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Figure 4: Replay over-represents agent and reward locations and predicts subsequent and past behavior. (a) Left: Dis-
tribution of start locations of replay trajectories relative to the agent’s position and heading on the linear track. Negative
distances indicate that the replayed trajectory starts behind the agent. All replay events in the linear track start at or
immediately behind the agent’s location. Right: Similar distribution for end locations of replay trajectories relative to the
agent’s position and heading on the linear track. Most replay events end slightly ahead or slightly behind the agent’s
location. (b) Data from Davidson et al (2009) showing the distribution of start (Left) and end (Right) locations of replay
trajectories relative to the animal’s position and heading on the track. (c) Activation probability across all backups within
an episode. Colors represent the probability of a backup happening at each location within a given episode. Notice that
backups are more likely to occur in locations near the reward. (d) Probability that a given backup happens at various
distances from the agent (left) and from the reward (right) in the open field. Dotted lines represent chance levels. Notice
that backups are substantially more likely to happen near the agent and/or near the reward than chance. (e) Activation
probability across all backups within significant forward sequences. Forward replay tends to concentrate around turning
points near the reward. Notice that because the random starting location, no initiation bias is observed in this plot. (f)
How forward replay predicts future and previous steps in the open field. The lines indicate the probability that any
given forward sequence within an episode contains the state the agent will/have occupied a given number of steps in
the future/past. Dotted lines represent chance levels. Notice that forward replay is more likely to represent future states
than past states. (g) Activation probability across all backups within significant reverse sequences. Reverse replay tends
to concentrate near the reward. Notice that the higher activation probability for reverse events is due to a combination
of a reward-location bias and initiation bias, given that reverse sequences tend to start near the reward, where the agent
is. (h) How reverse replay predicts future and previous steps in the open field. The lines indicate the probability that
any given reverse sequence within an episode contains the state the agent will/have occupied a given number of steps
in the future/past. Dotted lines represent chance levels. Notice that reverse replay is more likely to represent past states
than future states. (i) We simulated an agent in an offline setting (e.g. sleep) after exploring a T-maze and receiving a
reward on the right (cued) arm. (j) Left: The proportion of backups corresponding to actions leading to the cued arm
(red) is much greater than the proportion of backups corresponding to actions leading to the uncued arm (blue). Right:
Data from Ólafsdóttir et al (2015) showing the proportion of spiking events categorized as preplay events for the cued
and uncued arms. The grey dashed line shows the proportion of events expected by chance.
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Figure 5: Replay frequency decays with familiarity and increases with experience. (a) In the linear track, the number of
significant replay events decays across episodes, peaking when the environment is novel. Insets show that the number
of both forward (top) and reverse (bottom) replay events decay with experience. (b) Data from Cheng Frank (2008)
showing the activation probability per high-frequency event. Error bars represent standard errors and symbols indicate
results of rank-sum test (** p < 0.01, *** p < 0.001). (c) Probability that significant replay events include a state in the
linear track as a function of the number of visits in an episode. Analogously to the effect reported in Fig. 1e, driven by
the need term, the probability of a state being replayed increases with experience in that state. (d) Data from O’Neil et al
(2008) showing that that the more cell pairs that fire together during exploration (time in cofiring field), the larger is the
increase in probability that these cell pairs fire together during sleep SWRs.

2.5 Effect of replay on choice behavior

The preceding simulations demonstrate that a wide range of properties of place cell replay can be predicted from first
principles, under the hypothesis that the common goal of replay is to drive reinforcement learning and planning involv-
ing the reactivated locations. This hypothesis also makes a complementary set of predictions about choice behavior, i.e.
that replay will be causally involved in learning which actions to take at the replayed states. Such behavioral effects are
most characteristically expected for acquiring tasks (like revaluation and shortcut tasks) that require agents to integrate
associations learned separately, or to infer the value of novel actions. This is because this class of tasks cannot be solved
by alternative learning mechanisms in the brain (such as model-free TD learning, associated with dopamine and stria-
tum) and exercise the more unique ability of nonlocal replay to compose novel trajectories from separate experiences
(Shohamy and Daw, 2015).

