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S3 Mating System Evolution Analyses

S3.1 Model Priors

Model parameter priors are listed in Table S4. The rate of loss of self-incompatibility (qic), and the rates
of switching between hidden states a and b (qab and qba) were each given an exponential distribution with
a mean of n/Ψl, where Ψl is the length of the tree Ψ and n is the expected number of transitions. n was
given an exponential hyperprior with a mean of 20.

The speciation and extinction rates were drawn from exponential priors with a mean equal to an estimate
of the net diversification rate d̂. Under a constant rate birth-death process not conditioning on survival of
the process, the expected number of lineages at time t is given by:

E(Nt) = N0e
td, (S7)

where N0 is the number of lineages at time 0 and d is the net diversification rate λ − µ (Nee et al. 1994;

Höhna 2015). Therefore, we estimate d̂ as:

d̂ = (lnNt − lnN0)/t, (S8)

where Nt is the number of lineages in the clade that survived to the present, t is the age of the root, and
N0 = 2. The root state probabilities π were set to start the process equally in either self-incompatible hidden
state a or self-incompatible hidden state b.

Table S4: Model parameter names and prior distributions. See the main text for complete description of model
parameters and prior distributions. Ψl represents the length of tree Ψ and d̂ is the expected diversification rate under a
constant rate birth-death process.

Parameter X f(X)

Speciation self-incompatible a λia Exponential(λ = 1/d̂)

Speciation self-incompatible b λib Exponential(λ = 1/d̂)

Speciation self-compatible a λca Exponential(λ = 1/d̂)

Speciation self-compatible b λcb Exponential(λ = 1/d̂)

Extinction self-incompatible a µia Exponential(λ = 1/d̂)

Extinction self-incompatible b µib Exponential(λ = 1/d̂)

Extinction self-compatible a µca Exponential(λ = 1/d̂)

Extinction self-compatible b µcb Exponential(λ = 1/d̂)
Rate of loss of self-incompatibility qic Exponential(λ = Ψl/n)
Rate of a→ b qab Exponential(λ = Ψl/n)
Rate of b→ a qba Exponential(λ = Ψl/n)
Expected number of transitions n Exponential(λ = 1/20)

S3.2 MCMC Analyses

To account for uncertainty in phylogeny and divergence times 200 independent MCMC analyses were per-
formed, each sampling a tree from the posterior distribution of trees generated during the phylogenetic
analyses. All outgroup (Lythraceae) lineages were pruned off. Each MCMC run drew 10000 samples from
the posterior distribution, with 190 randomly scheduled Metropolis-Hastings moves per sample. The first
10% of samples from each run were discarded as burnin. For each run, all parameters had effective sample
sizes greater than 200, and the mean effective sample size of the posterior across all 200 tree samples was
1161.6. Estimates of the diversification rates were made by combining samples from all 200 independent
runs.

S4 Simulations
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S4.1 Simulated Datasets

100 datasets were simulated under a model where the observed binary character was diversification rate
independent yet an unobserved binary character drove background diversification rate heterogeneity. First
trees were simulated under BiSSE (Maddison et al. 2007) as implemented in the R package Diversitree
(FitzJohn 2012). The binary character represented hidden states a and b with diversification rates λa =
1.0, λb = 2.0, µa = 0.4, and µb = 0.1. The rate of change between hidden states a and b was set to
qab = qba = 0.1. This resulted in trees that were qualitatively similar in shape to the empirically estimated
Onagraceae tree, with a mix of early diverging depauperate clades and more rapidly radiating recent clades
(Figure S6). To simulate incomplete sampling, 55% of the extant tips were randomly pruned off the tree.
After pruning, tree samples were discarded unless they had between 100 and 200 sampled lineages that
survived to the present. This restriction ensured that the simulated datasets were not too small for reliable
inference and yet not so large to be computationally infeasible. Furthermore, we discarded datasets that had
fewer than 20% of the tips in either hidden state to ensure that the trees were generated under a sufficiently
heterogenous process.

Once the trees were simulated, diversification independent binary characters were simulated over the
trees. These characters represented the observed character (mating system) and so were simulated under an
irreversible model where the allowed transition occurred with the rate 10/Ψs, where Ψs is the length of the
simulated tree. This represents an expected 10 irreversible transitions over the length of the tree, and re-
sulted in simulated datasets with a proportion of either state similar to the proportion of self-compatible/self-
incompatible in the empirical Onagraceae dataset. These diversification independent characters were then
used to calculate Bayes factors that compared the fit of the diversification dependent model to the diversifi-
cation independent model of mating system. For details on how Bayes factors were calculated see the main
text. The false positive error rate was calculated as the percent of simulation replicates in which the Bayes
factor supported the false dependent model over the true independent model.
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Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Some
Mathematical Questions in Biology—DNA Sequence Analysis, Miura RM (Ed.), American Mathematical
Society, Providence (RI) 17:57–86.

Wagner, W. L., P. C. Hoch, and P. H. Raven. 2007. Revised classification of the Onagraceae. Systematic
Botany Monographs 83.

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over
sites: approximate methods. Journal of Molecular Evolution 39:306–314.

Yang, Z. and B. Rannala. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov chain
Monte Carlo method. Molecular Biology and Evolution 14:717–724.

Zhi-Chen, S., W. Wei-Ming, and H. Fei. 2004. Fossil pollen records of extant angiosperms in China. The
Botanical Review 70:425–458.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/210484doi: bioRxiv preprint first posted online Oct. 28, 2017; 

http://dx.doi.org/10.1101/210484
http://creativecommons.org/licenses/by-nc-nd/4.0/

