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Abstract 17 

Energy homeostasis depends on behavior to predictively regulate metabolic states within 18 

narrow bounds. Here we review three theories of homeostatic control and ask how they 19 

provide insight into the circuitry underlying energy homeostasis. We offer two 20 

contributions. First, we detail how control theory and reinforcement learning are applied 21 

to homeostatic control. We show how these schemes rest on implausible assumptions; 22 

either via circular definitions, unprincipled drive functions, or by ignoring environmental 23 

volatility. We argue active inference can elude these shortcomings while retaining 24 

important features of each model. Second, we review the neural basis of energetic 25 

control. We focus on a subset of arcuate subpopulations that project directly to, and are 26 

thus in a privileged position to opponently modulate, dopaminergic cells as a function of 27 

energetic predictions over a spectrum of time horizons. We discuss how this can be 28 

interpreted under these theories, and how this can resolve paradoxes that have arisen. 29 

We propose this circuit constitutes a homeostatic-reward interface that underwrites the 30 

conjoint optimisation of physiological and behavioural homeostasis. 31 

 32 

Keywords. reward prediction error, dopamine, hypothalamus, energy homeostasis, active inference   33 
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The problem of homeostatic control 34 

A remarkable feature of physiological systems is their stability. Most physiological 35 

variables are regulated within narrow bounds by operational and computational processes 36 

collectively known as homeostasis (Cannon 1932). The mechanistic complexity of 37 

homeostasis extends beyond simple negative feedback control and embodies a wide 38 

spectrum of hierarchically organised physiological control structures, molecule to agent, 39 

operating over a multitude of timescales, milliseconds to months (Carpenter 2004). 40 

Homeostatic control is often framed as the regulation of variables around a fixed set point, 41 

the achievement of which upholds a physiological equilibrium (Cannon 1932). Fixed set 42 

points, however useful they are as abstractions, are biologically implausible. Indeed, 43 

allostasis (under some definitions, e.g. Sterling 2012, Stephan et al. 2016) refers to the 44 

dynamic process by which homeostatic equilibria shift. For instance moving set points could 45 

occur through the transient modulations of stress, digestion, or arousal (Peters et al 2017), 46 

through to longer timescales of circadian or circannual rhythms, developmental or 47 

reproductive phases (this form of predictive regulation is also known as rheostasis and a 48 

great many other names, see Woods & Ramsay 2007). However, since it has been argued 49 

that predictive control does not distinguish between allostasis and homeostasis (Woods & 50 

Ramsay 2007), we use the term homeostasis in this broadest sense, to encompass 51 

predictive control. In other words, homoeostasis here subsumes classical homeostatic 52 

reflexes and hierarchically embellished allostatic control. Under this nomenclature, the 53 

raison d’être of homeostasis is not stability per se, but rather dynamically adjusting internal 54 

states to fall within the ranges that afford organismal survival (Fig 1b; Sterling 2012).  55 

For all motile agents, effective homeostatic control results from the interplay among 56 

automated physiological processes (henceforth referred to as physiological homeostasis) 57 
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and overt behaviour (henceforth, behavioural homeostasis). The coordinated mechanisms 58 

of physiological homeostasis are insufficient to perpetuate survival. In an indolent (inactive 59 

or sessile) organism, the incessant activity of basal metabolic processes results in the 60 

continuous drift of vital homeostatic variables, as time passes. These excursions cannot be 61 

mitigated by the coordinated mechanisms of physiological homeostasis alone. The 62 

homeostatic error, defined as the distance of the current homeostatic state (physiological 63 

state) from any set point (Fig. 1a) can only redressed by behavioural exchange with the 64 

external environment (hunting, seeking warmth, micturition etc.). Thus, homeostatic control 65 

consists of tracking, estimating, and predicting homeostatic errors, and simultaneously 66 

prioritizing and generating the appropriate physiological and behavioural responses to 67 

minimize those errors.  68 

In the terms defined above, this entails a conjoint optimisation of both physiological 69 

and behavioural homeostasis. From a computational perspective, this is a challenging 70 

problem for many reasons: All natural habitats are complex, uncertain, labile, and often 71 

precarious. The resources of utility for reducing homeostatic error are typically sparsely 72 

distributed in time and space. Internal states have to be inferred accurately, or at least as 73 

accurately as their survival hazards mandate. Each internal state has its own dynamics and 74 

uncertainties, so any control mechanism has to contend with variables interacting over 75 

multiple timescales, often with different degrees of synergy, antagonism, and over different 76 

scales of lag. Thus, there are rarely simple, or even stationary, mappings between the action 77 

sequences executed and the homeostatic errors minimised.  78 

In this paper, we briefly review theories and models providing an overarching 79 

framework as to how conjoint optimisation of physiological and behavioural homeostasis 80 
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has been approached in neuroscience. We explore how this provides insight into the logic 81 

and provenance of primary rewards with respect to homeostasis. This prefaces an empirical 82 

section, where we review the neuroanatomical basis of glycaemic and energetic control in 83 

light of recent circuit-level evidence that illustrates the predictive nature of homeostatic 84 

control circuitry, and its putative role in modulating reward value computations. We will 85 

discuss how these homeostatic networks of the midbrain and brainstem innervate 86 

dopaminergic nuclei, and modulate reward (or precision) signals, in ways that are 87 

commensurate with their homeostatic and evolutionary imperatives. 88 

Theoretical accounts of homeostatic control 89 

Optimal control theory. Some of the earliest models of homeostatic control emerged 90 

from optimal control theory. Many of these were simple negative feedback systems where 91 

direct error correction was deployed to keep vital macro-state variables close to their set-92 

points (Sterling 2012; Berridge & Robinson 2003). Common to most reactive schemes are 93 

the notions of a controller and a plant. The controller converts an input into a command 94 

which then inputs onto the plant, which outputs a motoric response, resulting in a new 95 

input. In the context of physiological regulation (Fig. 2a) the input to the controller is a 96 

homeostatic error, which is translated into a motor command. The command results in a 97 

behavioural exchange with the environment to reduce the homeostatic error. This new 98 

physiological state serves as the next input, generating the next homeostatic error. This 99 

feedback control gives rise to iterative error correction. In the case of glycaemic control, the 100 

homeostatic error would be inferred from the difference between current states (probed 101 

through central and peripheral glucose sensors) and a euglycaemic reference state (set 102 

point). The error is translated by the controller into commands for the visceromotor plant 103 

and the somatic motor system. The former creates autonomic gluco-regulatory responses – 104 
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and the latter initiates a behavioural response such as foraging and consummatory action to 105 

minimize the homeostatic error. See also Powers (2016) for treatment of control theory 106 

from the perceptual side; in other words, the notion that phenomena such as homoeostasis 107 

and allostasis can be cast purely in terms of keeping sensations within bounds. 108 

One problem with direct feedback systems is that they are noisy and unstable 109 

(Carpenter 2004). Delays or noise in the control system can lead to error hunting, which 110 

results in oscillatory error corrections around the set-point. One solution is to introduce a 111 

predictive component (a forward model) into the control loop. In addition to an output 112 

command for the plant, direct feedback control, the controller generates an efference copy 113 

that is sent in parallel to the forward model (Fig. 2b). The forward model generates a 114 

prediction of the sensory state that is anticipated from the execution of the action, which 115 

feeds back and is compared to the set point. This culminates in a homeostatic prediction 116 

error that re-enters the controller and, if the forward model reliably predicts future 117 

homeostatic error, the controller acts accordingly to minimise this anticipated error. This 118 

logic can be expanded to include prediction error updates to the forward dynamic model 119 

