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Abstract 27 

1. Little consensus has emerged regarding how proximate and ultimate drivers such as 28 

abundance, productivity, disturbance, and temperature may affect species richness and other 29 

aspects of biodiversity. Part of the confusion is that most studies examine species richness at 30 

a single spatial scale and ignore how the underlying components of species richness can 31 

vary with spatial scale. 32 

2. We provide an approach for the measurement of biodiversity (MoB) that decomposes scale-33 

specific changes in richness into proximate components attributed to: 1) the species 34 

abundance distribution, 2) density of individuals, and 3) the spatial arrangement of 35 

individuals. We decompose species richness using a nested comparison of individual- and 36 

plot-based species rarefaction and accumulation curves.  37 

3. Each curve provides some unique scale-specific information on the underlying components 38 

of species richness. We tested the validity of our method on simulated data, and we 39 

demonstrate it on empirical data on plant species richness in invaded and uninvaded 40 

woodlands. We integrated these methods into a new R package (mobr).   41 

4. The metrics that mobr provides will allow ecologists to move beyond comparisons of 42 

species richness at a single spatial scale towards a more mechanistic understanding of the 43 

drivers of community organization that incorporates information on the scale dependence of 44 

the proximate components of species richness.  45 
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Introduction 49 

Species richness – the number of species co-occurring in a specified area – is one of the most 50 

widely-used biodiversity metrics. However, ecologists often struggle to understand the 51 

mechanistic drivers of richness, in part because multiple ecological processes can yield 52 

qualitatively similar effects on species richness (Chase and Leibold 2002, Leibold and Chase 53 

2017). For example, high species richness in a local community can be maintained either by 54 

species partitioning niche space to reduce interspecific competition (Tilman 1994), or by a 55 

balance between immigration and stochastic local extinction (Hubbell 2001). Similarly, high 56 

species richness in the tropics has been attributed to numerous mechanisms such as higher 57 

productivity supporting more individuals, higher speciation rates, and longer evolutionary time 58 

since disturbance (Rosenzweig 1995).  59 

Although species richness is a single metric that can be measured at a particular grain 60 

size or spatial scale, it is a response variable that summarizes the underlying biodiversity 61 

information that is contained in the individual organisms, which each are assigned to a particular 62 

species, Operational Taxonomic Unit, or other taxonomic grouping. Variation in species richness 63 

can be decomposed into three components (He and Legendre 2002, McGill 2010): 1) the number 64 

and relative proportion of species in the regional source pool (i.e., the species abundance 65 

distribution, SAD), 2) the number of individuals per plot (i.e., density), and 3) the spatial 66 

distribution of individuals that belong to the same species (i.e., spatial aggregation). Changes in 67 

species richness may reflect one or a combination of all three components changing 68 
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simultaneously. In some cases, the density and spatial arrangement of individuals simply reflect 69 

sampling intensity and detection errors. But in other cases, density and spatial arrangement of 70 

individuals may reflect responses to experimental treatments that ultimately drive the patterns of 71 

observed species richness. Thus, it is critical that we look beyond richness as a single metric, and 72 

develop methods to disentangle its underlying components that have more mechanistic links to 73 

processes (e.g., Vellend 2016). Although this is not the only mathematically valid decomposition 74 

of species richness, these three components are well-studied properties of ecological systems, 75 

and provide insights into mechanisms behind changes in richness and community structure 76 

(Harte et al. 2008, Supp et al. 2012, McGlinn et al. 2015).  77 

The shape of the regional SAD influences local richness. The shape of the SAD is 78 

influenced by the degree to which common species dominate the individuals observed in a 79 

region, and on the total number of highly rare species. Local communities that are part of a more 80 

even regional SAD (i.e., most species having similar abundances) will have high values of local 81 

richness because it is more likely that the individuals sampled will represent different species. 82 

Local communities that are part of regions with a more uneven SAD (e.g., most individuals are a 83 

single species) will have low values of local richness because it is more likely that the 84 

individuals sampled will be the same, highly common species (He and Legendre 2002, McGlinn 85 

and Palmer 2009). The richness of the regional species pool, which is influenced by the total 86 

number of rare species, has a similar effect on local richness. As regional species richness 87 

increases, local richness will also increase if the local community is even a partly random 88 

subsample of the species in the regional pool.  Because the regional species pool is never fully 89 

observed, the two sub-components –the shape of the SAD and the size of the regional species 90 
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pool – cannot be completed disentangled. Thus, we group them together, as the SAD effect on 91 

local richness. 92 

The number of individuals in the local community directly affects richness due to the 93 

sampling effect (the More Individuals Hypothesis of richness; Hurlbert 2004). As more 94 

individuals are randomly sampled from the regional pool, species richness is bound to increase. 95 

