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Abstract 
Machine learning-based analysis of human functional magnetic resonance imaging 
(fMRI) patterns has enabled the visualization of perceptual content. However, it has 
been limited to the reconstruction with low-level image bases (Miyawaki et al., 2008; 
Wen et al., 2016) or to the matching to exemplars (Naselaris et al., 2009; Nishimoto et 
al., 2011). Recent work showed that visual cortical activity can be decoded (translated) 
into hierarchical features of a deep neural network (DNN) for the same input image, 
providing a way to make use of the information from hierarchical visual features 
(Horikawa & Kamitani, 2017). Here, we present a novel image reconstruction method, 
in which the pixel values of an image are optimized to make its DNN features similar to 
those decoded from human brain activity at multiple layers. We found that the 
generated images resembled the stimulus images (both natural images and artificial 
shapes) and the subjective visual content during imagery. While our model was solely 
trained with natural images, our method successfully generalized the reconstruction to 
artificial shapes, indicating that our model indeed ‘reconstructs’ or ‘generates’ images 
from brain activity, not simply matches to exemplars. A natural image prior introduced 
by another deep neural network effectively rendered semantically meaningful details to 
reconstructions by constraining reconstructed images to be similar to natural images. 
Furthermore, human judgment of reconstructions suggests the effectiveness of 
combining multiple DNN layers to enhance visual quality of generated images. The 
results suggest that hierarchical visual information in the brain can be effectively 
combined to reconstruct perceptual and subjective images. 
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Whereas it has long been thought that the externalization or visualization of states of the 
mind is a challenging goal in neuroscience, brain decoding using machine learning 
analysis of fMRI activity nowadays has enabled the visualization of perceptual content. 
Although sophisticated decoding and encoding models have been developed to render 
human brain activity into images or movies, the methods were essentially limited to the 
image reconstruction with low-level image bases (Miyawaki et al., 2008; Wen et al., 
2016) or to the matching to exemplar images or movies (Naselaris et al., 2009; 
Nishimoto et al., 2011), failing to combine visual features of multiple hierarchical levels. 
Furthermore, while several recent attempts introduced deep neural networks (DNNs) 
into visual image reconstructions, they also did not fully utilize hierarchical information 
to reconstruct visual images (Seeliger et al., 2017, Han et al., 2017). 

The recent success of deep neural networks provides technical innovations to study the 
hierarchical visual processing in computational neuroscience (Yamins & DiCarlo, 2016). 
Our recent study used DNN visual features as a proxy for the hierarchical neural 
representations of the human visual system, and found that a brain activity pattern 
measured by fMRI can be decoded (translated) into DNN features given the same input 
(Horikawa & Kamitani, 2017). The finding revealed a homology between the 
hierarchical representations of the brain and the DNN, providing a new opportunity to 
make use of the information from hierarchical visual features. 

Here, we present a novel approach, named deep image reconstruction, to visualize 
perceptual content from human brain activity. We combined the DNN feature decoding 
from fMRI signals and the methods for image generation recently developed in the 
machine learning field (Mahendran & Vedaldi, 2015) (Fig. 1). The reconstruction 
algorithm starts from a random image and iteratively optimize the pixel values so that 
the DNN features of the input image become similar to those decoded from brain 
activity across multiple DNN layers. The resulting optimized image is taken as the 
reconstruction from the brain activity. We also introduced a deep generator network 
(DGN) (Nguyen et al., 2016) as a prior to constrain reconstructed images to be similar 
to natural images. 

We trained the decoders that predict the DNN features of viewed images from fMRI 
activity patterns, following the procedures of Horikawa and Kamitani (2017). Our 
experiments consisted of four distinct types of image presentation sessions: training 
natural-image sessions, test natural-image sessions, geometric-shape sessions, and 
alphabetical-letter sessions, and one mental-imagery session. The decoders were trained 
using fMRI data measured while subjects were viewing natural images. The trained 
decoders were then used to predict DNN features from independent test fMRI data 
collected during the presentation of novel natural images and artificial shapes and 
during mental imagery (Supplementary Fig. 1). Then, the decoded features were 
forwarded to the reconstruction algorithm. 
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Figure 1 | Deep image reconstruction. Overview of deep image reconstruction is 

shown. The pixels’ values of the input image are optimized so that the DNN features of 

the image are similar to those decoded from fMRI activity. A deep generator network 

(DGN) is optionally combined with the DNN to produce natural-looking images, in 

which optimization is performed at the input space of the DGN. 
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The reconstructions of the natural images from three subjects are shown in Fig. 2a (see 
Supplementary Fig. 2 for more examples). These reconstructions obtained with the 
DGN capture the objects’ dominant structures in the images. Furthermore, fine 
structures reflecting semantic aspects like faces, eyes, and texture patterns were also 
generated in several images. This is not likely a coincidence because such fine 
structures were robustly observed through the optimization processes (Supplementary 
Fig. 3, and Supplementary Movie 11). The robustness of the analyses was also 
confirmed with a previously published dataset (Horikawa & Kamitani, 2017), 
reproducing quantitatively similar reconstructions with those in the present study 
(Supplementary Fig. 4). 
 
To investigate the effect of the natural image prior, we compared the reconstructions 
generated with and without the DGN (Fig. 2b). While the reconstructions obtained 
without the DGN also successfully reconstructed rough silhouettes of dominant objects, 
they did not show semantically meaningful appearances (Supplementary Fig. 5). 
Evaluations by pixel-wise spatial correlation and by human judgment both showed 
almost comparative accuracy for reconstructions with and without the DGN (by 
pixel-wise spatial correlation, with and without the DGN, 76.1% and 79.7%; by human 
judgment, with and without the DGN, 99.1%, 96.5%). However, reconstruction 
accuracy evaluated by pixel-wise spatial correlation showed slightly higher accuracy 
with reconstructions without the DGN than those with the DGN (two-sided signed-rank 
test, p < 0.01), whereas the opposite was observed with evaluations by human judgment 
(two-sided signed-rank test, p < 0.01). These results suggest the utility of the DGN that 
enhances perceptual similarity of reconstructed images to target images by rendering 
semantically meaningful details to reconstructions. 

To characterize the “deep” nature of our method, the effectiveness of combining 
multiple DNN layers was tested using human rating. For each of the 50 test natural 
images, reconstructed images were generated with a variable number of multiple layers 
(Fig. 2d, and Supplementary Fig. 6; DNN1 only, DNN1–2, DNN1–3, …, DNN1–8). An 
independent rater was presented with an original image and a pair of reconstructed 
images, both from the same original image but generated with different combinations of 
multiple layers, and indicated which of the reconstructed images looked more similar to 
the original image. The subjective assessment showed higher rates of choice with 
reconstructions from a larger number of DNN layers (Fig. 2e), suggesting the 
improvement of reconstruction quality by combining multiple levels of visual features. 