Indeed, hippocampal replay can follow novel paths or shortcuts never traversed by an animal (Gupta et al., 2010), and in
one report (Ólafsdóttir et al., 2015), activation of a path not yet explored (because it was initially observed behind glass)
was followed by rats subsequently being able to choose that path, correctly, over another, consistent with the planning
hypothesis. In the open field, forward hippocampal replay predicts future paths, importantly even when the goal location
is novel (Pfeiffer and Foster, 2013). Finally, causally blocking sharp wave ripples has a selective effect on learning and
performance of a spatial working memory task; although this task does not specifically exercise integrative planning,
it does require associating events over space and time (Jadhav et al., 2012). Overall, though, the place cell literature
has tended not to focus on connecting hippocampal activity to learning and decision behavior, and a major area for
future research suggested by our theory is to combine tasks more specifically diagnostic of model-based planning and
reinforcement learning with the monitoring and manipulation of nonlocal replay.

A second feature of the current theory is that it emphasizes that a number of different patterns of replay (forward, reverse
and offline; Fig. 1a) can all equally be used to solve the sorts of integrative decision tasks that have largely been assumed
to reflect forward “model-based” planning at the time of choice. Indeed, forward planning of this sort may be subserved
by preplay (Johnson and Redish, 2007), but in the current theory, this is just one case of a more general mechanism, and
equivalent computations can also arise from memories activated in different patterns at other times. These also include
reverse replay that allows connecting an experienced outcome with potential predecessor actions, and nonlocal replay
composing sequences of experiences during rest. Although these possibilities have not been examined in hippocampal
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spatial literature, work with humans using non-spatial versions of revaluation tasks (and activity of category-specific
regions of visual cortex to index state reinstatement) verifies that not just forward replay (Doll et al., 2015) but also
reverse replay (Wimmer and Shohamy, 2012) and nonlocal replay during rest (Momennejad et al., 2017a) all predict the
ability of subjects to solve these tasks. The present theory’s account of which replay events are prioritized might provide
a basis for investigating why different studies and task variants tend to evoke one or the other of these solution strategies.

3 Discussion

In light of so much experience accumulated in a lifetime, which memories should one access and when to allow for the
most rewarding future decisions? We offer a rational account for the prioritization of memory access operations framed
in terms of action evaluation through Bellman backups. We propose that the various nonlocal place-cell phenomena in
the hippocampus reflect different instances of a single evaluation operation, and that differences in the utility of these
operations can account for the heterogeneity of circumstances in which they happen. This utility, derived from first
principles, amounts to the product of a gain and a need term. Simulations of the model reproduced qualitatively a wide
range of results reported in the hippocampal replay literature over the course of the previous decade without the need
for any parameter fitting.

This theory draws new, specific connections between research on the hippocampal substrates of spatial navigation, and
research on learning and decision making, with implications for both areas. It has long been recognized that place
cell activity (including forward and reverse replay) likely supports learning and decision making (Foster and Wilson,
2006; Johnson and Redish, 2007); the present research renders these ideas experimentally testable by offering a specific
hypothesis what the brain learns from any particular replay event. This immediately suggests experiments combining
trial-by-trial reward learning (of the sort often studied in the decision literature) with place cell monitoring, to test the
the predicted relationship between individual replay events and subsequent choices. The strongest test would use tasks
(like sensory preconditioning or multi-step sequential decision tasks) where relevant quantities can’t be directly learned
“model-free” over experienced trajectories but instead exercise the ability of replay to compose novel sequences (Miller
et al., 2017; Momennejad et al., 2017a; Shohamy and Daw, 2015). Upstream of this behavioral function, the theory also
makes new testable predictions about place cells themselves, by articulating quantitative experience- and circumstance-
dependent criteria for which locations will be replayed.