This effect has been hypothesized to be strongest at fine spatial scales; however, even at larger 96 

spatial scales, it never truly goes to zero (Palmer and van der Maarel 1995, Palmer et al. 2008).  97 

The spatial arrangement of individuals within a plot or across plots is rarely random. 98 

Instead most individuals are spatially clustered or aggregated in some way, with neighboring 99 

individuals more likely belonging to the same species. As individuals within species become 100 

more spatially clustered, local diversity will decrease because the local community or sample is 101 

likely to consist of clusters of only a few species (Karlson et al. 2007, Chiarucci et al. 2009, 102 

Collins and Simberloff 2009). 103 

Traditionally, individual-based rarefaction has been used to control for the effect of 104 

numbers of individuals on richness comparisons (Hurlbert 1971, Simberloff 1972, Gotelli and 105 

Colwell 2001), but few methods exist (e.g., Cayuela et al. 2015) for decomposing the effects of 106 

SADs and spatial aggregation on species richness. Because species richness depends intimately 107 

on the spatial and temporal scale of sampling, the relative contributions of the three components 108 

are also likely to change with scale. Spatial scale can be represented both by number of 109 

individuals, which scales linearly with area when density is relatively constant, and by the 110 

number of samples (plots). We will demonstrate that this generalized view of spatial scale allows 111 

us to distinguish three different types of sampling curves: (1) (spatially constrained) plot-based 112 

accumulation; (2) non-spatial plot-based rarefaction; and (3) (non spatial) individual-based 113 
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rarefaction. Constructing these different curves allows us to parse the relative contributions of 114 

the three proximate drivers of richness and how those contributions potentially change with 115 

spatial scale. Specifically, we develop a framework that provides a series of sequential analyses 116 

for estimating and testing the effects of the SAD, individual density, and spatial aggregation on 117 

changes in species richness across scales. We have implemented these methods in a freely 118 

available R package mobr (https://github.com/MoBiodiv/mobr) 119 

Materials and Methods 120 

Method Overview 121 

Our method targets data collected in standardized sampling units such as quadrats, plots, 122 

transects, net sweeps, or pit falls of constant area or sampling effort (we refer to these as “plots”) 123 

that are assigned to treatments. We use the term treatment here generically to refer to 124 

manipulative treatments or to groups within an observational study (e.g., invaded vs uninvaded 125 

plots). The designation of plots within treatments implicitly defines the α scale – a single plot – 126 

and the γ scale – all plots within a treatment. If the sampling design is relatively balanced among 127 

treatments, the total sample area and the spatial extent (the minimum polygon encompassing all 128 

the plots in the treatment) are similar for each treatment. In an experimental study, each plot is 129 

assigned to a treatment. In an observational study, each plot is assigned to a categorical grouping 130 

variable(s). For this typical experimental/sampling design, our method provides two key outputs: 131 

1) the relative contribution of the different components affecting richness (SAD, density, and 132 

spatial aggregation) to the observed change in richness between treatments and 2) quantifying 133 

how species richness and its decomposition change with spatial scale. We propose two 134 

complementary ways to view scale-dependent shifts in species richness and its components: a 135 

simple-to-interpret two-scale analysis and a more informative continuous scale analysis.  136 
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 The two-scale analysis provides a big-picture view of the changes between the treatments 137 

by focusing exclusively on the α (plot-level) and γ (across all plots) spatial scales. It provides 138 

diagnostics for whether species richness and its components differ between treatments at the two 139 

scales. The continuous scale analysis expands the two-scale analysis by taking advantage of three 140 

distinct species richness curves computed across a range of scales: 1) plot-based accumulation 141 

curve (Gotelli and Colwell 2001, Chiarucci et al. 2009), where the order in which plots are 142 

sampled depends on their spatial proximity; 2) the non-spatial, plot-based rarefaction, where 143 

individuals are randomly shuffled across plots within a treatment while maintaining average plot 144 

density; and 3) the individual-based rarefaction curve where again individuals are randomly 145 

shuffled across plots within a treatment but in this case average plot density is not maintained. 146 