  

                                                
1 https://www.youtube.com/user/ATRDNI 
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Figure 2 | Seen natural image reconstructions. Images with black and gray frames 
show presented and reconstructed images, respectively (reconstructed from VC activity). 
a, Reconstructions utilizing the DGN (using DNN1–8). Three reconstructed images 
correspond to reconstructions from three subjects. b, Reconstructions with and without 
the DGN (DNN1–8). The first, second, and third rows show presented images, 
reconstructions with and without the DGN, respectively. c, Reconstruction quality of 
seen natural images (error bars, 95% confidence interval (C.I.) across samples; three 
subjects pooled; chance level, 50%). d, Reconstructions using different combinations of 
DNN layers (without the DGN). e, Subjective assessment of reconstructions from 
different combinations of DNN layers (error bars, 95% C.I. across samples). 
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To confirm that our method was not restricted within the specific image domain used 
for the model training, we tested whether it is possible to generalize the reconstruction 
to artificial shapes. This was challenging because both the DNN and our decoding 
models were solely trained on natural images. The reconstructions for colored artificial 
shapes are shown in Fig. 3a (also see Supplementary Fig. 7 for more examples). The 
results show that artificial shapes were successfully reconstructed with moderate 
accuracy (Fig. 3b; 69.4% by pixel-wise spatial correlation, 92.3% by human judgment), 
indicating that our model indeed ‘reconstructs’ or ‘generates’ images from brain activity, 
not simply matches to exemplars. 

To assess how the shapes and colors of the stimulus images were reconstructed, we 
separately evaluated the reconstruction quality of each of shape and color by comparing 
reconstructed images of the same colors and shapes. Analyses with different visual 
areas show different tendency of reconstruction quality for shapes and colors (Fig. 3c 
and Supplementary Fig. 8). Evaluations by human judgment suggest that shapes were 
better reconstructed from early visual areas, whereas colors were better reconstructed 
from mid-level visual areas, V4 (Fig. 3d; ANOVA, interaction, between task type 
(shape vs. color) and brain areas, p < 0.05), while the interaction effect was marginal 
from evaluations by pixel-wise spatial correlation (p > 0.05). These contrasting patterns 
further support the success of shape and color reconstructions, and indicate that our 
method can be a useful tool to characterize information content encoded in activity 
patterns in individual brain areas by visualization. 

We also tested reconstructions of alphabetical letters to obtain a performance 
benchmark (Fig. 3e, and Supplementary Fig. 9). The reconstructed letters were arranged 
in a word: “ATR” and “CNS”. The evaluations of reconstruction quality showed high 
accuracy for these letters (Fig. 3f; 95.9% by pixel-wise spatial correlation, 99.6% by 
human judgment). The successful reconstructions of alphabetical letters demonstrate 
that our method expands possible states of visualizations by advancing the resolution of 
reconstructions from previous studies (Miyawaki et al., 2008; Schoenmakers et al., 
2013). 
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Figure 3 | Seen artificial shape reconstructions. Images with black and gray frames 
show presented and reconstructed images (DNN 1–8, without the DGN). a, 
Reconstructions for seen colored artificial shapes (VC activity). b, Reconstruction 
quality of colored artificial shapes. c, Reconstructions of colored artificial shapes 
obtained from multiple visual areas. d, Reconstruction quality of shape and colors for 
different visual areas. e, Reconstructions of alphabetical letters. f, Reconstruction 
quality for alphabetical letters. For b, d, f, error bars indicate 95% C.I. across samples 
(three subjects pooled; chance level, 50%). 
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Finally, to explore the possibility of visually reconstructing subjective content, we 
performed an experiment in which participants were asked to produce mental imagery 
of natural images and artificial images shown prior to the task session. The 
reconstructions from brain activity due to mental imagery are shown in Fig. 4 (see 
Supplementary Fig.10 for more examples). While reconstruction quality varied across 
subjects and images, rudimentary reconstructions were obtained for some of the 
artificial shapes (Fig. 4a). In contrast, imagined natural images were not well 
reconstructed, possibly because of the difficulty to imagine complex natural images (Fig. 
4b). While evaluations of reconstructed artificial shapes by pixel-wise spatial 
correlation failed to show high accuracy (Fig. 4c; 51.9%), this may be due to the 
possible disagreements of positions, colors and luminance between target and 
reconstructed images. Meanwhile, evaluations by human judgment showed higher than 
the chance accuracy, suggesting that imagined shapes were recognizable from 
reconstructed images (Fig. 4c; 83.2%). Furthermore, separate evaluations for color and 
shape reconstructions of artificial images suggest that shape rather than color highly 
contributed to the high proportion of correct answers by human raters (Fig. 4d; color, 
64.8%; shape, 87.0%; two-sided signed-rank test, p < 0.01). Taken together, these 
results provide evidence for the feasibility of visualizing imagined content from brain 
activity patterns. 

We have presented a novel approach to reconstruct perceptual and mental content from 
human brain activity combining visual features from the multiple layers of a DNN. We 
successfully reconstructed viewed natural images, especially when combined with a 
DGN. Reconstruction of artificial shapes was also successful, even though the 
reconstruction models used were trained only on natural images. The same method was 
applied to imagery to reveal rudimentary reconstructions of mental content. Our 
approach could provide a unique window into our internal world by translating brain 
activity into images via hierarchical visual features.  

One interesting observation that can be obtained from the present results is that the 
luminance contrast of a reconstruction was often reversed (e.g., stained glass images in 
Fig. 2a), presumably because of the lack of (absolute) luminance information in fMRI 
signals even in the early visual areas (Haynes et al., 2004). Additional analyses revealed 
that feature values of filters with high luminance contrast in the earliest DNN layers 
(conv1_1 in VGG19) were better decoded when they were converted to absolute values 
(Supplementary Figure 11), demonstrating a clear discrepancy of fMRI and raw DNN 
signals. While this may limit potential for reconstructions from fMRI signals, the 
ambiguity might be resolved by modeling DNNs to fill gaps between DNNs and fMRI. 
Alternatively, emphasizing high-level visual information in hierarchical visual features 
may help to resolve the ambiguity of luminance by incorporating information about 
semantic context. 
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Figure 4 | Imagery reconstructions. Images with black and gray frames show target 
and reconstructed images (VC activity, DNN 1–8, without the DGN). a, 
Reconstructions for imagined artificial shapes. Images with high/low accuracy 
evaluated by human judgment are shown. b, Reconstructions for imagined natural 
images. c, Reconstruction quality of imagery reconstructions (error bars, 95% C.I. 
across samples; three subjects pooled; chance level, 50%). d, Reconstruction quality of 
artificial shapes separately evaluated for color and shape by human judgment (error bars, 
95% C.I. across samples; three subjects pooled; chance level, 50%). 
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Methods  

Subjects. Three healthy subjects with normal or corrected-to-normal vision participated 
in our experiments: Subject 1 (male, age 33), Subject 2 (male, age 23) and Subject 3 
(female age 23). This sample size was chosen based on previous fMRI studies with 
similar experimental designs (Miyawaki et al., 2008; Horikawa & Kamitani, 2017). All 
subjects provided written informed consent for participation in the experiments, and the 
study protocol was approved by the Ethics Committee of ATR. 