(Fig. 2c).  120 

Updating the forward model by discrepancies between predicted and actual 121 

interoceptive signals, is the fundamental feature of predictive processing and can (in 122 

principle) offer scope for explaining predictive homeostatic control outside the domain of 123 

purely reactive schemes. Such predictive control structures have been deployed in 124 

neuroscience to explain many phenomena, including motor control (Miall & Wolpert 1996) 125 

and awareness (Frith 2012). For comparison with the other theories we introduce below, we 126 

summarise the comparator based models of control theory in the upper part of Fig. 4. 127 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2018. ; https://doi.org/10.1101/242974doi: bioRxiv preprint 

https://doi.org/10.1101/242974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Another feature that can be added to any of the models above is integral feedback 128 

control, where the time-integral of the error is controlled (Astrom 1995), rather than just 129 

the current or projected point estimate. Integral feedback control tracks a steady-state 130 

condition and only performs its regulatory action when this steady-state is violated. This 131 

form of control ensures that the system variable (e.g. glucose) returns back to the set point 132 

after a sustained step change irrespective of its magnitude. Integral feedback control 133 

account for the control of chemotaxis in bacteria (Yi et al. 2000; Barkai & Leibler 1997) and 134 

in systems neuroscience to explain flexibility of arousal and inhibitory control of the 135 

hypothalamus (Kosse & Burdakov 2014).  136 

The models discussed above are deterministic in the sense that they operate under the 137 

assumption that the controller is already equipped with homeostatically rational commands 138 

to issue under the spectrum of hierarchically organised errors it can receive. In other words, 139 

such models do not by themselves offer any solution to the difficult problem of behavioural 140 

homeostasis in an uncertain and volatile environment. Answers to questions of the sort 141 

“Which sequence of actions should I perform if I want to minimise this homeostatic error?” 142 

are not addressed. If one is seeking to account for the conjoint optimisation of behavioural 143 

and physiological homeostasis, this is a serious limitation. Another limitation of this class of 144 

model is that it provides no principled means as to how to arbitrate between commands 145 

that entail different bundles of homeostatic error reductions; say between minimising one 146 

unit of thermal error (e.g. 1C) and 2 units of osmolality error (e.g. 2 mOm/kg), versus 3 and 147 

1 units, respectively. A seemingly sensible solution is to compute an aggregate homeostatic 148 

error as the Euclidean distance from set point, and choose the action that minimises that 149 

error. However, simply changing the units of measurement (e.g. from Celsius to Fahrenheit) 150 

inherently imposes an arbitrary prioritisation of one homeostatic dimension over another. 151 
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The aforementioned feedback control models lack any discernible principles which would 152 

allow for such prioritisation to be achieved in any biologically meaningful way.  153 

Drive reduction theory. The problem of coordinating and prioritising multiple 154 

homeostatic feedback processes was a major inspiration to one of the earliest and most 155 

ambitious attempts at modelling behavioural homeostasis; namely, drive reduction theory 156 

(Hull 1943). Drive reduction theory was the first theory to algorithmically tether negative 157 

feedback to homeostasis via motivational drive. Instead of direct feedback via single 158 

homeostatic variables, motivational drive was proposed as a superordinate internal variable 159 

that is to be minimised over the long-run. 160 

Under drive reduction theory, drive compels biological agents toward actions that 161 

remediate the basic physiological needs, in order to promote survival: “…when any of the 162 

commodities or conditions necessary for individual or species survival are lacking, or when 163 

they deviate materially from the optimum, a state of primary need is said to exist.” (Hull 164 

1943). Drive can thus be conceptualized as a negatively valenced state that the agent works 165 

to attenuate. In so doing, the agent attenuates the associated homeostatic deficits that 166 

cause it. Stimulus-response associations are reinforced as a function of the resulting drive 167 

reduction – a postulate refined from Thorndike (1927). The reinforcement that accumulates 168 

over time determines the strength of habitually generating a response to a given stimulus 169 

(i.e., habit strength). The probability of executing a given action (i.e., the reaction potential) 170 

is determined by both habit strength and drive. More complex formulations take into 171 

account the inhibitory effect of fatigue, but the logic is the same. Drive-reducing actions are 172 

reinforced into habits, a behavioural means by which to minimise homeostatic error.  173 
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While drive reduction theory provides an integrated account of how deviations from 174 

the homeostatic optimum motivates behaviour, the theory falls short of explaining 175 

anticipatory behaviour that precedes any change in motivational drive. Animals develop 176 

drive states prior to any observable homeostatic deficits such as eating when sated, drinking 177 

before blood osmolality dips, and shivering before the onset of thermal challenges (Brown 178 

1953; Sheffield & Roby 1950; Seward 1956; Bolles 1968). These early experiments show that 179 

the mechanistic account of drive reduction theory on learning is poorly predictive of 180 

behaviour, even in narrow experimental conditions.  181 

Homeostatic reinforcement learning. Reinforcement learning, a branch of machine 182 

learning inspired in part by behavioural psychology (and optimal control theory), offers 183 

some advance on the problem of homeostatic control. In any environment endowed with 184 

temporal regularities between sensory cues, actions, and outcomes, agents maximise 185 

expected future reward through algorithms that enable anticipatory action. The overarching 186 

aim of the agent under reinforcement learning is to maximize cumulative reward over some 187 

temporal horizon (Sutton & Barto 1998).  188 

This can be achieved with several algorithms, and the dominating perspective on the 189 

computational role of dopamine in behavioural motivation stems from one such algorithm; 190 

namely the temporal difference (TD) algorithm. TD-learning relies on the difference 191 

between temporally sequential estimates (or predictions) of reward. If the prediction is 192 

wrong, the difference between previously predicted return (rational expectation of 193 

discounted rewards) and the new predicted return (predicated on the outcome observed) is 194 

computed as a prediction error, which is used to update the future prediction (much like in 195 

the above description of predictive processing). This is the foundation of the reward 196 
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prediction error hypothesis (RPE), which states that phasic firing of dopaminergic neurons in 197 

the ventral tegmental area (VTA) and substantia nigra (SN) encode a reward prediction error 198 

signal (Montague et al. 1996). This theoretical prediction was later experimentally 199 

corroborated (Schultz et al. 1997), and since then much experimental work has underscored 200 

the importance of reward prediction errors in neurobiological accounts of learning and 201 

decision-making (Glimcher 2010; Niv et al. 2005). Several models have formulated 202 

homeostatic control using reinforcement learning algorithms (Dranias et al. 2008; Keramati 203 

& Gutkin 2014). With respect to homeostatic control, the perspective offered by 204 

Homeostatic Reinforcement Learning (HRL, Fig. 3) is interesting as it tessellates the core 205 

idea of drive reduction as sketched above, with reinforcement learning (Keramati & Gutkin 206 

2014).  207 

The HRL framework defines  a homeostatic state space, from which a drive function is 208 

derived, mapping non-linearly from homeostatic state to drive (Fig. 3, & 4 middle). The 209 

central logic is that with drive reductions defined as reward, agents that learn to maximise 210 

reward, will minimise drive, which minimises homeostatic error, meaning that reward 211 

maximisation and homeostatic regulation (behavioural homeostasis) are “two sides of the 212 

same coin” (Keramati & Gutkin 2014). HRL accounts for anticipatory features of behavioural 213 

homeostatic control, showing that simulated agents could learn to incur short-term 214 

homeostatic errors (e.g. deviations from a set point), in order to mitigate long-run (path 215 

integrals of) homeostatic errors. While the HRL framework accommodates anticipatory 216 

behaviour of homeostatic control, it is worth pointing out some of the residual problems. 217 

Strictly speaking, HRL theory specifies no criterion to define the biological maximandum 218 