The differences between these curves are used to isolate the effects of the SAD, density of 147 

individuals, and spatial aggregation on richness and document how these effects change as a 148 

function of scale. 149 

Detailed Data Requirements  150 

Table 1. Mathematical nomenclature used in the study. 151 

Treatment 

(or group 

label) 

Plot Coordinates Species 1 … Species S Total abundance Richness 

1 1 x1,1 y1,1 n1,1,1 … n1,1,S 𝑁1,1 = ∑ 𝑛1,1,𝑠
𝑠

 S1,1 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

1 K x1,K y1,K n1,K,1 

…
 n1,K,S 𝑁1,𝐾 = ∑ 𝑛1,𝐾,𝑠

𝑠
 S1,K 

2 1 x2,1 y2,1 n2,1,1 

…
 n2,1,S 𝑁2,1 = ∑ 𝑛2,1,𝑠

𝑠
 S2,1 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 

…
 

 …
 

 …
 

 

2 K x2,K y2,K n2,K,1 
… 

n2,K,S 𝑁2,𝐾 = ∑ 𝑛2,𝐾,𝑠
𝑠

 S2,K 

 152 
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Consider T = 2 treatments, with K replicated plots per treatment (Table 1). Within each 153 

plot, we have measured the abundance of each species, which can be denoted by nt,k,s, where t = 154 

1, 2 for treatment, k = 1, 2, … K for plot number within the treatment, and s = 1, 2, … S for 155 

species identity, with a total of S species recorded among all plots and treatments. The 156 

experimental design does not necessarily have to be balanced (i.e., K can differ between 157 

treatments) if the spatial extent is still similar between the treatments. For simplicity of notation 158 

we describe the case of a balanced design here. St,k is the number of species observed in plot k in 159 

treatment t (i.e.,  number of species with nt,k,s > 0), and Nt,k is the number of individuals observed 160 

in plot k in treatment t (i.e., 𝑁𝑡,𝑘 = ∑ 𝑛𝑡,𝑘,𝑠𝑠 ). The spatial coordinates of each plot k in treatment t 161 

are xt,k and yt,k. We focus on spatial patterns but our framework also applies analogously to 162 

samples distributed through time.  163 

For clarity of explanation we focus here on a single-factor design with two (or more) 164 

categorical treatment levels. The method can be extended to accommodate crossed designs and 165 

regression-style continuous treatments which we describe in the Discussion and Supplement S5.  166 

Two-scale analysis 167 

The two-scale analysis is intended to provide a simple decomposition of species richness 168 

while still emphasizing the three components and change with spatial scale. In the two-scale 169 

analysis, we compare observed species richness in each treatment and several other summary 170 

statistics at the α and γ scales (Table 2). The summary statistics were chosen to represent the 171 

most informative aspects of individual-based rarefaction curves (Fig. 1). These rarefaction 172 

curves plot the expected species richness Sn against the number of individuals when individuals 173 

are randomly drawn from the sample at the α or γ scales. The curve can be calculated precisely 174 
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using the hypergeometric sampling formula given the SAD (nt,k,s at the plot level, nt,+,s at the 175 

treatment level) (Hurlbert 1971).  176 

We show how several widely-used diversity metrics are represented along the individual 177 

rarefaction curve, corresponding to α and γ scales (Fig. 1, Table 2, see Supplement S1 for 178 

detailed metric description). The total number of individuals within a plot (Nt,k) or within a 179 

treatment (Nt,+) determines the endpoint of the rarefaction curves. Rarefied richness (Sn) controls 180 

richness comparisons for differences in individual density between treatments because it is the 181 

expected number of species for a random draw of n individuals ranging from 1 to N. To compute 182 

Sn at the α scale we set n to the minimum number of individuals across all samples in both 183 

treatments with a hard minimum of 5, and at the γ scale we multiplied this n value by the number 184 

of samples within a treatment (i.e., K). The probability of intraspecific encounter (PIE), Sasymptote 185 

(via Chao1 estimator) and the number of undiscovered species (f0) reflect the SAD component. 186 