Visual stimuli. Visual stimuli consisted of natural images, artificial geometric shapes, 
and alphabetical letters. The natural images were identical to those used in Horikawa & 
Kamitani (2017), which were originally collected from an online image database 
ImageNet (Deng et al., 2009; 2011, fall release). Those images were cropped to the 
center and were resized to 500 × 500 pixels. The artificial geometric shapes consisted of 
a total of 40 combinations of 5 shapes and 8 colors (red, green, blue, cyan, magenta, 
yellow, white, and black), in which the shapes were identical to those used in Miyawaki 
et al. (2008) and the luminance were matched across colors except for white and black. 
The alphabetical letter images consisted of 10 black letters, including “A”, “C”, “E”, “I”, 
“N”, “O”, “R”, “S”, “T”, and “U”. 

Experimental design. We conducted two types of experiments: image presentation 
experiments and an imagery experiment. The image presentation experiments consisted 
of four distinct session types, in which different variants of visual images were 
presented (natural images, geometric shapes, and alphabetical letters). All visual stimuli 
were rear-projected onto a screen in an fMRI scanner bore using a luminance-calibrated 
liquid crystal display projector. To minimize head movements during fMRI scanning, 
subjects were required to fix their heads using a custom-molded bite-bar made for each 
subject. Data from each subject were collected over multiple scanning sessions 
spanning approximately 10 months. On each experiment day, one consecutive session 
was conducted for a maximum of 2 hours. Subjects were given adequate time for rest 
between runs (every 5–8 min) and were allowed to take a break or stop the experiment 
at any time.  

Image presentation experiment. The image presentation experiments consisted of four 
distinct types of sessions: training natural-image sessions, test natural image sessions, 
geometric-shape sessions, and alphabetical-letter sessions. Each session consisted of 24, 
24, 20, and 12 separate runs, respectively. For those four sessions, each run comprised 
55, 55, 44, and 11 stimulus blocks consisting of 50, 50, 40, and 10 blocks with different 
images and 5, 5, 4, and 1 randomly interspersed repetition blocks where the same image 
as in the previous block was presented (7 min 58 s for the training and test 
natural-image sessions, 6 min 30 s for the geometric-shape sessions, and 5 min 2 s for 
the alphabetical-letter sessions, for each run). Each stimulus block was 8 s (training 
natural-images, test natural-images, and geometric-shapes) or 12 s (alphabetical-letters) 
long followed by either no (training natural-images, test natural-images, and 
geometric-shapes) or a 12 s (alphabetical-letters) rest period. Images were presented at 
the center of the display with a central fixation spot and were flashed at 2 Hz (12 × 12 
and 0.3 × 0.3 degrees of visual angle for visual images and fixation spot, respectively). 
The color of the fixation spot changed from white to red for 0.5 s before each stimulus 
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block began to indicate the onset of the block. Additional 32- and 6-s rest periods were 
added to the beginning and end of each run, respectively. Subjects were requested to 
maintain steady fixation throughout each run and performed a one-back repetition 
detection task on the images, responding with a button press for each repetition to 
maintain their attention on the presented images (mean task performance across three 
subjects; sensitivity 0.9820; specificity 0.9995; pooled across sessions). In one set of 
training natural-image session, a total of 1,200 images were presented only once. This 
set of training natural-image session was repeated five times. In the test natural-image 
session, the geometric-shape session, and the alphabetical-letter session, 50, 40, and 10 
images were presented 24, 20, and 12 times each, respectively. The presentation order 
of the images was randomized across runs. 

Imagery experiment. In the imagery experiment, subjects were required to visually 
imagine (remember) one of 25 images that were selected from those presented in the 
test natural image session and the geometric shape session of the image presentation 
experiment (10 natural images and 15 geometric shapes). Prior to the experiment, 
subjects were asked to relate words and visual images so that they can remember visual 
images from word cues. The imagery experiment consisted of 20 separate runs and each 
run contained 26 blocks (7 min 34 s for each run). The 26 blocks consisted of 25 
imagery trials and a fixation trial, in which subjects were required to maintained steady 
fixation without any imagery. Each imagery block consisted of a 4-s cue period, an 8-s 
imagery period, a 3-s evaluation period and a 1-s rest period. Additional 32- and 6-s rest 
periods were added to the beginning and end of each run, respectively. During the rest 
periods, a white fixation spot was presented at the center of the display. The color of the 
fixation spot changed from white to red for 0.5 s to indicate the onset of the blocks from 
0.8 s before each cue period began. During the cue period, words specifying the visual 
images to be imagined were visually presented around the center of the display (1 target 
and 25 distractors). The position of each word was randomly changed across blocks to 
avoid contamination of cue-specific effects on the fMRI response during imagery 
periods. The word corresponding to the image to be imagined was presented in red 
(target) and the other words were presented in black (distractors). Subjects were 
required to start imagining a target image immediately after cue words disappeared. The 
imagery period was followed by a 3-s evaluation period, in which the word 
corresponding to the target image and a scale bar was presented to allow the subjects to 
evaluate the correctness and vividness of their mental imagery on a five-point scale 
(very vivid, fairly vivid, rather vivid, not vivid, cannot correctly recognize the target) by 
pressing the left and right buttons of a button box that was placed in their right hand to 
change the score from its random initial score. As an aid for remembering the 
associations between words and images, subjects were able to see word and visual 
image pairs during every inter-run-rest period by controlling buttons so they can 
confirm their own memory. 

MRI acquisition. fMRI data were collected using 3.0-Tesla Siemens MAGNETOM 
Verio scanner located at the Kokoro Research Center, Kyoto University. An interleaved 
T2*-weighted gradient-EPI scan was performed to acquire functional images covering 
the entire brain (TR, 2,000 ms; TE, 43 ms; flip angle, 80 deg; FOV, 192 × 192 mm; 
voxel size, 2 × 2 × 2 mm; slice gap, 0 mm; number of slices, 76; multiband factor, 4). 
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T2-weighted turbo spin echo images were scanned to acquire high-resolution 
anatomical images of the same slices used for the EPI (TR, 11,000 ms; TE, 59 ms; flip 
angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 2.0 mm). T1-weighted 
magnetization-prepared rapid acquisition gradient-echo (MP-RAGE) fine-structural 
images of the entire head were also acquired (TR, 2,250 ms; TE, 3.06 ms; TI, 900 ms; 
flip angle, 9 deg, FOV, 256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm). 