(i.e., the optimal set point), but relies on experimenter-set value functions which have no 219 

normative grounding. Keramati and Gutkin (2014) choose their drive function as a sensible 220 
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and parsimonious guess based on the behavioural and economic phenomena this would 221 

entail. Interestingly they showed that several phenomena from economics and behavioural 222 

ecology could be accounted for with a simple convex drive function. To facilitate 223 

comparison between theories, HRL is juxtaposed with other models in Figure 4. 224 

Active inference. Recent models invoke the notion of variational inference under a 225 

hierarchical Bayesian model to solve homeostatic control problems (Stephan et al. 2016; 226 

Pezzulo et al. 2015). Fundamental to those formulations is the notion that the agent deploys 227 

interoception, somatic and viscero-motor actions in order to control internal states. This is 228 

framed under active inference (Fig. 4, lower), which is a corollary of the free energy 229 

principle (Friston et al. 2006; Friston 2012). Heuristically, this principle suggests that all living 230 

agents resist disorder (i.e. death) by restricting themselves to a limited number of states 231 

consistent with their physiological integrity, an idea that is consistent with homeostatic 232 

regulation as framed above, and with drive reduction theory.  233 

Under active inference, agents stay alive by predicting the states that keep them alive, 234 

and act in order to fulfil those predictions. These predictions are generated in the higher 235 

levels of the neural and autonomic hierarchies and passed down to lower levels. The lower 236 

levels signal prediction errors back up the hierarchy. Prediction errors here are not about 237 

reward per se, but rather discrepancies between expected and realised sensory input. 238 

Sensory predictions are cascaded downwards in the hierarchy, and if it does not match 239 

input, prediction errors are propagated upwards in order to update the model 240 

(interoception) or act on the environment in order to change the sensory input via (motor 241 

and autonomic) reflexes (Fig. 4, lower). Importantly, agents are endowed with prior beliefs 242 

that are congruent with high-survival states, such as being sated, hydrated and warm. As 243 
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such, the notion of reward – common to models of reinforcement learning and optimal 244 

control – is absorbed into expectations about occupying states that increase biological 245 

fitness. Any action that underwrites the probability of fulfilling those expectations can be 246 

said to have value.  247 

It is useful here to compare and contrast control theoretic formulations with active 248 

inference in the proprioceptive domain, because the same principles may apply in the 249 

interoceptive domain too. In the control of striated muscle, active inference formulations of 250 

motor control replace motor commands with predictions of proprioceptive sensations. 251 

These predictions afford the equilibrium or set points that enslave classical motor reflexes 252 

or goal-directed actions. This control architecture calls upon earlier notions such as the 253 

equilibrium point hypothesis (Feldman 1986), in which desired movements are specified in 254 

terms of equilibrium or fixed points. Clearly, as above, the question now arises: Where do 255 

the predictions or equilibria come from? In active inference, these are generated by a deep 256 

(generative) model that provides contextualised predictions that are fit for purpose, in the 257 

current context (Friston et al. 2017). In other words, hierarchically high level motor goals 258 

specify predictions of subgoals and so on – all the way down to the predicted primary 259 

sensory afferent input in the spinal cord or brain stem. The crucial aspect of this 260 

architecture is that the forward model is not used to nuance feedback control (as in 261 

comparator models of optimal control theory, e.g. Fig. 2 & Fig. 4 upper) – it plays a 262 

foundational role in prescribing behaviour as a generative model (Fig. 4, lower). 263 

Furthermore, this architecture is effectively open loop because its set points are predefined 264 

by descending predictions. However, these predictions are generated from a hierarchical 265 

synthesis that contextualises them; rendering the overall system a closed loop architecture. 266 

The argument in this paper is that exactly the same mechanisms apply in the context of 267 
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homoeostasis through allostatic responses that rest upon purposeful behaviour in response 268 

to the interoceptive and exteroceptive cues. 269 

Ultimately, action and interoception serves to fulfil predictions of homeostatic 270 

equilibria on all levels of the hierarchy, from autonomous physiological processes to 271 

behavioural homeostasis: Autonomous processes, such as the release of insulin from the 272 

pancreas when glucose levels drop, most likely constitute the lower layers in the hierarchy 273 

of the homeostatic reflex arc and are most likely implemented by effector regions in the 274 

spinal cord and brainstem (Seth 2013; Stephan et al. 2016). Premeditated planning and 275 

decision-making that engenders allostatic change is governed by relatively higher layers in 276 

the control structure, e.g. in the prefrontal, insular, or anterior cingulate cortex (Stephan et 277 

al. 2016). Thus, the hierarchical structure of models suggested under active inference, has 278 

the potential to account for homeostatic regulation to unfold on all spatiotemporal scales 279 

relevant for physiological and behavioural homeostasis. It is the hierarchical architecture 280 

implicit in active inference that accommodates the spectrum of spatial temporal scales; 281 

providing a hierarchal distinction between high level predictions (allostasis) and low level 282 

predictions (classical homoeostasis). In this setting, low-level interoceptive prediction errors 283 

that cannot be resolved immediately are passed to higher levels to induce deliberative 284 

behaviour that, in the long-term, returns physiology to its fixed (set) points. 285 

A central concept for active inference accounts of homeostatic control is the notion of 286 

information theoretical (Shannon) surprise. Technically, surprise is the negative log 287 

probability of a state – which coheres with the intuition that an internal state that is highly 288 

probable – carries less surprise than one which is improbable. Importantly the level of 289 

surprise scores how valuable states are, since the most probable states (the low surprise of 290 
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occupying internal states close to set point) are most probable because they afford the 291 

highest probability of survival, whereas the least probable states (the high surprise of 292 

occupying extreme internal states) are the least probable because the afford the lowest 293 

probabilities of survival. The high surprise states are thus the states in the tails of the 294 

survival probability surface in Fig. 1b. This closely relates to another concept from 295 

information theory; namely, entropy, which is simply average surprise. The overarching aim 296 

of the adaptive agent is to keep sampling sensory data that is as unsurprising as possible, 297 

because the agent expects to constantly find itself in homeostatic equilibria, minimising its 298 

entropy. This prior belief (of being close to a set point) is engendered by a generative 299 

(forward) model, yet another key concept in active inference, to which we now turn.  300 

A generative model establishes a probabilistic map between hidden causes (internal or 301 

external states) to observed consequences (proprioceptive, exteroceptive or interoceptive 302 

sensory input) by combining a prior (here, encoding the prior probability of internal states) 303 

with a likelihood function (a probabilistic map from hidden internal states to observed 304 

sensory inputs, see Fig. 5). Principally, there are two means by which prediction error and 305 

thus surprise can be minimised. The agent can update its predictions to conform to the 306 

sensory input (interoception), or act on the world to change the sensory input generated by 307 

external states, to better match its predictions (action). The interested reader should see 308 

Bogacz (2015) for an tutorial based introduction to the technical aspects variational 309 

inference in context of perception.  310 

When considering homeostatic control as active inference, it is important to appreciate 311 

the nature of prior beliefs. In a hierarchical setting, these are referred to as empirical priors. 312 