We follow Jost (2007) and convert PIE into effective numbers of species (SPIE) so that it can be 187 

more easily interpreted as a metric of diversity (See Supplement S1 for more description and 188 

justification of PIE, f0, and associated β metrics). Whittaker’s multiplicative beta diversity 189 

metrics for S, SPIE, and f0 reflect the degree of turnover between the α and γ scales. In Fig. 1, 190 

species are spatially aggregated across plots, and βS is large.  191 

  192 
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 193 

Figure 1. Illustration of how the key biodiversity metrics are derived from the individual-based 194 

rarefaction curves constructed at the α (i.e., single plot) and γ (i.e., all plots) scales. The solid 195 

lines are rarefied richness derived from the randomly sampling individuals from each plot’s SAD 196 

and the dotted lines reflect the extrapolated richness via Chao1 estimator. The light blue curves 197 

show individual rarefaction curves for each plot. The labeled metrics can also be calculated for 198 

each α-scale curve (not shown). The dark blue curve reflects the individual rarefaction curve at 199 

the γ-scale, with all individuals from all plots combined. S and N correspond to the ending points 200 

of the rarefaction curve on the richness and individual axes, respectively. Sasymptote is the 201 

extrapolated asymptote. See Table 2 for definitions of metrics including ones not illustrated.   202 

Comparison of these summary statistics between treatments identifies whether the 203 

treatments have a significant effect on richness at these two scales, and if they do, the potential 204 

proximate driver(s) of the change. A difference in N between treatments implies that differences 205 
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in richness between treatments may be a result of treatments changing the density of individuals. 206 

Differences in SPIE and/or f0 imply that change in the shape of the SAD may contribute to the 207 

change in richness, with SPIE being most sensitive to changes in abundant species and f0 being 208 

most sensitive to changes in number of rare species. Differences in β-diversity metrics may be 209 

due to differences in any of the three components: SAD, N, or aggregation, and each β metric 210 

(Table 2) provides a different weighting on common vs rare species.  211 

  212 
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Table 2. Definitions and interpretations of the summary statistics for simplified two-scale 213 

analysis 214 

Metric Definition Interpretation  

S Observed richness, effective number 

of species of order 0 (Jost, 2007) 

Number of species 

N Total abundance across all species Measure of density of individuals  

Sn The expected richness for n 

randomly sampled individuals 

(Hurlbert 1971). 

Estimate of richness after controlling for 

differences due to aggregation or number of 

individuals (i.e., only reflects SAD) 

PIE  Probability of intraspecific 

encounter (Sn=2 – Sn=1, Hurlbert 

1971, Olszweski 2004),  

Measure of evenness, slope at base of the 

rarefaction curve, and sensitive to common 

species 

SPIE Number of equally abundant species 

needed to yield PIE (i.e., effective 

number of species of order 2, Jost 

2007) 

Effective number of species of PIE that is 

easier to compare with S (= 1 / (1 – PIE)) 

Sasymptote  Extrapolated asymptotic richness via 

Chao1 estimator (Chao 1984). 

Richness that includes unknown species but 

is highly correlated with S (McGill 2011) 

f0 Richness of undetected species 

(Sasymptote – S, Chao et al. 2009).  

Measure of rarity at top of rarefaction curve, 

more sensitive to rare species than S 

βS Ratio of total treatment S and 

average plot S (Whittaker 1960) 

More species turnover results in larger βS 

which may be due to increases in spatial 

aggregation, N, and/or unevenness of the 

SAD.  

β
f0

 Ratio of total treatment f0 and 

average plot f0 

Like βS but emphasizes rare species 

β
SPIE

 Ratio of total treatment and average 

plot SPIE (Olszewski 2004) 

Like βS but emphasizes common species  

 215 

The treatment effect on these metrics can be visually examined with boxplots (see 216 

Empirical example section) at the α scale and with single points at the pooled γ-scale (unless 217 

there is replication at the γ scale as well). Quantitative comparison of the metrics can be made 218 
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with t-tests (ANOVAs for more than two treatments) or, for highly skewed data, nonparametric 219 

tests such as Mann-Whitney U test (Kruskal-Wallis for more than two treatments).  220 

We provide a non-parametric, randomization test where the null expectation of each 221 

metric is established by randomly shuffling the plots between the treatments, and recalculating 222 

the metrics for each reshuffle. The significance of the differences between treatments can then be 223 

evaluated by comparing the observed test statistic to the null expectation when the treatment IDs 224 

are randomly shuffled across the plots (Legendre and Legendre 1998). When more than two 225 

groups are compared the test examines the overall group effect rather than specific group 226 

differences. At the α scale where there are replicate plots to summarize over, we use the 227 