MRI data preprocessing. The first 8-second scans of each run were discarded to avoid 
MRI scanner instability. We then subjected the acquired fMRI data to three-dimensional 
motion correction with SPM5 (http://www.fil.ion.ucl.ac.uk/spm). Those data were then 
coregistered to the within-session high-resolution anatomical images of the same slices 
used for EPI and subsequently to the whole-head high-resolution anatomical images. 
The coregistered data were then re-interpolated as 2 × 2 × 2 mm voxels. 

Data samples were created by first regressing out nuisance parameters, including a 
linear trend, and temporal components proportional to six motion parameters calculated 
by the SPM5 motion correction procedure, from each voxel amplitude for each run. 
After that, voxel amplitudes were normalized relative to the mean amplitude of the 
initial 24-s rest period of each run, and were despiked to reduce extreme values (beyond 
±3#$ for each run). The voxel amplitudes were then averaged within each 8-s 
(training natural image-sessions), 12-s (test natural-image, geometric-shape, and 
alphabetical-letter sessions) stimulus block (four or six volumes) or 16-s imagery block 
(eight volumes, imagery experiment), after shifting the data by 4 s (two volumes) to 
compensate for hemodynamic delays. 

Region of interest (ROI). V1, V2, V3, and V4 were delineated by the standard 
retinotopy experiment (Engel et al., 1994; Sereno et al., 1995). The lateral occipital 
complex (LOC), the fusiform face area (FFA), and the parahippocampal place area 
(PPA) were identified using conventional functional localizers (Kanwisher et al., 1997; 
Kourtzi and Kanwisher, 2000; Epstein & Kanwisher, 1998). See Supplementary 
Methods for details. A contiguous region covering LOC, FFA, and PPA was manually 
delineated on the flattened cortical surfaces, and the region was defined as the “higher 
visual cortex” (HVC). Voxels overlapping with V1–V3 were excluded from the HVC. 
Voxels from V1–V4 and the HVC were combined to define the “visual cortex” (VC). In 
the regression analysis, voxels showing the highest correlation coefficient with the 
target variable in the training image session were selected to decode each feature (with a 
maximum of 500 voxels). 

Deep neural network features. We used the Caffe implementation (Jia et al., 2014) of 
the VGG19 deep neural network (DNN) model (Simonyan & Zisserman, 2015; 
available from https://github.com/BVLC/caffe/wiki/Model-Zoo). All visual images 
were resized to 224 × 224 pixels to compute outputs by the VGG19 model. The VGG19 
model consisted of a total of sixteen convolutional layers and three fully connected 
layers. The outputs from the units in each of these 19 layers were treated as a vector in 
the following decoding and reconstruction analysis. In this study, we named five groups 
of convolutional layers as DNN1–5 (DNN1: conv1_1, and conv1_2; DNN2: conv2_1, 
and conv2_2; DNN3: conv3_1, conv3_2, conv3_3, and conv3_4; DNN4: conv4_1, 
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conv4_2, conv4_3, and conv4_4; and DNN5: conv5_1, conv5_2, conv5_3, and 
conv5_4), and three fully-connected layers as DNN6–8 (DNN6: fc6; DNN7: fc7; and 
DNN8: fc8). Basically, we used the original architecture of the VGG19 model to 
compute feature unit activities, but for analyses with fMRI data from the imagery 
experiment, we changed the DNN architecture so that max pooling layers were replaced 
by average pooling layers, and ReLU activation function were replaced by leaky ReLU 
activation function with a negative slope of 0.2 (see Simonyan & Zisserman (2015) for 
the details of the original DNN architecture).  

DNN feature decoding analysis. We constructed multivoxel decoders to decode the 
DNN feature vector of a seen image from fMRI activity patterns from training 
natural-image sessions (training dataset) using a set of linear regression models. In this 
study, we used the sparse linear regression algorithm (SLR; Bishop, 2006), which can 
automatically select important voxels for decoding, by introducing sparsity into weight 
estimation through Bayesian parameters estimation with the automatic relevance 
determination (ARD) prior (see Horikawa & Kamitani, 2017 for detailed description). 
The decoders were trained to decode the values of individual units in the feature vectors 
of all DNN layers using the training dataset (one decoder for one DNN feature unit), 
and applied to test datasets. For details of the general procedure of feature decoding, see 
Horikawa & Kamitani (2017). 

For test datasets, fMRI samples corresponding to the same stimulus or imagery were 
averaged across trials to increase the signal-to-noise ratio of the fMRI signals. To 
compensate for a possible difference of the signal-to-noise ratio between training and 
test samples, the decoded features of individual DNN layers were normalized by 
multiplying a single scalar so that the norm of the decoded vectors of individual DNN 
layers matched with the mean norm of the true DNN feature vectors computed from 
independent 10,000 natural images. Then, this norm-corrected vector was subsequently 
provided to the reconstruction algorithm. See Supplementary Methods for details of the 
norm-correction procedure. 

Reconstruction from a single DNN layer. Given a DNN feature vector decoded from 
brain activity, an image was generated by solving the following optimization problem 
(Mahendran & Vedaldi, 2014). 

%∗ = 	 argmin
%

1
2

12
(4)(%) − 72

(4) 8
9:

2;<

 

													= argmin
%

1
2
=(4) % − >(4)

8

8
															 

where % ∈ ℝ88A×88A×C is a vector whose elements are pixel values of an image, and 
%∗ is the reconstructed image. 12

(4):	ℝ88A×88A×C → ℝ is the feature extraction function 
of the i-th DNN feature in the l-th layer. Namely, 12

(4)(%) is the output value from the 
i-th DNN unit in the l-th layer for the image %. F4 is the number of the units in the l-th 
layer. 72

(4) is the value decoded from brain activity for the i-th feature in the l-th layer. 
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For simplicity, the same cost function was rewritten with a vector function in the second 
line. =(4):	ℝ88A×88A×C → ℝ9: is the function whose i-th element is 12

(4) and >(4) ∈
ℝ9: is the vector whose i-th element is 72

(4). 

The above cost function was minimized by limited-memory BFGS (L-BFGS; Le et al., 
2011; Liu & Nocedal, 1989; Gatys et al., 2016) or by gradient descent with momentum 
(Qian, 1999). L-BFGS was used unless otherwise stated. The obtained solution was 
taken as the reconstructed image from brain activity. See Supplementary Methods for 
details of optimization methods. 

Reconstruction from multiple DNN layers. To combine DNN features from multiple 
layers, we took a weighted sum of the cost functions for individual DNN layers, which 
is given by  

%∗ = argmin
%

1
2

G4 =(4) % − >(4)
8

8

4∈H

	 

where I is a set of DNN layers and G4 is a parameter that determines the contribution 
of the l-th layer. We set G4 to 1 >(4)

8

8
 for balancing the contributions of individual 

DNN layers. Again, this cost function was minimized by the L-BFGS algorithm. The 
DNN layers included in I were combined. In the main analyses, we combined all 
convolutional layers (DNN1–5) and fully connected layers (DNN6–8) unless otherwise 
stated. 