The hippocampal literature has tended to envision that replay serves disjoint functions in different circumstances, includ-
ing learning (Foster and Wilson, 2006), planning (Diba and Buzsáki, 2007; Johnson and Redish, 2007; Pfeiffer and Foster,
2013; Singer et al., 2013), spatial memory retrieval (Jadhav et al., 2012), and systems consolidation (Carr et al., 2011; Mc-
Clelland et al., 1995). By focusing on a specific, quantitative operation (long-run value computation), we sharpen these
suggestions and expose their deeper relationship to one another. In RL, learning amounts to propagating long-run value
information from one state to adjacent ones to perform temporal credit assignment, with forward “planning” as tradi-
tionally conceived being one special case. This perspective unifies the proposed role of forward replay in planning with
that of reverse replay in learning (linking recently experienced sequences to their outcome (Foster and Wilson, 2006)), and
suggests analogous nonlocal computations, e.g. during sleep. Though serving a common goal, these different patterns
of replay are most appropriate in different circumstances; this explains observations of differential regulation (such as
asymmetric effects of prediction errors on forward vs. reverse replay), which have otherwise been taken as evidence for
distinct functions (Ambrose et al., 2016). As for consolidation, the perspective that replay drives estimation of long-run
values echoes other work on systems consolidation (Kumaran et al., 2016; McClelland et al., 1995) in viewing consoli-
dation not merely as strengthening existing memories, but more actively computing new summaries from the replayed
content. Also as with other systems consolidation theories, the resulting computed quantities (here, action values) are
widely believed to be stored elsewhere in the brain (here, likely cortico-striatal synapses), and the fuller neural processes
of replay presumably involve coordinated evoked activity throughout the brain, especially including value prediction
and learning in the mesolimbic and nigrostriatal reward networks (Gomperts et al., 2015; Lansink et al., 2009).

Relatedly, while we have hypothesized a specific role for replay in computing long-run action values — and although it
is striking that this consideration alone suffices to explain so many regularities of place cell replay — we do not view this
function as exclusive of other computations over replayed experiences (Kumaran et al., 2016; McClelland et al., 1995).
One interesting variant of our theory is that replay can be used to learn a long-run transition model of the particular
locations and outcomes one expects to visit following some action — instead of, as in our theory, the long-run reward
consequences alone. Such a long-run outcome representation, known as the successor representation (SR), can serve
as an intermediate representation for computing action values (Dayan, 1993), a sort of temporally extended cognitive
map. The SR has recently been proposed to be learned within hippocampal recurrents (Stachenfeld et al., 2017) and to
explain aspects of human choice behavior (Momennejad et al., 2017b). It can also be updated using replayed experience
(“SR-DYNA” (Russek et al., 2017)) analogous to how we learn reward values here, connecting learning from replay more
directly with a type of cognitive map building (Gupta et al., 2010). Our ideas carry directly over to this case: In fact, our
prioritization computations remain unchanged if replay updates an SR instead of action values; this is because an SR
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update step (also based on the Bellman equation) has exactly the same utility (under our myopic approximation) as the
corresponding Bellman backup for action values.

From the perspective of decision neuroscience, a key driver of recent progress is the recognition that the details how deci-
sion variables are computed — specifically, whether an action’s consequences are considered — govern what choices are
made. Notably, the view that the brain contains separate systems for “model-based” vs. “model-free” value computation
(which differ in whether or not they recompute values via planning at decision time) offers an influential computational
reframing of issues such as habits and compulsion. Yet a realistic “model-based” system must necessarily be selective as
to which of many branches are considered (Cushman and Morris, 2015; Keramati et al., 2016; Zilli and Hasselmo, 2008),
and dysfunction in such selection may extend the reach of these mechanisms to explain symptoms involving biased (e.g.,
abnormal salience or attention in both compulsive and mood disorders; craving) and abnormal patterns of thought (e.g.,
rumination, hallucination). The current theory goes beyond just prioritizing planning about the immediate future, to
also consider value computation at nonlocal states not immediately implicated in decision, e.g. “offline” replay during
sleep or rest (Johnson and Redish, 2005; Ludvig et al., 2017; Sutton, 1990). This systematizes several instances by which
tasks typically thought to index “model-based” planning at choice time are apparently solved by computations occurring
earlier (Gershman et al., 2014; Momennejad et al., 2017a; Wimmer and Shohamy, 2012) and suggests links between these
phenomena and different patterns of replay. Finally, by recasting planning as learning from remembered experience, the
theory envisions that the value learning stage of it might be subserved via the same dopaminergic error-driven learn-
ing operation long thought to support model-free learning from direct experience. This more convergent picture of the
substrates of these two sorts of learning would explain results (puzzling on a separate systems view) that dopaminergic
activity is both informed by (Daw et al., 2011; Sadacca et al., 2016) and supports (Deserno et al., 2015; Doll et al., 2016;
Sharpe et al., 2017) model-based evaluation.