ANOVA F-statistic as our test statistic (Legendre and Legendre 1998), and at the γ scale in 228 

which we only have a single value for each treatment (and therefore cannot use the F-statistic) 229 

the test statistic is the absolute difference between the treatments (if more than two treatments 230 

are considered then it is the average of the absolute differences, 𝐷̅). At both scales we use 𝐷̅ as a 231 

measure of effect size.  232 

Note that Nt,k and Nt,+ give the same information, because one scales linearly with the 233 

other by a constant (i.e., Nt,+ is equal to Nt,k multiplied by the number of plots K within 234 

treatment). However, the other metrics (S, f0 and SPIE) are not directly additive across scales. 235 

Evaluation of these metrics at different scales may yield different insights for the treatments, 236 

sometimes even in opposite directions (Chase et al. submitted). However, complex scale-237 

dependence may require comparison of entire sampling curves (rather than their two-scale 238 

summary statistics) to understand how differences in community structure change continuously 239 

across a range of spatial scales.  240 
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Continuous scale analysis 241 

While the two-scale analysis provides a useful tool with familiar methods, it ignores the role of 242 

scale as a continuum. Such a discrete scale perspective can only provide a limited view of 243 

treatment differences at different scales. We develop in this section a method to examine the 244 

components of change across a continuum of spatial scale. We define spatial scale by the amount 245 

of sampling effort, which we define as the number of individuals or the number of plots sampled. 246 

Assuming that the density of individuals is constant across plots, these measures should be 247 

proportional to each other. 248 

The three curves 249 

The key innovation is to use three distinct types of species accumulation and rarefaction curves 250 

that capture different components of community structure. By a carefully sequenced analysis, it 251 

is possible to tease apart the effects of SAD shape, of changes in density of individuals (N), and 252 

of spatial aggregation across a continuum of spatial scale. The three types of curves are 253 

summarized in Table 3. Fig. 2 shows graphically how they are constructed.  254 

The first curve, is the spatial plot-based or sample-based accumulation curve (Gotelli and 255 

Colwell 2001 or spatially-constrained rarefaction Chiarucci et al. 2009). It is constructed by 256 

accumulating plots within a treatment based on their spatial position such that the most 257 

proximate plots are collected first. One can think of this as starting with a target plot and then 258 

expanding a circle centered on the target plot until one additional plot is added, then expanding 259 

the circle until another plot is added, etc. In practice, every plot is used as the starting target plot 260 

and the resulting curves are averaged to give a smoother curve. If two or more plots are of equal 261 

distance to the target plot, they are accumulated in random order.  262 

The second curve is the non-spatial, plot-based rarefaction curve (Supplement S2). It is 263 
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constructed by randomly sampling plots within a treatment in which the individuals in the plots 264 

have first been randomly shuffled among the plots within a treatment, while maintaining the 265 

plot-level average abundance (𝑁𝑡,𝑘
̅̅ ̅̅ ̅) and the treatment-level SAD (𝑛⃑ 𝑡,+ = ∑ 𝑛⃑ 𝑡,𝑘𝑘 ). Note that this 266 

rarefaction curve is very different from the traditional “sample-based rarefaction curve” (Gotelli 267 

and Colwell 2001), in which plots are randomly shuffled to build the curve but individuals within 268 

a plot are preserved (and consequently any within-plot spatial aggregation is retained). Our non-269 

spatial, plot-based rarefaction curve contains the same information (plot density and SAD) as the 270 

spatial accumulation curve, but it has nullified any signal due to species spatial aggregation both 271 

within and between plots.  272 

The third curve is the familiar individual-based species rarefaction curve. It is constructed 273 

by first pooling individuals across all plots within a treatment, and then randomly sampling 274 

individuals without replacement. This individual-based rarefaction curve reflects only the shape 275 

of the underlying SAD (𝑛⃑ 𝑡,+).  276 

In can be computationally intensive to compute rarefaction curves, and therefore 277 

analytical formulations of these curves are desirable to speed up software. It is unlikely an 278 

analytical formulation of the plot-based accumulation curve exists because it requires averaging 279 

over each possible ordering of nearest sites; however, analytical expectations are available for 280 

the sample- and individual-based rarefaction curves. Specifically, we used the hypergeometic 281 

formulation provided by Hurlbert (1971) to estimate expected richness of the individual-based 282 

rarefaction curve. To estimate the plot-based rarefaction curve we extended Hurlbert’s (1971) 283 

formulation (see Supplement S2). Our derivation demonstrates that the non-spatial curve is a 284 

rescaling of the individual-based rarefaction curve based upon the degree of difference in density 285 

between the two treatments under consideration. Specifically, we use the ratio of average 286 
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community density to the density in the treatment of interest to rescale sampling effort in the 287 

individual based rarefaction curve. For a balanced design, the individual rarefaction curve of 288 