Natural image prior. To improve the “naturalness” of reconstructed images, we 
modified the reconstruction algorithm by introducing a constraint. To constrain resultant 
images from all possible pixel contrast patterns, we reduced the degrees of freedom by 
introducing a generator network derived by the generative adversarial network 
algorithm (GAN; Goodfellow et al., 2014), which have been recently shown to work 
well to capture a latent space that explains natural images (Radford et al., 2015). In the 
GAN framework, a set of two neural networks, which are called a generator and a 
discriminator, are trained. The generator is a function to map from a latent space to the 
data space (i.e. pixel space), and the discriminator is a classifier that predicts whether a 
given image is a sample from real natural images or an output from the generator. The 
discriminator is trained to increase its predictive power, and the generator is trained to 
decrease it. We considered constraining our reconstructed image to be in the subspace 
that consists of the images a generator trained to produce natural images could produce 
(Nguyen et al., 2016; Dosovitskiy & Brox, 2016). This is expressed by 

J∗ = argmin
J

1
2

G4 =(4) K(J) − >(4)
8

8

4∈H

 

and 

%∗ = K J∗ . 
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K is the generator as the mapping function from the latent space to the image space, 
which we called a deep generator network (DGN). In our reconstruction analysis, we 
used a pre-trained DGN which was provided by Dosovitskiy & Brox (2016; available 
from https://github.com/dosovits/caffe-fr-chairs; trained model for fc7). 

The above cost function for the reconstruction with respect to J was minimized by 
gradient descent with momentum. We used the zero vector as the initial value. To keep 
J being within a moderate range, we restricted the range of each element of J 
following the previous study (Dosovitskiy & Brox, 2016).  

Reconstruction quality evaluation. Reconstruction quality was evaluated by either 
objective or subjective assessment. For the objective assessment, we performed a 
pairwise similarity comparison analysis, in which a reconstructed image was compared 
with two candidate images (its original image and a randomly selected image) and was 
tested whether pixel-wise spatial correlation coefficient (Pearson correlation) was 
higher for the original image. For the subjective assessment, we conducted a behavioral 
experiment with another group of 9 raters (4 females and 5 males, aged between 19 and 
36 years). On each trial of the experiment, the raters viewed a display presenting a 
reconstructed image (at the bottom) and two candidate images (at the top; its original 
image and a randomly selected image), and were asked to select the image similar to the 
one presented at the bottom from the two candidates. Each trial continued until the 
raters made a response. For both types of assessments, the proportion of trials, in which 
the original image was selected as more similar one was calculated as a quality measure. 
In both objective and subjective assessments, each reconstructed image was tested with 
all pairs of the images among the same types of images (natural-images, 
geometric-shapes, and alphabetical-letters for images from the image presentation 
sessions, and natural-images and geometric-shapes for images from the imagery 
session ; e.g., for the test natural-images, one of the 50 reconstructions was tested with 
49 pairs consisted of one original image and another image from the rest of 49, resulting 
in 50 × 49 = 2,450 comparisons).  

To compare the reconstruction quality across different combinations of DNN layers, we 
also conducted another behavioral experiment with another group of 4 raters (1 females 
and 3 males, aged between 23 and 36 years). On each trial of the experiment, the raters 
viewed a display presenting one original image (at the top) and two reconstructed 
images for the same original image obtained from different combinations of DNN 
layers (at the bottom), and were asked to judge which of the two reconstructed images 
was better. This pairwise comparison was conducted for all pairs of the combinations of 
DNN layers (28 pairs) and for all stimulus images presented in the test natural-image 
session (50 samples). Each trial continued until the raters made a response. We 
calculated the proportion of trials, in which the reconstructed image obtained from a 
specific combination of DNN layers is judged as better, then this value was treated as 
the winning percentage of this combination of DNN layers. 

These assessments were performed for each set of reconstructions from different 
subjects and datasets individually (e.g., test natural-images from Subject 1). For the 
subjective assessments, one set of reconstructed images was tested with at least three 
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raters. The evaluation results from different raters were averaged within the same set of 
reconstructions and treated in the same manner to the evaluation results from the 
objective assessment. 

Statistics. We used signed-rank tests to examine differences of assessed reconstruction 
quality from different conditions. ANOVA was used to examine interaction effects 
between task types and brain areas. 
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Supplementary Information is available in the online version of the paper. 
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Figure legends 

 
Figure 1 | Deep image reconstruction. Overview of deep image reconstruction is 
shown. The pixels’ values of the input image are optimized so that the DNN features of 
the image are similar to those decoded from fMRI activity. A deep generator network 
(DGN) is optionally combined with the DNN to produce natural-looking images, in 
which optimization is performed at the input space of the DGN. 
 
Figure 2 | Seen natural image reconstructions. Images with black and gray frames 
show presented and reconstructed images, respectively (reconstructed from VC activity). 
a, Reconstructions utilizing the DGN (using DNN1–8). Three reconstructed images 
correspond to reconstructions from three subjects. b, Reconstructions with and without 
the DGN (DNN1–8). The first, second, and third rows show presented images, 
reconstructions with and without the DGN, respectively. c, Reconstruction quality of 
seen natural images (error bars, 95% confidence interval (C.I.) across samples; three 
subjects pooled; chance level, 50%). d, Reconstructions using different combinations of 
DNN layers (without the DGN). e, Subjective assessment of reconstructions from 
different combinations of DNN layers (error bars, 95% C.I. across samples). 
 
Figure 3 | Seen artificial shape reconstructions. Images with black and gray frames 
show presented and reconstructed images (DNN 1–8, without the DGN). a, 
Reconstructions for seen colored artificial shapes (VC activity). b, Reconstruction 
quality of colored artificial shapes. c, Reconstructions of colored artificial shapes 
obtained from multiple visual areas. d, Reconstruction quality of shape and colors for 
different visual areas. e, Reconstructions of alphabetical letters. f, Reconstruction 
quality for alphabetical letters. For b, d, f, error bars indicate 95% C.I. across samples 
(three subjects pooled; chance level, 50%). 
 