The AI literature suggests one other candidate hypothesis for the prioritization of backups, known as Prioritized Sweep-
ing (PS) (Momennejad et al., 2017a; Moore and Atkeson, 1993). The idea is that large prediction errors (whether negative
or positive) should drive backup to propagate the unexpected information to predecessor states. Our approach adds the
need term (focusing backups on states likely to be visited again). Also, in the gain term, it takes account of the effect of a
backup on an agent’s policy, ensuring that propagating information with no behavioral consequences has no value. Data
support both of these features of our model over PS: Gain (unlike PS) predicts asymmetric effects of positive and nega-
tive prediction errors (Ambrose et al., 2016) (Fig. 3c-f). Because of the need term, our model can also produce searches
forward from the current state, in addition to PS’s largely backward propagation of error. The need term has a second
effect, which is to channel sequential activity along recently or frequently observed trajectories. This may help to explain
why nonlocal place cell activity follows extended sequences even though a straightforward error propagation is often
more breadth-first (Moore and Atkeson, 1993; Peng and Williams, 1993).

The need term also bears close resemblance to the concept of need probability from rational models of human memory
(Anderson and Milson, 1989) — the probability that an item needs to be retrieved from memory because of its relevance to
the current situation. Indeed, although we have framed our theory in terms of memory access, our use of a deterministic,
static task moots important distinctions between different sorts of memory, such as episodic and semantic. In particular,
replay-based methods can learn equivalently either from remembered experiences (e.g., episodic memories of particular
trajectories), or from simulated experiences (e.g., trajectories composed by first learning a semantic map or model of
the task, then generating experiences from it, as in model-based RL), blurring the distinction between model-based
learning and model-free learning from stored samples (Vanseijen and Sutton, 2015). In the current setting, prioritizing
over experiences, locations, and maps all amount to the same thing, since due to the nature of the task, any episode of
going (for instance) north from a particular location is identical to any other. An important goal of future work will be
to tease apart the role of episodic vs. semantic knowledge in computing action values, and understand their relative
prioritization (Gershman and Daw, 2017; Lengyel and Dayan, 2008).

There are a number of other limitations to the model, many of which are also opportunities for future work. Though we
have used a spatial framing due to the links with hippocampal replay, our theory is formalized generally over states and
actions and can be applied beyond navigation to other sequential tasks. However, we omitted many model features to
construct the simplest instantiation that most clearly exposes the key intuition behind the theory: the interplay between
gain and need and their respective roles driving reverse and forward replay. For instance, we restricted our simulations
to two simple environments (a linear track and an open field), and assumed a stationary and deterministic environment
that can be learned by the agent without uncertainty — and accordingly omitted stochasticity and uncertainty from the
model also. Yet, a full account of prioritized deliberation must surely account for uncertainty about the action values and
its sources in stochasticity and nonstationarity. This will require, in future, re-introducing these features from previous
accounts of online deliberation (Daw et al., 2005; Keramati et al., 2011); with these features restored, the current theory
will inherit its predecessors’ successful account of phenomena of habits, such as how they arise with overtraining.

This also relates to perhaps the most important limitation of our work: to investigate the decision theoretic considerations
governing replay, we define priority in the abstract, and do not offer a mechanism or process-level recipe for how the
brain would realistically compute it. Although the need term is straightforward (it corresponds to the SR (Dayan, 1993),
which the brain has already been proposed to track for other reasons (Momennejad et al., 2017b; Stachenfeld et al.,
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2017)), the calculation of gain, as we define it, requires that the agent knows the effect of the backup on its policy prior to
deciding whether to perform the backup. We use this admittedly unrealistic decision rule to investigate the characteristics
of efficient backup, but a process-level model will require heuristics or approximations to the gain term; here again
previous work on deliberation under uncertainty suggests a candidate approximation, called the myopic value of perfect
information (Keramati et al., 2011).