This is because they can be informed by empirical data or sensations. This leads to a picture 313 
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of the interoceptive hierarchy as encoding a cascade of prior expectations and subsequent 314 

predictions for the level below. In most formulations, deeper (i.e. higher) expectations 315 

usually entail longer time courses or horizons, while priors at lower levels are more 316 

concerned with proximal outcomes. On this view, surprising violations (i.e., departures from 317 

homeostatic set points) induce ascending prediction errors throughout the hierarchy until 318 

some (allostatic) expectations change the organism’s circumstances. Under this framework, 319 

it is likely that some empirical priors are held with greater precision (e.g. body temperature), 320 

and thus prevail with only minor modulation over many different settings, while others will 321 

be lower in precision, and thus have greater latitude to be informed by context (e.g. 322 

hunger). We will see later, that the precisions – afforded different prediction errors at 323 

different levels of the hierarchy – are a key determinant of behaviour and the balance 324 

between allostasis and classical homoeostasis. 325 

In short, prior interoceptive beliefs should reflect (relatively) invariant survival 326 

probabilities, and should only be (allostatically) modulated to reflect a shift in the peak 327 

survival probabilities. A good example of this would be having a relatively invariant prior 328 

belief about what core thermal states the agent should occupy, but then modulating this 329 

under conditions of viral infection, where the survival probability function shifts such that 330 

higher thermal states have the highest survival probabilities; hence the phenomena of fever, 331 

and its related thermoregulatory behaviours.  332 

Prior beliefs about homeostatic set points are likely to be hardwired in effector regions, 333 

such as the hypothalamus and brainstem nuclei. Such empirical priors are likely to be 334 

genetically specified and shaped via evolution as a function of their ability to minimise 335 

surprise, given the agents respective eco-niche (Friston & Ao 2012). On the other hand, 336 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2018. ; https://doi.org/10.1101/242974doi: bioRxiv preprint 

https://doi.org/10.1101/242974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

priors that pertain to learning and adaption must be able to change during interaction with 337 

a dynamic, hierarchical and often volatile environment. For a more expansive account of 338 

learning and homeostasis under active inference see Pezzulo et al. (2015).  339 

Summary. In the above we framed the problem of homeostasis, not as a problem of 340 

stability per se, but rather as predictive control over the physiological and behavioural 341 

processes that keep vital homeostatic variables within the narrow (but dynamic) range that 342 

ensure survival. We rehearsed some early attempts at modelling such control, using various 343 

schemes of feedback control. While these may suffice for physiological homeostasis through 344 

autonomous control (e.g. the baro-reflex or skeletal muscle control) they are often unstable, 345 

and importantly do not afford any insight into the mechanisms of behavioural homeostasis 346 

that unfold over longer timescales. Reinforcement learning solves this shortcoming by 347 

proposing several algorithms that frame adaptive behaviour as reward maximisation, which 348 

can be harnessed to defend a homeostatic set point (Dranias et al. 2008; Keramati & Gutkin 349 

2014). One exigent problem (see Friston & Ao 2012 for several others) with reinforcement 350 

learning in general is that the definition of reward is behaviour-centric: Agents strive to 351 

maximise reward, but reward is defined from observed behaviour. Or as Berridge (2004) 352 

puts it “A circular explanation is one that attempts to explain an observation in terms of 353 

itself. It just reasserts what has been observed and does not really add any new 354 

explanation.” Avoiding this circularity through homeostatic considerations was a central 355 

motivation for the development of Homeostatic Reinforcement Learning. Likewise active 356 

inference accounts of adaptive behaviour avoid this circularity by providing a normative 357 

account of why agents must necessarily infer and minimise surprise about their own internal 358 

hidden states in order to maintain physiological integrity (Friston 2012; Friston et al. 2006). 359 

This hierarchical Bayesian perspective absorbs the entire suite of concepts discussed above 360 
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(see Stephan et al. 2016 for details). Concisely, set points and error functions that are 361 

integral to any form of feedback control are replaced by prior beliefs (or predictions) about 362 

sensory input, where subsequent deviation from those beliefs is encoded as the errors of 363 

prediction (Fig. 4 lower).  364 

Furthermore, the conceptual objects of reward and value that motivate behaviour (as 365 

defined in reinforcement learning), are absorbed into prior beliefs about the consequences 366 

of action (e.g. what actions minimise prediction errors), where desirable outcomes are 367 

simply those that engender the least surprising outcomes. So far, we have discussed active 368 

inference in general terms; in a way that places the predictions of hierarchal or deep 369 

generative models centre stage. To properly understand the implicit computational 370 

architecture that underwrites allostatic responses, it is worthwhile unpacking the 371 

imperatives for active inference in terms of resolving uncertainty. Formally, uncertainty is 372 

expected surprise. Therefore, to select policies that minimise expected surprise in the 373 

future, one has to evaluate the associated uncertainty in terms of expected free energy. 374 

Expected free energy usefully decomposes into epistemic and pragmatic terms – usually 375 

associated with intrinsically motivated, information-seeking, epistemic behaviour on the 376 

one hand and extrinsically motivated, reward-seeking, pragmatic behaviour on the other. 377 

The epistemic part is important for allostatic responses (and is generally ignored in 378 

reinforcement learning formulations). A simple example here is the epistemic value or 379 

affordance of checking whether the fridge is contains the necessary ingredients, before 380 

starting to prepare a meal, or the foraging mammal scanning its environment to infer the 381 

location and habits of its prey. Typically, uncertainty reducing (expected free energy 382 

minimising) policies are selected that first resolve uncertainty after which, prior preferences 383 

come to dominate. This leads to a structured transition from explorative to exploitative 384 
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behaviour. They can also be selected under satiety states, where homeostatic errors are 385 

attenuated, and the value of exploitative action is diminished. 386 

One subtle aspect of this construction is that we now need to posit generative models 387 

that entertain the future consequences of action. Although obvious, this means that there 388 

must be neuronal representations of (worldly and bodily) states in the future, under each 389 

competing policies. These counterfactual futures may have limited time horizons, but must 390 

exist under the theory. The resulting deep generative models are sometimes referred to as 391 

having counterfactual depth that necessarily entails a future. The notion of counterfactual 392 

encoding (i.e., neuronal representations of future states) is therefore something that should 393 

figure, when trying to understand interoception and its role in homoeostasis (Seth 2014). 394 

Crucial for our argument is that policy selection depends upon the degree to which a 395 

given policy will resolve uncertainty and the confidence or precision placed in the ensuing 396 

beliefs about policies. In other words, to select the best policy, one has to evaluate the 397 

precision or confidence in beliefs about alternative ways forward. A body of evidence now 398 

points to dopamine as signalling fluctuations in the precision or confidence associated with 399 

policy selection (Fiorillo, Tobler et al. 2003, Niv, Duff et al. 2005, Humphries, Khamassi et al. 400 

2012, Friston, Schwartenbeck et al. 2014, Schwartenbeck, FitzGerald et al. 2015). This will 401 

become relevant later when we interrogate the empirical evidence that speaks to different 402 

theoretical formulations of homoeostatic control.  403 

  404 
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Neural bases of energetic control 405 

In the following empirical section, we survey recent evidence that suggests that 406 

particular circuits of the hypothalamus and brainstem play a role in predictive homeostatic 407 

control. We will focus exclusively on energetic control, as the experimental evidence for this 408 

homeostatic dimension is extensive and (at least relative to other homeostatic dimensions) 409 

easy to manipulate and measure. This subfield also contextualises the common use of 410 

hunger as the predominant motivational strategy for animal experiments.  411 

Hypothalamus as a homeostatic controller. Situated inferior to the thalamus and 412 

superior to the pituitary gland, the hypothalamus is an archipelago of distinct nuclei, 413 

charged with coordinating a microcosm of homeostatic functions (Fig. 6a). The existence of 414 

opponent energy-regulating processes was an early and exciting discovery; two 415 

hypothalamic regions with opposing effects on food intake were found, a lateral area 416 

resulting in hyperphagia when stimulated (‘feeding centre’), and a ventromedial area 417 

resulting in hyperphagia when ablated (‘satiety centre’, Aand & Brobeck 1951; Brobeck 418 