Figure 4 | Imagery reconstructions. Images with black and gray frames show target 
and reconstructed images (VC activity, DNN 1–8, without the DGN). a, 
Reconstructions for imagined artificial shapes. Images with high/low accuracy 
evaluated by human judgment are shown. b, Reconstructions for imagined natural 
images. c, Reconstruction quality of imagery reconstructions (error bars, 95% C.I. 
across samples; three subjects pooled; chance level, 50%). d, Reconstruction quality of 
artificial shapes separately evaluated for color and shape by human judgment (error bars, 
95% C.I. across samples; three subjects pooled; chance level, 50%). 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 30, 2017. ; https://doi.org/10.1101/240317doi: bioRxiv preprint 

https://doi.org/10.1101/240317
http://creativecommons.org/licenses/by/4.0/


 

 

1 

Supplementary Information for 
 

Deep image reconstruction from human brain 

activity 
 
Guohua Shen 1,*, Tomoyasu Horikawa1,*, Kei Majima1,2,*, and 
Yukiyasu Kamitani1,2 
1ATR Computational Neuroscience Laboratories, Kyoto 619-0288, Japan 
2Kyoto University, Kyoto 606-8501, Japan  

*These authors contributed equally to this work. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 30, 2017. ; https://doi.org/10.1101/240317doi: bioRxiv preprint 

https://doi.org/10.1101/240317
http://creativecommons.org/licenses/by/4.0/


 

 

2 

Table of contents 

Supplementary Methods 
1. Localizer experiments 
2. MRI acquisition for localizer experiments 
3. MRI data preprocessing for data from localizer experiments 
4. ROI selection 
5. Norm correction for decoded DNN feature vectors 
6. Optimization methods for reconstruction 
 
 
Supplementary Figures 
1. DNN feature decoding accuracy  
2. Other examples of natural image reconstructions obtained with the DGN 
3. Reconstructions through optimization processes 
4. Reconstructions from the generic object decoding dataset 
5. Other examples of reconstructions using different combinations of DNN layers 
6. Other examples of natural image reconstructions obtained without the DGN 
7. All examples of artificial colored shape reconstructions 
8. All examples of artificial colored shapes reconstructions obtained from different 
visual areas (Subject 1) 
9. All examples of alphabetical-letter reconstructions 
10. Other examples of imagery image reconstructions 
11. Feature decoding accuracy of raw and absolute features  

 

Notes for Supplementary Movies 
 
Supplementary References 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 30, 2017. ; https://doi.org/10.1101/240317doi: bioRxiv preprint 

https://doi.org/10.1101/240317
http://creativecommons.org/licenses/by/4.0/


 

 

3 

Supplementary Methods 

Localizer experiments. The retinotopy and functional localizer experiments were 
conducted to identify the seven visual areas analyzed in the study. 

The retinotopy experiments were conducted according to the conventional protocol 
(Engel et al., 1994; Sereno et al., 1995). We used a rotating wedge and an expanding 
ring covered in a flickering checkerboard. The data were used to delineate the borders 
between visual cortical areas, and to identify the retinotopic map (V1–V4) on the 
flattened cortical surfaces of individual subjects. 

We also performed functional localizer experiments to identify the lateral occipital 
complex (LOC) (Kourtzi and Kanwisher, 2000), fusiform face area (FFA) (Kanwisher 
et al., 1997), and parahippocampal place area (PPA) (Epstein & Kanwisher, 1998) for 
each individual subject. The localizer experiment consisted of 8 runs and each run 
contained 16 stimulus blocks. In this experiment, intact or scrambled images (12 × 12 
degrees of visual angle) from face, object, house, and scene categories were presented at 
the center of the display. Each of eight stimulus types (four categories × two conditions) 
was presented twice per run. Each stimulus block consisted of a 15-second intact or 
scrambled stimulus presentation. The intact and scrambled stimulus blocks were 
presented successively (the order of the intact and scrambled stimulus blocks was 
random), followed by a 15-second rest period consisting of a uniform gray background. 
Extra 33-second and 6-second rest periods were added to the beginning and end of each 
run, respectively. In each stimulus block, 20 different images of the same type were 
presented for 0.3 seconds, followed by an intervening blank screen of 0.4 seconds. 

MRI acquisition for localizer experiments. fMRI data were collected using 3.0-Tesla 
Siemens MAGNETOM Verio scanner located at the Kokoro Research Center, Kyoto 
University. An interleaved T2*-weighted gradient-EPI scan was performed to acquire 
functional images covering the entire occipital lobe (retinotopy experiment: TR, 2,000 
ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice 
gap, 0 mm; number of slices, 30) or the entire brain (localizer experiment: TR, 3,000 
ms; TE, 30 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 3 × 3 × 3 mm; slice 
gap, 0 mm; number of slices, 46). T2-weighted turbo spin echo images were scanned to 
acquire high-resolution anatomical images of the same slices used for the EPI 
(retinotopy experiment: TR, 6,000 ms; TE, 57 ms; flip angle, 160 deg; FOV, 192 × 192 
mm; voxel size, 0.75 × 0.75 × 3.0 mm; localizer experiments: TR, 7,020 ms; TE, 69 ms; 
flip angle, 160 deg; FOV, 192 × 192 mm; voxel size, 0.75 × 0.75 × 3.0 mm).  

MRI data preprocessing for data from localizer experiments. The first 8-second 
scans for experiments with TR = 2 seconds (retinotopy experiments) and 9-second scans 
for experiments with TR = 3 seconds (localizer experiment) of each run were discarded 
to avoid MRI scanner instability. We then subjected the acquired fMRI data to 
three-dimensional motion correction with SPM5 (http://www.fil.ion.ucl.ac.uk/spm). 
Those data were then coregistered to the within-session high-resolution anatomical 
images of the same slices used for EPI and subsequently to the whole-head 
high-resolution anatomical images. The coregistered data were then re-interpolated as 2 
× 2 × 2 mm voxels. 
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Region of interest (ROI) selection. V1, V2, V3, and V4 were identified using the data 
from the retinotopy experiments (Engel et al., 1994; Sereno et al., 1995). LOC, FFA, 
and PPA were identified using the data from the functional localizer experiments 
(Kanwisher et al., 1997; Kourtzi and Kanwisher, 2000; Epstein & Kanwisher, 1998). 
The data from the retinotopy experiment were transformed into Talairach space and the 
visual cortical borders were delineated on the flattened cortical surfaces using 
BrainVoyager QX (http://www.brainvoyager.com)(RRID: SCR_013057). The 
coordinates of voxels around the gray-white matter boundary in V1–V4 were identified 
and transformed back into the original coordinates of the EPI images. The localizer 
experiment data were analyzed using SPM5. The voxels showing significantly higher 
activation in response to intact object, face, or scene images compared with that for 
scrambled images (t-test, uncorrected p < 0.05 or 0.01) were identified, and defined as 
LOC, FFA, and PPA respectively. A contiguous region covering LOC, FFA, and PPA 
was manually delineated on the flattened cortical surfaces, and the region was defined 
as the “higher visual cortex” (HVC). Voxels from V1–V4 and the HVC were combined 
to define the “visual cortex” (VC). In the regression analysis, voxels showing the 
highest correlation coefficient with the target variable in the training image session were 
selected to decode each feature (with a maximum of 500 voxels). 

Norm correction for decoded DNN feature vectors. Before reconstruction analysis, 
the DNN feature vector decoded from a given fMRI sample was multiplied by a scalar 
to match its norm to the mean across natural images.  

!"#$%&'#( = !"&*
+, - . ,
-(!"&*)

. 