To highlight the role of sequencing computations, we have also constructed the theory at a single spatial and temporal
scale, focusing on a single Bellman backup as the elementary unit of computation. We build both forward and reverse
replay trajectories recursively, step by step, with value information propagating along the entire trajectory. Of course,
research in both hippocampus and decision making (separately) stresses the multi-scale nature of task representations;
a fuller account of learning, planning and prediction would include temporally extended actions (“options”) (Botvinick
et al., 2009; Cushman and Morris, 2015; Dezfouli et al., 2014) or similar long-scale state predictions (Dayan, 1993; Sutton,
1995).

4 Methods

4.1 Model description

The framework of reinforcement learning (Sutton and Barto, 1998) formalizes how an agent interacting with an environ-
ment through a sequence of states should select its actions so as to maximize some notion of cumulative reward. The
agent’s policy π assigns a probability π(a|s) to each action a ∈ A in state s ∈ S. Upon executing an action At at time t,
the agent transitions from state St to state St+1 and receives a reward Rt. The goal of the agent is to learn a policy that
maximizes the discounted return Gt following time t defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1, (1)

where γ ∈ (0, 1] is the discount factor that determines the present value of future rewards.

The expected return obtained by performing action a in state s and subsequently following policy π is denoted qπ(s, a)
and is given by:

qπ(s, a) = E
π

[ ∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2)

The policy that maximizes the expected return is the optimal policy and denoted q∗. Following Q-learning (Watkins
and Dayan, 1992), the agent can learn an action-value function Q that approximates q∗ through iteratively performing
Bellman backups:

Q(St, At)←− Q(St, At) + α

[
Rt + γmax

a∈A
Q(St+1, a)−Q(St, At)

]
, (3)

where α ∈ [0, 1] is a learning rate parameter. As in the DYNA architecture, this operation is performed automatically
after each transition in real experience, as well as nonlocally during simulated experience (Sutton, 1990).

The following framework provides a rational account for prioritizing nonlocal Bellman backups according to the im-
provement in cumulative reward expected to result. Let the agent be in state St = s at time t. We denote πold the current
policy, prior to executing the backup, and πnew the resulting policy after the backup. The utility of accessing experience
ek = (sk, ak, rk, sk+1) to update the value of (sk, ak) is denoted EV B(sk, ak) and is defined as:

EV B(sk, ak) = E
πnew

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
− E
πold

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(4)

i.e., the improvement in expected return due to a policy change. Since accessing ek changes the policy only in state sk
(i.e., πnew and πold differs only in sk), it is possible to consider separately the gain accrued each time the agent visits state
sk, and the expected number of times sk will be visited. In other words, by conditioning on St = sk, EV B(sk, ak) can be
separated into the product of a gain and a need term: EV B(sk, ak) = Gain(sk, ak)×Need(sk).
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4.1.1 Gain term

The gain term quantifies the expected improvement in return accrued at the target state, sk:

Gain(sk, ak) = EV B(sk, ak|St = sk)

= E
πnew

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = sk

]
− E
πold

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = sk

]
(5)

A myopic estimate of this value uses Qπnew as a stand-in for the true Q-value, and compares the expected cumulative
reward under an updated policy (reflecting the Bellman backup) against the previous, un-updated policy (prior to per-
forming the backup). Formally:

Gain(sk, ak) =
∑
a∈A

Qπnew(sk, a)πnew(a|sk)−
∑
a∈A

Qπnew(sk, a)πold(a|sk) (6)

where πnew(a|sk) represents the probability of selecting action a in state sk after the Bellman backup, and πold(a|sk) is the
same quantity before the Bellman backup.

4.1.2 Need term

The need term measures the discounted number of times the agent is expected to visit the target state, a proxy for the
current relevance of each state:

Need(sk) = µπ(sk) =
∞∑
i=t

γi−tδsi,sk , (7)

where δst,sk is the Kronecker delta function. Notice that, for γ = 1, the need term is the exact count of how many visits
to state sk are expected in the future, starting from state st.

The need term can be estimated by the Successor Representation (Dayan, 1993), which can be learned directly by the
agent or computed from a model. Here, we assume that the agent learns a state-state transition probability model T for
the purpose of computing the need term. The need term is thus obtained directly from the k-th row of (I − γT )−1.