1946). Since then, modern cell-type specific techniques for circuit manipulation and 419 

projection-specific has afforded an unprecedented window into the deep and 420 

neuroanatomically complex networks involved in energy homeostasis. One of the major 421 

components of these networks is the arcuate nucleus (ARC), lying in the mediobasal 422 

hypothalamus, on either side of the third ventricle, just above the median eminence. There 423 

also, at a finer sub-nuclei scale, opponency remains an important principle. Two cell types 424 

are found to be crucial for the control of feeding (Atasoy et al. 2012), identified by 425 

expression of the neuropeptides Agouti-related Protein (AgRP) and Proopiomelanocortin 426 

(POMC), which have seemingly opposing properties. 427 
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AgRP neurons are activated by energy deficits (Mandelblat-Cerf et al. 2015), report on 428 

the nutritional state of the body, and are both necessary (Luquet et al. 2005) and sufficient 429 

(Aponte et al. 2011) to evoke voracious feeding and food-seeking behaviours: the number of 430 

stimulated AgRP neurons is linearly predictive of food intake. These effects appear to be 431 

mediated by GABA and the neuropeptides NPY and AgRP, that stimulate food intake when 432 

delivered directly to the arcuate nucleus. In the absence of food, stimulation of AgRP 433 

neurons promote a range of learned behaviours that relate to hunger and food-seeking 434 

(Dietrich et al. 2015). POMC neurons by contrast are activated by energy surfeit and their 435 

activity inhibits food intake and promotes weight loss (Atasoy et al. 2012). AgRP and POMC 436 

neurons are both regulated by the circulating endocrine signals of nutritional state, 437 

modulating their activity in mutually opposing directions consistent with their function. 438 

These two cell types interact in part through a common set of downstream melanocortin 439 

expressing neurons that are activated by POMC and inhibited by AgRP. These two 440 

subpopulations are interspersed within the ARC making it an obvious candidate site for the 441 

encoding prediction errors for energetic wealth (energy balance, or other synonyms).  442 

Predictive responding. A recent stream of research has employed cell-specific 443 

techniques to image and causally manipulate the activity of AgRP neurons under different 444 

homeostatic challenges that each manipulate homeostatic error, and thus causally control 445 

the motivational state of the animal. Natural deprivation, ghrelin injection, pharmacological 446 

or optogenetic activation of AgRP neurons evoke voracious feeding and inhibit POMC 447 

neurons, as might be expected with a large deviation from a set point (Betley et al. 2015; 448 

Chen et al. 2016; Krashes et al. 2014; Mandelblat-Cerf et al. 2015). However, a homeostatic-449 

comparator based view of the hypothalamus has been challenged by several recent papers 450 
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that show AgRP and POMC neurons encode predictive signals, varying as a function of 451 

future expectations, rather than currently realised energy states per se.  452 

The sensory paradox. These aforementioned papers show for example that fasting-453 

activated AgRP cells are inhibited by the visual presentation of food, prior to eating. This 454 

phenomena appears to be paradoxical (the sensory paradox, hence) for the homeostatic 455 

view of AgRP encoding drive (Wise 2013). If AgRP neurons encode feeding or drive (hunger) 456 

how can they switch off prior to feeding, given that drive is not immediately mitigated upon 457 

seeing the food? Emphasis on the surprising nature of this result, now replicated several 458 

times, hinged on the fact that inhibition occurs even before the food is tasted. Yet, we 459 

would argue that the predictive nature of the signal, does not rest on it occurring before the 460 

taste of the food, since even if it were time-locked to the taste at consumption, it would still 461 

be predictive insofar as no change in nutritive wealth is yet manifest. Indeed, any candidate 462 

drive or hunger signal that changes reliably to extero- or interoceptive cues is still a 463 

predictive signal with respect to the slow dynamics of the gastro-intestinal cascade (the 464 

cascade of physiological events that happen after ingestion). Arguably the energy content of 465 

a food is not fully appropriated until the post-absorptive phase. In this light, the sensory 466 

paradox is just as much a paradox for interoceptive responses time-locked to consumption 467 

(like taste or olfaction), as they are to the exteroceptive signals underpinning cue-learning 468 

(e.g. sight). Since these responses are not taken to be paradoxical, it could be said that the 469 

sensory paradox somewhat dissolves. 470 

In all reported cases to date, most of the above-baseline activity of AgRP neurons was 471 

inhibited prior to feeding initiation (Chen et al. 2016; Betley et al. 2015; Mandelblat-Cerf et 472 

al. 2015; Chen & Knight 2015). The degree of inhibition has been shown to depend on food 473 
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quality, caloric content (Chen et al. 2016), and even show a rebound back to original levels 474 

upon the experimenter rescinding food. These up and down modulations of AgRP that vary 475 

as a function of the agents beliefs, are mirrored by the hormonal signals of energetic status, 476 

that can also be considered endocrine predictors of future energetic wealth: Leptin, 477 

putatively signalling positive energetic wealth (Domingos et al. 2011), suppresses AgRP 478 

(Takahashi & R. D. Cone 2005; Fulton 2000; Betley et al. 2015); whereas ghrelin, putatively 479 

signalling its converse, excites. The inhibition appears sensitive to the appetitive affordance 480 

of food (Gibson 2001), such that food presentation in a closed container that allowed sight 481 

and smell of food but not consumption, had diminished inhibitory effects (Chen et al. 2016).  482 

Indeed, compatible with the fact that feeding can always be disturbed at any point, 483 

residual AgRP firing persists throughout the consummatory period (Mandelblat-Cerf et al. 484 

2015). Through the lens of drive reduction theory, AgRP inhibition thus appears to track the 485 

expected drive that fluctuates with incoming sensory evidence (and thus how this updates 486 

the brain’s generative model). These findings are all compatible on the interpretation that 487 

AgRP firing itself encodes counterfactual prediction errors over a spectrum of near-term 488 

temporal horizons. On this hypothesis, AgRP should be inhibited by any exteroceptive or 489 

interoceptive cue that predicts reductions in energetic drive, and excited by any such 490 

sensory cues that predict inflations of energetic drive. This expectation would plausibly be 491 

predicated on an accumulation of evidence integrating sensory modalities. One obvious 492 

prediction would be that the AgRP baseline firing effect should, with sufficient training, be 493 

quantitatively sensitive to the predictive probability of sensory cues in both directions, 494 

signalling expected decrements and increments in expected energetic prediction errors. It 495 

should be noted that these expected future energetic prediction errors are prediction errors 496 

over viscerosensory states associated with energetic wealth, that likely follow from 497 
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gastrointestinal and adipose systems. The way that energetic wealth predictions are derived 498 

from these redundant signals will be an important next step toward understanding the AgRP 499 

encoding function. 500 

It is interesting to note that the AgRP responses are heterogeneous in their temporal 501 

kinetics (Betley et al. 2015), in responding to food-predictive cues, with some showing a 502 

slow attenuation over time, and others faster. This suggests that the AgRP population as a 503 

whole encodes a distribution of energetic errors over a spectrum of temporal horizons. 504 

Valence signalling. Another interesting parallel, between this new wave of AgRP data 505 

and drive reduction theory as outlined above, is that both drive and AgRP carry negative 506 

valence, as well as the fact that reducing-drive and reducing-AgRP activity are imbued with 507 

positive valence. This is a subtle issue, and can cause some seemingly conflicting 508 

conclusions, with some groups reporting that AgRP carries negative valence (Betley et al. 509 