!"&* is a decoded feature vector, and !"#$%&'#( is the feature vector after the 
norm-correction. , is a vector whose elements are pixel values of an image, and . is 
the feature extraction function whose input is an image vector and output is the DNN 
feature vector for the input image. - is a function whose definition is given later, and 
+, - . ,  denotes the expectation of - . ,  with respect to , across natural 
images. The expectation was calculated using 10,000 natural images randomly selected 
from the ImageNet database (Deng et al., 2009; 2011, fall release). 

When the input of the function - is a DNN feature vector from a convolutional layer, 
we first calculate the standard deviation of the feature value across the units in each 
channel, then the mean of this standard deviation across all channels is treated as the 
output value of -. When the input is a DNN feature vector from a fully-connected layer, 
the standard deviation of the feature value across the units in the layer is treated as the 
output value of -.  

If - is the vector norm, our norm-correction exactly matches the given decoded vector 
with the mean norm across natural images. In this study, we adopted the definition of - 
explained above because our norm-correction procedure led to slightly better 
reconstructions compared to the exact norm matching in analysis at early stages with 
independent preliminary data. 
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Optimization methods for reconstruction. The cost function for our reconstruction 
was minimized by limited-memory BFGS (L-BFGS; Le et al., 2011; Liu & Nocedal, 
1989; Gatys et al., 2016) or by gradient descent with momentum (Qian, 1999). Each of 
those algorithms was explained in this section. 

Given a DNN feature vector decoded from brain activity, an image was generated by 
solving the following optimization problem (Mahendran & Vedaldi, 2014). 

,∗ = 	 argmin
,

1
2

<=
(')(,) − ?=

(') @
AB

=CD

 

													= argmin
,

1
2
E(') , − !(')

@

@
															 

where , ∈ ℝ@@H×@@H×J is a vector whose elements are pixel values of an image, and 
,∗ is the reconstructed image. <=

('):	ℝ@@H×@@H×J → ℝ is the feature extraction function 
of the i-th CNN feature in the l-th layer. Namely, <=

(')(,) is the output value from the 
i-th DNN unit in the l-th layer for the image ,. M' is the number of the units in the l-th 
layer. ?=

(') is the value decoded from brain activity for the i-th feature in the l-th layer. 
For simplicity, the same cost function was rewritten with a vector function in the second 
line. E('):	ℝ@@H×@@H×J → ℝAB is the function whose i-th element is <=

(') and !(') ∈
ℝAB is the vector whose i-th element is ?=

('). 

In each iteration of the L-BFGS algorithm, the image was updated by 

,NOD = ,N − PNQN 

where ,N and ,NOD are the vectors before and after the t-th update. QN is the gradient 
of the cost function at ,N. PN is an approximation of the inverse hessian of the cost 
function at ,N.  

For each update, this gradient was calculated by the backpropagation algorithm as 
follows. Here, we define the backpropagated error RS

(T) by 

RS
(T) =

UV

UWS
(T). 

where V is the cost function to be minimized and WS
(T) is the input to the j-th unit in 

the m-th layer in the forward path. Using the chain rule, RS
(T) can be calculated as a 

weighted sum of the backpropagated errors for the units in the (m + 1)-th layer. 

RS
(T) = -(T)X(WS

(T)) YZS
(TOD)RZ

(TOD)	

A[\]

ZCD
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where the function -(T)X is the derivative of the activation function between the m-th 
layer and (m + 1)-th layer. YZS

(TOD) is the weight between the j-th unit in the m-th layer 
and the k-th unit in the (m + 1)-th layer. 

The backpropagated error for a unit in last layer is given by  

RS
(') = WS

(') − ?S
' , 

and the gradient QN is obtained as RD
(_), R@

(_),⋯ , R@@H×@@H×J
(_) a

, which can be 
numerically calculated using the chain rule. 

The calculation of the inverse hessian with a size of M'	×	M' is intractable because it 
requires huge memory. To avoid the memory problem, the inverse hessian was 
approximated based on the history of QN and ,N following the update rule of the 
L-BFGS algorithm (Liu & Nocedal, 1989). Each image was generated by 200 iterations 
and the spatially uniform image with the mean RGB contrast values of natural images 
was used as the initial image. 

Also, the cost function was minimized by gradient descent with momentum (Qian, 
1999). In each iteration of the algorithm, the image was updated by  

,NOD = ,N + cN	, 

cNOD = dcN − eNQN. 

,N and ,NOD are the vectors before and after the t-th update. QN is the gradient of the 
cost function at ,N, and cN is a weighted average of the gradients from step 0 to t. The 
next update is determined based on the history of QN to prevent ,N from oscillating 
around shallow local minima of the cost function. d is a parameter which is called the 
decay rate, and we set this to 0.9. eN is the learning rate. Each image was generated by 
200 iterations and eN was linearly reduced from 2.0 to 0.0. As the initial image for 
optimization, the spatially uniform image with the mean RGB contrast values of natural 
images was used.  

For each update, the gradient QN was calculated by the backpropagation algorithm with 
the procedure same as the L-BFGS algorithm. 
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Supplementary Figure 1 | DNN feature decoding accuracy. DNN feature decoding 
accuracy obtained from VC activity was evaluated by the correlation coefficient 
between true and decoded feature values of each feature unit following the same 
procedure in Horikawa & Kamitani (2017). The evaluation was individually performed 
for each of three types of seen images (natural image, colored shapes, and alphabet 
letter) and each of two types imagery images (natural image and colored shape). 
Correlation coefficients were averaged across units in each DNN layer. Mean 
correlation coefficients are shown for each types of layers (error bars, 95% CI across 
units).  
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obtained from VC activity was evaluated by the correlation coefficient between true and decoded 

feature values of each feature unit following the same procedure in Horikawa & Kamitani 

(2017). The evaluation was individually performed for each of three types of seen images 

(natural image, colored shapes, and alphabet letter) and each of two types imagery images 

(natural image and colored shape). Correlation coefficients were averaged across units in each 

DNN layer. Mean correlation coefficients are shown for each types of layers (error bars, 95% CI 

across units). 
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Supplementary Figure 2 | Other examples of natural image reconstructions obtained 
with the DGN. Images with black and gray frames show presented and reconstructed 
images, respectively (reconstructed from VC activity using all DNN layers). Three 
reconstructed images correspond to reconstructions from three subjects.  

  

Supplementary Figure 2

Supplementary Figure 2 | Other examples of natural image reconstructions obtained with the 

DGN. Images with black and gray frames show presented and reconstructed images, respectively 

(reconstructed from VC activity using all DNN layers). Three reconstructed images correspond 

to reconstructions from three subjects. 
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Supplementary Figure 3 | Reconstructions through optimization processes. 
Reconstructed images obtained through the optimization processes are shown 
(reconstructed from VC activity of Subject 1 using all DNN layers and the DGN). 
Images with black and gray frames show presented and reconstructed images, 
respectively.  