An alternative option is to use the stationary distribution of the MDP, which estimates the asymptotic fraction of time
spent in each state (and is correspondingly easy to estimate from experience). This formulation is particularly useful
when the transition probability from the agent’s current state is unavailable (e.g., during sleep).

4.1.3 Simulation details

We simulated two “grid-world” environments (Fig. 1b) where an agent could move in any of the four cardinal directions
– i.e. A = {up,down, right, left}. At each state, the agent selected an action according to a softmax decision rule over the
estimated Q-values, π(a|s) ∝ e

Q(s,a)
τ , where τ is the temperature parameter which sets the balance between exploration

versus exploitation. In our simulations, τ = 0.2. Upon selecting action At in state St, the agent observes a reward Rt and
is transported to an adjacent state St+1. The set of Q-values is then updated according to (3) using α = 1.0 and γ = 0.9.

The first environment was a linear track (Fig. 1b, left), which was simulated as two disjoint 1 × 10 segments. (The
motivation for this was for the state space to differentiate both location and direction of travel, as do hippocampal
place cells in this sort of environment; this also clearly disambiguates forward from reverse replay.) The agent started
in location (1, 1) of the first segment. Upon reaching the state (1, 10), the agent received a unit reward with standard
deviation of σ = 0.1 and was transported to state (1, 10) of the second segment. Upon reaching state (1, 1) in the second
segment, the agent received a new unit reward (σ = 0.1) and was transported back to state (1, 1) of the first segment.
Each simulation comprised of 50 episodes (i.e. sequence of steps from starting location to reward).

The second environment was a 6×9 field with obstacles (Fig. 1b, right), with a unit reward (σ = 0.1) placed at coordinate
(1, 9). Each simulation comprised of 50 episodes and the start location was randomized at each episode.

The agent was allowed 20 planning steps at the beginning and end of each episode. In each planning step, the agent
selected the experience with highest utility EV B. Reactivation of experience ek = (sk, ak, rk, s

′
k) propagates the one-step

reward rk and the value of s′k to the state-action pair (sk, ak) according to (3) (similarly using α = 1.0 and γ = 0.9).
Because the gain term is a function of the current set of Q-values, the utilities EV B were recalculated for all experiences
after each planning step. In order to ensure that all 20 planning steps were used, a minimum gain of 10−10 was used for
all experiences.
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Successive backups often involved adjacent states, despite the fact that EV B was calculated independently for each
individual experience. Because a Bellman backup propagates value directionally (from successor to predecessor state),
successive backups in the reverse direction propagate value information along extended trajectories (i.e. from the des-
tination state to each of a series of predecessors, built up recursively). To make the model symmetric with respect to
information propagation over a forward trajectory, we also allowed multi-step forward backups to be built recursively.
Specifically, at each step, in addition to each individual experience et = (st, at, rt, st+1), EV B was also calculated for an
expanded experience 1-step longer than the previously executed backup. The candidate experience appended in such
cases corresponded to the action sampled from π(at+1|st+1) — i.e., at+1 is an action that would be selected in the result-
ing state of the previous backup (st+1), following the same decision rule as in behavior. Formally, appending experiences
recursively allowed for n-step forward rollouts, which propagate value information along trajectories in the forward di-
rection (from an end state back to all predecessors), equivalent to the reverse case. EV B for n-step backups was divided
by the length n of the trajectory, to account for the fact that n Q-values were updated simultaneously, although all results
were equivalent without this division.

Prior to the first episode, the agent was initialized with a full set of experiences corresponding to executing every action
in every state (equivalent to a full state-action-state transition model, which in sparse environments like these can be
inferred directly from visual inspection when the agent first encounters the maze), including transitions from goal states
to starting states. The state-state transition probability model T (for the need term) was initialized from this model
under a random action selection policy, and thereafter updated after each transition using a delta rule with learning rate
αT = 0.9. In all simulations in the online setting, the need term was then estimated from the SR matrix, (I − γT )−1. In
the only simulation of sleep replay (Fig. 4i,j), where the agent is not located in the environment where need is computed,
we estimated the need term as the stationary distribution of the MDP, i.e., the vector µ such that µT = µ.
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