ml) cognitively normal subjects, i.e. cognitively normal subjects
with no evidence of amyloid pathology on CSF. The cerebellum was not included as a
region in the Alzheimer’s disease analysis and so is shaded in dark grey.
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Figure 4
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Reproducibility of the SuStaln subtypes in Figure 3 in a largely independent Alzheimer’s
disease dataset (only 59 subjects are in both the 576 subject dataset used to generate
this figure and the 793 subject dataset used in Figure 3) consisting of those with
regional brain volume measurements from 1.5T MRI scans, rather than 3T MRI scans.
Diagrams are as in Figure 3, with each row showing the progression pattern of each of
the subtypes identified by SuStaln. SuStaln modelling identifies three major subtypes: a
typical, a cortical and a subcortical subtype, which are in good agreement with the three
subtypes in Figure 3, as well as an additional very small outlier group (only 4%) with a
subtype we term “parietal”. This small subgroup may represent outliers with a posterior
cortical atrophy phenotype.
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Figure 5
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SuStaln subtyping and staging of genetic frontotemporal dementia and Alzheimer’s
disease. Subfigures A and B show the identifiability of the disease subtypes estimated by
SuStaln for genetic frontotemporal dementia, and Alzheimer’s disease. Each scatter plot
visualises the probability that each individual belongs to each of the SuStaln subtypes
estimated for A. genetic frontotemporal dementia (as shown in Figure 2A), and B.
Alzheimer’s disease (as shown in Figure 3). In the triangle scatter plots, each of the
corners corresponds to a probability of 1 of belonging to that subtype, and 0 for the
other subtypes; the centre point of the triangle corresponds to a probability of 1/3 of
belonging to each subtype. Subfigures C and D show the probability subjects from each
of the diagnostic groups belong to each of the SuStaln stages for C. genetic
frontotemporal dementia and D. Alzheimer’s disease.
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Subtypes-only model for GENFI; not accounting for disease stage heterogeneity. Brain
diagrams as in Figure 2, but here each diagram represents a different subtype, which we
refer to as severe frontal, severe temporal, and mild frontotemporal. There is no notion
of disease stage in the subtypes-only model.
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Table 1

A. SuStaln (overall balanced accuracy 81%)

Asymmetric | Temporal Fronto- Subcortical
frontal temporal
GRN 93% (13) 0% (0) 0% (0) 7% (1)
MAPT 9% (1) 91% (10) 0% (0) 0% (0)
C9orf72 17% (4) 25% (6) 38% (9) 21% (5)

B. Subtypes-only model (overall balanced accuracy 65%)

Severe Frontal | Severe Mild Fronto-
Temporal temporal

GRN 64% (9) 0% (0) 36% (5)
MAPT 9% (1) 64% (7) 27% (3)
C9orf72 17% (4) 17% (4) 67% (16)
C. Optimised SuStaln (overall balanced accuracy 86%)

Asymmetric Temporal Fronto- Subcortical

frontal (threshold p>0.35) | temporal

(threshold p>0.65)
GRN 93% (13) 0% (0) 0% (0) 7% (1)
MAPT 9% (1) 91% (10) 0% (0) 0% (0)
C9orf72 4% (1) 21% (5) 42% (10) 33% (8)

D. Optimised subtypes-only model (overall balanced accuracy 69%)

Severe Frontal Severe Temporal Mild Fronto-
(threshold p>0.99) (threshold p>0.99) | temporal
GRN 57% (8) 0% (0) 43% (6)
MAPT 9% (1) 64% (7) 27% (3)
C9orf72 4% (1) 8% (2) 88% (21)

Ability of subtypes to distinguish between different genetic types in symptomatic
mutation carriers in GENFI using (A) SuStaln subtypes (see Figure 2A) and (B) subtypes
obtained from a subtypes-only model that accounts for heterogeneity in disease subtype
but not disease stage (see Figure 6). Subfigures (C) and (D) show equivalent results
when optimising SuStaln and the subtypes-only model to distinguish genotype (see
Methods: Classification of mutation groups using subtypes). Each entry is the percentage
(number) of participants of a particular genetic type assigned to that subtype. The
highlighted entries indicate the percentage (number) of participants assigned to the
subtype that corresponds to the correct genetic type: GRN in blue, MAPT in red, and
C90rf72 in yellow. The results show that SuStaln provides much better discrimination of
the different genetic types than the subtypes-only model, demonstrating the added
utility of a model that accounts for heterogeneity in disease stage.
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Table 2

Model Model Age Sex Education | APOE4
subtype stage
S-C-T 1.57** 1.13% 0.98 0.98 0.93~ 1.821
S-C 1.76~ 1.16% 0.95* 1.03 0.92 1.53*
C-T 1.48~ 1.11¢ 0.98 0.87 0.97 1.841
S-T 2.11* 1.13% 1.02 1.13 0.90* 2.13%

Utility of SuStaln subtype and stage for predicting risk of conversion from mild cognitive
impairment to Alzheimer’s disease. Each row shows Hazards ratios for a different Cox
Proportional Hazards model for predicting the risk of conversion from mild cognitive
impairment to Alzheimer’s disease using ADNI data. Each column shows the estimated
hazard ratio for each variable. Each hazards ratio tells you how the risk of conversion

changes for each unit increase of a particular variable: a ratio of 1 means no

modification of the risk, a ratio greater than 1 means there is an increase of the risk, and
aratio less than 1 means there is a reduction of the risk. For the first model (S-C-T) it is
assumed that the hazard ratio increases multiplicatively from the Subcortical subtype
(S) to the Cortical subtype (C) to the Typical subtype (T), i.e. the S-C-T model predicts
that each SuStaln subtype has a hazards ratio 1.57 times that of the previous subtype
(i.e. the cortical group have a 1.57 times greater risk of conversion than the subcortical
group, the typical group have a 1.57 times greater risk of conversion than the cortical
group, and the typical group have a 2.46 (1.572) times greater risk of conversion than
the subcortical group). In the remaining models only two groups are compared at a time
to demonstrate that the results are similar without this assumption, although the
statistical power is reduced. Statistical significance is indicated as: ~=p <0.1,*=p <
0.05,**=p <0.01, + =p <1x103. This result demonstrates the added utility of both
disease subtypes and stages obtained from SuStaln for predicting conversion between
mild cognitive impairment and Alzheimer’s disease, with both subtype and stage

modifying the risk of conversion.
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