2015), and others reporting its positive valence (Chen et al. 2016). The discrepancy can 510 

arguably be resolved in light of DR. Under DR (and therefore its cognate, HRL), drive is a 511 

negative valence signal, that agents work to minimise. Actions that reduce drive are 512 

rewarding which reveals why the attribution of valence to neural signals could easily be 513 

conflated. The key prediction is that if AgRP signals future drive (an error on the predicted 514 

energetic wealth), then AgRP stimulation, in the absence of any means of reducing drive (i.e. 515 

food), should be aversive since drive-inflations are costs (negative reward). Indeed, AgRP 516 

stimulation can condition place (and flavour) aversion (Betley et al. 2015). However in the 517 

presence of food, the drive reduction that follows AgRP stimulation should be larger and 518 

thus more rewarding, thus the reinforcing effect of AgRP stimulation should only occur in 519 

the presence of food, which is indeed what is observed (Chen et al. 2016). This is indeed a 520 
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key distinction between the two opposing papers. One apparent problem with this model, is 521 

that mice fail to perform operant responses in order to shut off AgRP neuron activity (Betley 522 

et al. 2015; Chen et al. 2016); however, it is important to consider issues of credit 523 

assignment. Under natural conditions, a drive reduction such as that associated with AgRP 524 

silencing, in the absence of sensory food cues, can only be due to post-ingestive effects. This 525 

means that the food consumed minutes or hours previously will be assigned the credit for 526 

the drive-reduction caused by AgRP inhibition now, which predicts that recently performed 527 

operant actions should not necessarily be reinforced at all. Under the mouse’s generative 528 

model of the world, (again in the absence of sensory food cues) the drive reduction should 529 

most likely be caused by actions/sensory/gustatory events long before the operant action 530 

was performed. How easily mice could learn this long-range temporal contingency with 531 

overtraining though is an open question. 532 

Interface between reward prediction errors and glycaemic control  533 

Introducing dopamine. The catecholamine dopamine is synonymous with 534 

reinforcement, reward and motivation. Whilst the literature on dopamine is vast, we will 535 

restrict discussion to its putative role in glycaemic or energetic control as discussed above. It 536 

is well known that phasic signals in ventral tegmental area (VTA-DA), and thus dopamine 537 

release in the mesolimbic system, systematically scale with the nutritive value of oro-538 

sensory events in monkeys, where reward magnitude is determined by the volume of 539 

nutrients consumed (Tobler et al. 2005; Stauffer et al. 2014; Ballard & Knutson 2009). In 540 

humans, there is evidence that post-prandial dopamine release is modulated by deprivation 541 

with dopamine binding decreasing more in response to consumption after fasting compared 542 

to non-fasting (Small et al. 2003). This echoes extant evidence from rats and mice that show 543 

increased dopaminergic release (as measured by dopamine metabolite 3,4-544 
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dihydroxyphenylacetic acid) at feeding after a period of starvation in the nucleus accumbens 545 

(NAc, McCullough & Salamone 1992; Radhakishun et al. 1988), medial prefrontal cortex (but 546 

not NAc, Carlson et al. 1987) and interestingly, the posterior hypothalamus (Heffner et al. 547 

1980). Despite these findings and others, one of the curious features of the literature on 548 

phasic DA and reward is that animals are motivated by a homeostatic deficit such as thirst or 549 

hunger, and yet homeostatic states are rarely foregrounded in analyses of relevant 550 

modulators of reward signalling. One recent interesting exception to this is offered by Cone 551 

and colleagues, who present evidence for how sodium depletion can modulate RPE in the 552 

NAc of rats (J. J. Cone et al. 2016). By pairing sodium sated and depleted rats with 553 

conditioned and unconditioned stimuli, they found that phasic dopaminergic RPE signals can 554 

manifest independently of learning and are “expressed as a function of their current 555 

[homeostatic] value to the organism” (J. J. Cone et al. 2016, square brackets added).  556 

Thus, on many grounds, homeostatic states should be potent modulators of these DA 557 

signals. As the animal plays its task for consumption of water or sugar-containing juice, its 558 

homeostatic deficits diminish, or are predicted to diminish, meaning that the value of those 559 

commodities should steadily decrease. Indeed, given the quantitative evidence for a relation 560 

between RPE and marginal utility (Stauffer et al. 2014), the fact that this is rarely tested or 561 

acknowledged (or for that matter controlled for) is surprising, given that the manipulation 562 

that makes the outcomes rewarding is continually being attenuated, until the animal rejects 563 

further play, presumably because the marginal utility of consumption has depleted to a 564 

point of indifference. For this reason, we recommend greater scrutiny of homeostatic 565 

states, and their dynamics under neurobiological studies of reward. In the case of energetic 566 

variables, intra-arterial telemetric glucose monitors are now available, and could afford 567 

important insights in this regard. 568 
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At this point, we introduce a fundamentally different perspective on the role of 569 

dopamine. In schemes that commit themselves to some form of reinforcement learning, 570 

dopamine is usually cast as a reward prediction error (Fig. 4, middle); namely, the difference 571 

between expected and encountered reward. This is in contrast to active inference 572 

formulations, which accommodates the fact that dopamine is a neuromodulator. In other 573 

words, dopamine cannot drive synaptic responses – it can only modulate them. This 574 

modulatory role is exactly that required of precision. On this view, phasic dopamine 575 

responses signal an increase in the precision or confidence placed in beliefs about ongoing 576 

policies. For example, the transfer of dopamine responses from unconditioned to 577 

conditioned stimuli reflect the increase in confidence about “what I should do" after 578 

observing a conditioned stimulus. In short, the reinforcement learning (reward learning) 579 

story associates dopaminergic responses with RPE, while the active inference story treats 580 

dopaminergic function as encoding the confidence in policy selection, based upon inferred 581 

states of the world. 582 

Homeostatic reinforcement interface. Despite the paucity of direct evidence for the 583 

interface between homeostatic variables and reward or precision computations, there is 584 

convergent (but still tentative) evidence to suggest how the interface could be implemented 585 

(Fig. 6a & 6b). VTA-DA neurons host a number of receptors that would mediate this 586 

interface; they are positively modulated by ghrelin, a hormone reporting short-term energy 587 

deficits, and melanocyte-stimulating hormones (α,β,γ) released from POMC neurons; 588 

whereas they are inhibited by AgRP and its co-transmitter GABA, as well as by hormone 589 

insulin, and leptin, as well as by GLP-1 (Ferrario et al. 2016). Thus, the cells themselves 590 

provide ample opportunity for interfacing from homeostatic state information to the 591 

precision or reward value signal that is broadcast to the mesolimbic system from the VTA. 592 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 5, 2018. ; https://doi.org/10.1101/242974doi: bioRxiv preprint 

https://doi.org/10.1101/242974
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Thus, the first question to ask is do they connect directly? Yes. AgRP axons project 593 

directly to both the VTA and the substantia nigra (Dietrich et al. 2012), and POMC neurons 594 

have been labelled by retrograde tracers in the VTA (King & Hentges 2011, Fig. 7). On the 595 

reinforcement learning account AgRP, neurons should positively modulate VTA-DA, since 596 

they encode something hunger-like and hunger increases the value of food. Conversely, 597 

POMC neurons, encoding the converse of AgRP, should then negatively modulate VTA-DA. 598 

In fact, the opposite appears to be observed. As noted above, AgRP neurons exert 599 

inhibitory effects over VTA-DA cells, directly via inverse agonism of the MCR3 receptor (the 600 

predominant melanocortin receptor expressed on VTA-DA neurons), and indirectly via its 601 

co-transmitter GABA, that acts to stimulate inhibitory interneurons that inhibit VTA-DA cells. 602 

Symmetrically, POMC neurons release melanocyte-stimulating hormones which also 603 

activate MCR3, which activates the VTA-DA neurons. These empirical results fit comfortably 604 

with active inference in the following sense: If AgRP neurons encode the hypothesis that "I 605 

need to eat", then higher level (allostatic) expectations about eating will suppress their 606 

activity. However, the higher-level expectations that "I am about to eat" must be held with 607 

confidence or precision that is accompanied by dopaminergic discharges. In short, when 608 

