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Abstract

Motivation: The bulk of space taken up by NGS sequencing CRAM files consists of per-base quality
values. Most of these are unnecessary for variant calling, offering an opportunity for space saving.
Results: On the CHM1+CHM13 test set, a 17 fold reduction in quality storage can be achieved while
maintaining variant calling accuracy.
Availability: Crumble is OpenSource and can be obtained from https://github.com/jkbonfield/crumble.
Contact: jkb@sanger.ac.uk
Supplementary information: Supplementary data are available.

1 Introduction
The rapid reduction of costs for genome sequencing (Wetterstrand, 2016)
has led to a corresponding growth in storage costs, far outstripping Moore’s
Law for CPU and Kryder’s Law for storage. This has led to considerable
research into data compression (Numanagić et al., 2016).

The most significant component in data storage cost is the per-
nucleotide confidence values, which carry information about the likelihood
of each base call being in error. Hence this has been the focus of lossy
compression research with two main orthogonal strategies: “horizontal”
and “vertical”.

“Horizontal” compression smooths qualities along each sequence in
turn, as implemented in libCSAM (Cánovas et al., 2014), QVZ (Malysa
et al., 2015) and FaStore (Roguski et al., 2017) or via quantisation
(Illumina, 2014). This type of compression can be applied before alignment
and is entirely reference free.

“Vertical” compression takes a slice through an aligned dataset in the
SAM format (Li et al., 2009) to determine which qualities to keep and
which to discard, as used in CALQ (Voges et al., 2017), or via hashing
techniques on unaligned data in Leon (Benoit et al., 2015) and GeneCodeq
(Greenfield et al., 2016). Traditional loss measures, such as mean squared
error, will appear very high, but these tools focus on minimising the
changes in post-processed data (variant calling).

We present Crumble as a mixture of both horizontal and vertical
compression. It operates on coordinate sorted aligned SAM, BAM or
CRAM files. While this approach does not explicitly use a reference, the
sequence aligner does which may result in some reference bias.

2 Methods
A variant caller evaluates the sequence base calls overlapping each genome
locus along with their associated qualities to determine whether that site
represents a variant. Irrespective of whether the call is a variant, if the same
call is made with comparable confidence both with and without sequence

quality values present then it can be concluded that the qualities are not
necessary in that column.

This requires running the variant caller twice to assess the change, but
if limited to sites with high confidence calls the need for a second test can
be avoided. We implemented a fast, but naïve, variant caller derived from
Gap5’s consensus algorithm (Bonfield and Whitwham, 2010). This caller
is independent of the major downstream variant callers.

Even when deemed unnecessary, qualities cannot be entirely discarded
as tools expect them to exist. By replacing the qualities for bases that agree
with a confident consensus call with constant high values, the entropy of
the quality signal is reduced. Quality values for bases that disagree with
a confident consensus call may optionally be set to a constant low value,
heavily quantised, or left intact.

There are sites where any variant caller may incorrectly give the
wrong call with a high confidence. We do not wish to replace qualities
in such regions. We therefore have a set of heuristics to try to find
potentially unreliable calls and retain verbatim the confidence values for
these locations and surrounding bases depending on sequence context.
Similarly there may be places where an entire read needs to have qualities
retained as there is evidence for it being misplaced or being part of a large
structural rearrangement.

The heuristics used in Crumble to identify where confidence values
should be retained vary by compression level requested, but include:

• Concordant soft clipping: many reads having soft clipped bases at
the same site often indicates a large insertion (absent in the reference)
or contamination.

• Excessive depth: possible contamination or collapsed repeat. Variant
calls often appear unusually good in such data, even when wrong.

• Low mapping quality: possibly caused through poor reference. We
optionally can also store quality values for the reads with high mapping
quality that colocate with many low mapping quality reads.

• Unexpected number of variants: we assume data from a single
diploid sample with at most two alleles at each locus. More than two
alleles implies misaligned data, duplication or contamination.
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Table 1. Effect of lossy quality compression on 50x Syndip data

Category Original Crumble-1 Crumble-9p8 Crumble*

Qual size (MB) 5207 614 235 229

SNP False Positive 6495 -249 -240 -479
SNP False Negative 4767 +3 -75 +1

Indel False Positive 3680 -12 +22 -32
Indel False Negative 6912 +6 -61 -53

Comparison of calls filtered by QUAL≥30 to the Syndip truth set. Crumble* refers
to parameters optimised for this data set: “crumble -9p8 -u30 -Q60 -D100”. The
false positive/negative values of the GATK calls on the crumbled data set are shown
relative to the GATK called lossless dataset. The lossless call set has 264,692 SNP
true positives and 35,612 indel true positives. The quality sizes are absolute for all
files.

• Low quality variant calls: typically a single base loci where the
consensus is unclear. If a heterozygous indel in a short tandem repeat,
the extents of the repeat govern the region in which to retain qualities.

Finally for the quality values that we deem necessary to keep, we
provide horizontal compression via the P-block algorithm from CSAM.
This is most useful on older Illumina data sets with over 40 distinct levels
of quality values.

The nature of the Crumble algorithm makes it amenable to streaming
and it does not require large amounts of memory to operate.

3 Results
Analysis of how quality compression affects variant calling was performed
on Syndip (Li et al., 2017), an Illumina sequenced library artificially
constructed from the haploid cell lines CHM1 and CHM13, with
an associated high quality truth set based on two PacBio assemblies
(Schneider et al., 2017).

The input BAM file (ERR1341796) had previously been created with
GATK best practices including IndelRealigner and Base Quality Score
Recalibration steps. To test the impact on raw variant calling, we ran
GATK HaplotypeCaller (Poplin et al., 2017), filtering to calls of quality
30 or above, without use of Variant Quality Score Recalibration.

Table 1 shows the lossless results on the CHM pair along with
the changes caused by lossy compression using a variety of Crumble
options. We chose the minimal compression level, an expected maximum
compression level and a set of manually tuned parameters optimised for
this data set. The manual tuning traded false positives and false negatives
in an attempt to get a call set comparable or better than the original in
all regards. It is unknown if the tuned parameters are appropriate for all
data sets. More complete comparisons including against other tools are
available in the online Supplementary Materials.

On the original BAM file with ∼50x coverage we observed a 17
fold reduction in the size of CRAM compressed quality values, while
achieving a 7% drop in SNP false positive rate (higher precision) and
comparable false negative rates (recall). Indels were marginally improved
in both recall and precision. At a sub-sampled 15x coverage the impact is

more noticeable; we see a 3% drop in SNP false positive rates and a 12%
reduction in SNP false negatives. Indel calls were more comparable, with
1% higher false positives and 3% lower false negatives (see Supplementary
Materials).

It is likely these gains to both SNP precision and recall only apply to
data coming from a single individual, but they demonstrate the efficacy of
lossy quality compression.

4 Conclusion
We have demonstrated that Crumble, when combined with CRAM, can
greatly reduce file storage costs while having a minimal, if not beneficial,
impact on variant calling accuracy of individual samples. For maximum
compression Crumble also permits discarding read identifiers and some
auxiliary tags, typically yielding files in the size of 5-10Gb for a 30x whole
genome processed with Crumble -9p8.
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