Supplementary Figure 3

Supplementary Figure 3 | Reconstructions through optimization processes. Reconstructed images 

obtained through the optimization processes are shown (reconstructed from VC activity of 

Subject 1 using all DNN layers and the DGN). Images with black and gray frames show 

presented and reconstructed images, respectively.
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Supplementary Figure 4 | Reconstructions from the generic object decoding dataset. 
The same reconstruction analysis was performed with a previously published dataset 
(Horikawa & Kamitnai, 2017; reconstructed from VC activity using all DNN layers and 
the DGN). See Horikawa & Kamitani (2017) for details of the data. Images with black 
and gray frames show presented and reconstructed images, respectively . Five 
reconstructed images correspond to reconstructions from five subjects.  
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reconstruction anaylsis was performed with a previously published dataset (Horikawa & 

Kamitnai, 2017; reconstructed from VC activity using all DNN layers and the DGN). See 

Horikawa & Kamitani (2017) for details of the data. Images with black and gray frames show 

presented and reconstructed images, respectively . Five reconstructed images correspond to 

reconstructions from five subjects. 
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Supplementary Figure 5 | Other examples of natural image reconstructions obtained 
without the DGN. Images with black and gray frames show presented and reconstructed 
images, respectively (reconstructed from VC activity using all DNN layers). Three 
reconstructed images correspond to reconstructions from three subjects.  

Supplementary Figure 5

Supplementary Figure 5 | Other examples of natural image reconstructions obtained without the 

DGN. Images with black and gray frames show presented and reconstructed images, respectively 

(reconstructed from VC activity using all DNN layers). Three reconstructed images correspond 

to reconstructions from three subjects. 
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Supplementary Figure 6 | Reconstructions using different combinations of DNN 
layers (without the DGN). Images with black and gray frames show presented and 
reconstructed images, respectively (reconstructed from VC activity).  

 

Supplementary Figure 6 | Reconstructions using different combinations of DNN layers (without 
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respectively (reconstructed from VC activity). 
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Supplementary Figure 7 | All examples of artificial colored shape reconstructions. 
Images with black and gray frames show presented and reconstructed images, 
respectively (reconstructed from VC activity). Three reconstructed images correspond 
to reconstructions from three subjects.  

  

Supplementary Figure 7

Supplementary Figure 7 | All examples of artificial colored shape reconstructions. Images with 

black and gray frames show presented and reconstructed images, respectively (reconstructed 

from VC activity). Three reconstructed images correspond to reconstructions from three 

subjects.
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Supplementary Figure 8 | All examples of artificial colored shapes reconstructions 
obtained from different visual areas (Subject 1). Images with black and gray frames 
show presented and reconstructed images, respectively (reconstructed from VC activity 
using all DNN layers without the DGN).  

Supplementary Figure 8
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Supplementary Figure 8 | All examples of artificial colored shapes reconstructions obtained from 

different visual areas (Subject 1). Images with black and gray frames show presented and 

reconstructed images, respectively (reconstructed from VC activity using all DNN layers without 

the DGN).
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Supplementary Figure 9 | All examples of alphabetical letter reconstructions. Images 
with black and gray frames show presented and reconstructed images, respectively 
(reconstructed from VC activity without the DGN). Three reconstructed images 
correspond to reconstructions from three subjects.  

  

Supplementary Figure 9

Supplementary Figure 9 | All examples of alphabetical letter reconstructions. Images with black 

and gray frames show presented and reconstructed images, respectively (reconstructed from VC 

activity without the DGN). Three reconstructed images correspond to reconstructions from three 

subjects.
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Supplementary Figure 10 | Other examples of imagery image reconstructions. Images 
with black and gray frames show instructed and reconstructed images, respectively 
(reconstructed from VC activity without the DGN). Three reconstructed images 
correspond to reconstructions from three subjects. Rightmost images in the bottom row 
show reconstructions during maintaining fixation without imagery.  

Supplementary Figure 10

Supplementary Figure 10 | Other examples of imagery image reconstructions. Images with black 

and gray frames show instructed and reconstructed images, respectively (reconstructed from VC 

activity without the DGN). Three reconstructed images correspond to reconstructions from three 

subjects. Rightmost images in the bottom row show reconstructions during maintaining fixation 

without imagery.
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Supplementary Figure 11 | Feature decoding accuracy of raw and absolute features. In 
addition to the feature decoding analysis with raw DNN features, we performed the 
same feature decoding analysis after converting raw feature outputs to absolute values. 
The analysis was performed with features from the conv1_1 layer of the VGG19 model 
using the natural object dataset (error bar, 95% C.I. across subjects). a, Mean feature 
decoding accuracy of all units. The results showed significant improvements of feature 
decoding accuracy by the absolute conversion. b, Mean feature decoding accuracy for 
individual filters. The feature decoding accuracies of units within the same filters were 
individually averaged. The filters were sorted according to the ascending order of the 
raw feature decoding accuracy averaged for individual filters. These results showed that 
feature decoding accuracies of monochrome colored filters were specifically improved 
by the conversion. The large improvement levels demonstrate the insensitivity of fMRI 
signals to pixel luminance, suggesting the linear-nonlinear discrepancy of DNN and 
fMRI responses to pixel luminance. This discrepancy may explain the reversal of 
luminance observed in several reconstructed images.  
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to the feature decoding analysis with raw DNN features, we performed the same feature decodng 

analysis after converting raw feature outputs to aboslute values. The analysis was performed 

with features from the conv1_1 layer of the VGG19 model using the natural object dataset 

(errorbar, 95% C.I. across subjects). a, Mean feature decoding accuracy of all units. The results 

showed significant improvements of feautre decoding accuracy by the absolute conversion. b, 

Mean feature decoding accuracy for individual filters. The feature decoding accuracies of units 

within the same filters were individually averaged. The filters were sorted according to the 

ascending order of the raw feature decoding accuracy averaged for individual filters. These 

results showed that feature decoding accuracies of monochrome colored filters were specifically 

improved by the conversion. The large improvement levels demonstrate the insensitivity of 

fMRI signals to pixel luminances, suggesting the linear-nonlinear discrepancy of DNN and fMRI 

responses to pixel luminance. This discrepancy may explain the reversal of luminace observed in 

several reconstructed images.
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Notes for Supplementary Movies 

Reconstruction of visual images from human brain activity measured by fMRI. To 
reconstruct visual images, we first decoded (translated) measured brain activity patterns 
into deep neural network (DNN) features, then fed those decoded features to a 
reconstruction algorithm. Our reconstruction algorithm starts from a given initial image 
and iteratively optimizes the pixel values so that the DNN features of the current image 
become similar to those decoded from brain activity. The movies can be seen from our 
repository: https://www.youtube.com/user/ATRDNI 
 
Movie. Deep image reconstruction: Natural images. 
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