AgRP firing is suppressed this will necessarily entail a confidence belief that “I am about to 609 

eat” and a disinhibition of dopaminergic outflow to the cortical basal ganglia thalamic 610 

systems responsible for policy selection. 611 

Why the counterintuitive responding? Taken in the context of the predictive control 612 

findings discussed above if AgRP is deactivated, this means that under our interpretation, 613 

the precision on the prediction of positive future energy wealth increases, which is encoded 614 

via phasic dopamine, via the release of VTA-DA from inhibition. Likewise, if the POMC 615 
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neurons are simultaneously activated by the same sensory evidence, then this has an 616 

excitatory effect on the same VTA-DA cells, which together with the AgRP disinhibition, 617 

provides a means by which VTA-DA signalling can be anchored to updates of predictions on 618 

future energetic wealth (i.e., the consequences of beliefs about the current long-term policy 619 

are assigned high precision or confidence). This is corroborated by ex-vivo recordings in 620 

which VTA-DA neurons increase baseline firing to injections of γ-MSH (Pandit et al. 2015). It 621 

should be noted that these findings seem to be at odds with the existing consensus that 622 

AgRP neurons acts to increase feeding and reward, and MSH acts to decrease feeding (Yen 623 

& Roseberry 2015).  624 

This might however be an artefact of the way these injection experiments are 625 

performed. Pandit and colleagues (2015) show that infusion of a non-specific MCR agonist 626 

that targets both MC3R and MC4R, then sucrose responding decreases (also shown by 627 

Shanmugarajah et al. 2017; Yen & Roseberry 2015). However, by adding an MC4R 628 

antagonist, turns this response into an increase in sucrose responding. The important point 629 

here being that MC3R is predominantly expressed in the VTA, whereas the MC4R is 630 

expressed more broadly (for instance in the Nucleus accumbens) but not in the VTA. 631 

Interestingly the MC3R are predominantly expressed on the D2R expressing neurons that 632 

project into the nucleus accumbens. Notably the increased sucrose responding mediated by 633 

MC3R receptor agonism, is dependent on dopamine since DA-antagonism eliminates the 634 

effect (Pandit et al. 2015). Together, this might explain the apparent contradictions between 635 

prior work showing that melanocortin injections decrease responses to food reward (Yen & 636 

Roseberry 2015). 637 

  638 
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Conclusion 639 

In addressing the problems of homeostatic control, we have tried to bridge between 640 

several different fields, from evolutionary theory, neo-behaviourism, reinforcement 641 

learning, and computational and metabolic neurosciences. In doing so, this paper offers two 642 

main contributions.  643 

First, we revisited how control theory and reinforcement learning have been applied to 644 

motivational behaviour, reward and homeostasis. We marshalled existing as well as novel 645 

arguments, for how these schemes rest on biologically implausible assumptions, either via 646 

circular definitions of reward, unprincipled groundings of value or drive functions, or by 647 

assuming degrees of certainty that are incompatible with the capricious nature of our 648 

natural habitats. Against this background, we have reviewed the active inference framework 649 

as it applies to these same homeostatic control problems. Putatively, we conclude that this 650 

offers promise in circumventing the shortcomings summarised above, and at the same time 651 

retains and builds on several important notions from comparator-based and reinforcement 652 

learning models. Of these conceptual advances, the most important are that set points are 653 

absorbed into prior beliefs about hidden viscero-sensory states, that homeostatic errors are 654 

cast as precision-weighted errors on interoceptive predictions, and that optimal choice 655 

behaviour is framed as an inferential process given a generative model of the body and its 656 

environment. 657 

Second, we reviewed extant evidence pertaining to the how homeostasis interfaces 658 

with value computations in the domain of nutrient energy. Focusing on the case of the 659 

arcuate nucleus, we reviewed recent evidence for its role in the predictive control of energy 660 

homeostasis, contextualising the observations in the context of competing theoretical 661 
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formulations. We assembled evidence suggesting that a subset of these arcuate 662 

subpopulations project directly to, and are thus in a privileged position to opponently 663 

modulate, dopaminergic VTA cells as a function of energetic predictions over a spectrum of 664 

temporal horizons. Further, we have surveyed how circulating factors that contribute to the 665 

dynamics of glucose homeostasis are direct modulators of dopaminergic neurons in the 666 

midbrain as well. The emerging picture points to a multi-faceted homeostatic-reward 667 

interface between the hypothalamus and midbrain. This interface may play a pivotal role in 668 

the conjoint optimisation of physiological and behavioural homeostasis.  669 

That said – given the current state of knowledge – assigning computational roles to 670 

hypothalamic neurons may be premature. The computational quantities entailed by active 671 

inference are many, and their differences can be subtle. For instance, whether AgRP or 672 

POMC are encoding predictions, prediction errors, interoceptive states, or precisions 673 

portended by those states, will require careful experimentation. Existing evidence does not 674 

yet conclusively support one or the other. However, we hope that the theoretical 675 

perspective offered here motivates empirical experiments that can disambiguate between 676 

computational formulations of the brain’s homeostatic-reinforcement interface.  677 

678 
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 679 

Figure 1 |  Homeostatic state space and survival probability. a, Schematic showing a simple 2-dimensional 680 

homeostatic state space, where h* denotes a set point, ht current state at time t, and the error between them 681 

defined here as the absolute Euclidean distance εt,. b, Shows a survival probability surface, depicted over the 682 

same homeostatic state space, thus highlighting the relation between homeostatic error and the conditional 683 

probability of survival (over some time interval), given the occupation of that homeostatic state. 684 

  685 
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 686 

Figure 2 |  Comparator-based models. Under this class of model, the agent is described as a homeostatic 687 

error-correcting system. Broadly, the brain receives viscerosensory input from the body given its current 688 

physiological state, and it computes the homeostatic error between its current state and its set point (h*), and 689 

then iteratively deploys controlled action to correct this. a, Depicts the subsystem that entails direct feedback 690 

control, which combines a controller (here the sensory system), with a plant (here the motor system) that 691 

executes action to influence the current homeostatic state. The current homeostatic state is sensed by 692 

interoceptive feedback, which when compared to homeostatic set point, results in a homeostatic error that is 693 

forwarded to the controller, from which further motor commands are sent to the plant to iteratively minimise 694 

error. This is the homeostatic mechanism described by most physiology textbooks. b, An efference copy of the 695 

motor command is sent to a forward dynamic model that predicts the future interoceptive feedback, given the 696 

motor command. Residual errors between the predicted state and the set point are then iteratively minimised 697 

with further commands. c, Finally, a prediction error, computed as the error between the predicted and the 698 

current state is used to update the forward dynamic model. Insofar the system minimises this prediction error, 699 

the forward dynamic model makes accurate predictions of the homeostatic consequences of its actions.   700 
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 701 

Figure 3 | Homeostatic reinforcement learning. In the upper left, the surface represents a drive function, 702 

mapping from homeostatic state space (horizontal plane) to drive (vertical axis). The drive function depends 703 

on the homeostatic state space, and the system to be modelled. Here, we illustrate a drive function based on 704 

the surprise (negative log probability) derived from the survival probability function illustrated in Fig. 1b. If the 705 

drive function is appropriately configured, then actions – that influence homeostatic state such that 706 

homeostatic error is reduced – result in drive reduction. Under HRL, drive reduction is defined as rewarding, as 707 

in drive reduction theory. By comparing the estimated value to the actual reward experienced (with negative 708 

reward as drive inflation), a reward prediction error is generated and used to update future estimates of value. 709 

Actions are selected as a function of these estimated values, such that selecting the actions that maximise 710 

value, result in environmental exchanges that minimise drive, maximise reward, and thus minimise 711 

homeostatic error. Adapted from (Keramati & Gutkin 2014) with permission. 712 

 713 
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Figure 4 | Comparing models.  Common to all model architectures is the fact that the agent is in a given 715 

homeostatic state and a given environmental state. The agent can act in two ways. First it can engage in 716 

physiological homeostasis by controlling its autonomic plant, which directly modulates the homeostatic state 717 

of the body (Δhomeostatic state). Second it can engage in behavioural homeostasis by moving, via the 718 

somatic-motor system, to change its sampling of the environment (Δenvironment), which will indirectly 719 

change its homeostatic state. These changes in homeostatic state are hidden, but they can be transformed 720 

into neural input by the viscerosensory system (viscerosensory mapping). How the different theories prescribe 721 

the control of these two plants based on sensory inputs is highlighted in the following comparison. Optimal 722 

control theory. This is a schematic summary of the components commonly found in conventional treatments 723 

of optimal motor control, here applied to homeostatic control. The hidden homeostatic states produce 724 

interoceptive sensations through the viscerosensory mapping. This viscerosensory input is used for hidden-725 

state estimation (e.g. by Bayesian filtering) based on the forward model and a (weighted) prediction error. The 726 

prediction error is the difference between sensory input and predictions of that input given the predicted state 727 

(orange). The state estimates are used for optimal control, which returns motor commands (purple and blue) 728 

that minimize future cost or loss, specified by a cost function (not shown, alternatively known as an inverse 729 

model). These optimal control signals are then sent to the two motor plants and (through an efference copy, 730 

yellow) to the forward model. The forward model then computes the predicted change in hidden homeostatic 731 

states. In this scheme, the forward model can be regarded as a mapping from motor control to changes in 732 

hidden homeostatic states. Effectively, its role is to finesse the problem of inferring homeostatic states and 733 

thereby optimize homeostatic control signals. This is necessary because delays and noise on sensory signals 734 

could easily confound the implicit closed-loop control used by this scheme.  Homeostatic reinforcement 735 

learning. Here we interpret the schematic in Fig. 3 using the same logic and terms wherever possible. Again, 736 

we start with the hidden homeostatic states that are sensed via a viscerosensory mapping. This viscerosensory 737 

input is submitted to a drive function, mapping from sensory state to the negative valenced motivational drive. 738 

The drive reductions are encoded as experienced rewards (maroon), which are subject to a temporal 739 

difference learning, where the value of sensory states are estimated as the rational expectations of future 740 

discounted rewards following from that state. The difference between the value estimated at a given trial 741 

(green), and the updates to that value based on the new sensory inputs (exteroceptive and viscerosensory), 742 

yields a reward prediction error (red), that is used to update the value estimate. The value estimates (green) 743 

for different possible actions, are then subject to action selection, from which the highest value action can be 744 

probabilistically selected. Active inference. We start again by considering environmental dynamics caused by 745 

somatic action. Along with autonomic action, this can result in changes to the body, causing both 746 

proprioceptive and viscerosensory input (we omit exteroceptive sensations for clarity), yielding proprioceptive 747 

and viscerosensory prediction errors. These prediction errors are simply the difference between the sensory 748 

input observed and the sensory inputs predicted under the predicted (hidden) states. In this form, top-down 749 

predictions from the forward model are compared with sensory inputs to produce bottom-up prediction errors 750 

(red connections) that enter the forward model. Crucially, the mapping from hidden states to sensations is 751 

now part of the forward (and thus, generative) model. Here, cost functions have been replaced by prior beliefs 752 
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about (desired) homeostatic states. Allostatic regulation here can be achieved through prior beliefs over 753 

homeostatic trajectories. These prior beliefs enter the forward model to guide predictions of sensory inputs. 754 

These prior beliefs set the targets and priorities of homeostatic control, and thus are strongly selected as a 755 

function of their contribution to survival (and thus fitness). Proprioceptive predictions are fulfilled by the 756 

somatic motor system by classical motor reflex arcs (the somatic plant), while predictions of viscerosensory 757 

input are fulfilled by the autonomic plant. Optimal control now reduces to simply suppressing proprioceptive 758 

and viscerosensory prediction errors.   759 
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 760 

Figure 5 | Interoception, Bayes rule and generative models. a, Bayes rule provides the probabilistic 761 

foundation for the generative model 𝑚, which the agent embodies, and under which the agent expects 762 

homeostasis. This consists of a likelihood function 𝑝(𝑠|ℎ,𝑚) (a probabilistic map from hidden external states, 763 

ℎ, to sensory inputs 𝑠) in conjunction with a prior (ℎ|𝑚) (a probability distribution over external states, 764 

including bodily states). In this setting, the prior can be interpreted as a probabilistic set point. Calculating the 765 

posterior 𝑝(ℎ|𝑠,𝑚) is model inversion and yields the probability of a hidden homeostatic state, given the 766 

sensory input. Thus, the posterior is a mix between likelihood (how likely is this) and prior (how often does it 767 

occur) weighted by their relative precision (see Bogacz 2015). The denominator 𝑝(𝑠|𝑚) is a normalisation term 768 

that ensures the posterior integrates to one. Importantly, this term is also the foundation of Bayesian model 769 

selection (see Ghahramani 2012 for an introduction). b, Illustrates how homeostatic dynamics (left box) that 770 

are hidden from the agent give rise to sensory input 𝑠, which the phenotype must infer on, given its generative 771 

model 𝑚. The causal structure of the external world (including the body) is encoded in synaptic activity (right 772 

box) encoded in a forward dynamic model, which allows inference about the causes (hidden states) of the 773 

sensory input.  774 
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 776 

Figure 6 |  Homeostatic-reinforcement interface. a, Red T-lines and lettering illustrate inhibitory inputs; Green 777 

arrows and text indicate excitatory inputs. Dopamine is coloured yellow as this can have both excitatory and 778 

inhibitory effects depending on receptor subtypes. Projections: Cocaine and amphetamine regulated transcript 779 

(CART) and pro-opiomelanocortin (POMC) in the ARC of the hypothalamus process POMC to alpha-MSH that 780 

activate melanocortin-4 receptors (MC4R) on post-synaptic cells in the arcuate of the  lateral hypothalamus 781 

(ARC), which projects to the VTA (details not shown here, see Ferrario et al. 2016). This melanocortin pathway 782 

is suppressed by neighbouring cells in the ARC that produce Agouti-related protein (AgRP), neuropeptide Y 783 

(NPY) and GABA that all inhibit POMC neurons (Mandelblat-Cerf et al. 2015) and project to many of the same 784 

sites, including the VTA. Further, these project to CGRP neurons in the parabrachial nuclei, which in turn 785 

projects to VTA. Hormone input: AgRP neurons are inhibited (red T-bar) by leptin and insulin, whereas POMC 786 

are activated by those same hormones (green arrow). Hormone ghrelin, that signal short term energy deficits, 787 

activates AgRP and dopamine (green arrows) in the VTA (Palmiter 2007). Conversely, leptin and insulin 788 

attenuates dopaminergic firing (red T-bar). b,. There are four important dopaminergic pathways that project 789 

from the midbrain widely through the brain. Importantly, the VTA projects through the mesolimbic & 790 

mesocortical reward circuit to the caudate & nucleus accumbens (NAc) in the striatum and also the amygdala, 791 

hippocampus and prefrontal cortex. Further, the VTA also hosts GABAergic projection neurons that modulate 792 

many of the same target regions as dopamine. 793 
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