Treatment 1 can be adjusted for density effects by multiplying the sampling effort of interest by: 289 

(∑ ∑ 𝑁𝑡,𝑘𝑘𝑡 )  (2 ∙ ∑ 𝑁1,𝑘𝑘 )⁄ . Similarly, the Treatment 2 curve would be rescaled by 290 

(∑ ∑ 𝑁𝑡,𝑘𝑘𝑡 )  (2 ∙ ∑ 𝑁2,𝑘𝑘 )⁄ . If the treatment of interest has the same density as the average 291 

community density then there is no density effect, and the plot-based curve is equivalent to the 292 

individual-based rarefaction curve.  Here we have based the density rescaling on average number 293 

of individuals, but alternatives exist such as using maximum or minimum treatment density. 294 

Note that the plot-based curve is only relevant in a treatment comparison, which contrasts with 295 

the other two rarefaction curves that can be constructed independently of any consideration of 296 

treatment effects.  297 

  298 
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Table 3. Summary of three types of species sampling curves. For treatment t,  𝑛⃑ 𝑡,+ is the vector 299 

of species abundances, 𝑛⃑ 𝑡 is the vector of plot abundances, and 𝑑 𝑡 is the vector of distances 300 

between plots. 301 

Curve Name Notation Method for accumulation Interpretation 

Spatial plot-

based 

accumulation 

curve 

E[𝑆𝑡|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡] 
 

Spatially explicit sampling in which the 

most proximate plots to a focal plot are 

accumulated first. All possible focal 

plots are considered and the resulting 

curves are averaged over. 

This curve includes all 

information in the data 

including effect of SAD, 

effect of density of 

individuals, and effect of 

spatial aggregation. 

Nonspatial, 

plot-based 

rarefaction 

curve 

E[𝑆𝑡|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡] 
 

Random sampling of k plots after 

removing intraspecific spatial 

aggregation by randomly shuffling 

individuals across plots while 

maintaining average plot-level 

abundance (𝑁𝑡,𝑘
̅̅ ̅̅ ̅) and the treatment-

level SAD (𝑛𝑡,+,𝑠 = ∑ 𝑛𝑡,𝑘,𝑠𝑘 ). In 

practice, we use an analytical extension 

of the hypergeometric distribution that 

demonstrates this curve is a rescaling of 

the individual-base rarefaction curve 

based on the ratio: (average density 

across treatments) / (average density of 

treatment of interest) 

This curve reflects both the 

shape of the SAD and the 

difference in density between 

the treatments. If density 

between the two treatments is 

identical then this curve 

converges on the individual-

based rarefaction curve.  

Individual-

based 

rarefaction 

curve 

E[𝑆𝑡|𝑁, 𝑛⃑ 𝑡,+] 
 

Random sampling of N individuals 

from the observed SAD (𝑛⃑ 𝑡,+) without 

replacement.  

By randomly shuffling 

individuals with no reference 

to plot density, all spatial and 

density effects are removed. 

Only the effect of the SAD 

remains. 
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 302 

Figure 2. Illustration of how the three sampling curves are constructed. Circles of different colors 303 

represent individuals of different species. See Table 3 for detailed description of each sampling 304 

curve. 305 

The mechanics of isolating the distinct effects of spatial aggregation, density, and SAD 306 

The three curves capture different components of community structure that influence 307 

richness changes across scales (measured in number of samples or number of individuals, both of 308 

b) Non-spatial, plot-based rarefaction
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which can be easily converted to area, Table 3). Therefore, if we assume the components 309 

contribute additively to richness, then the effect of a treatment on richness propagated through a 310 

single component at any scale can be obtained by subtracting the rarefaction curves from each 311 

other. For simplicity and tractability, we assume additivity to capture first-order effects. This 312 

assumption is supported by Tjørve et al.’s (2008) demonstration that an additive partitioning of 313 

richness using rarefaction curves reveals random sampling and aggregation effects when using 314 

presence-absence data. We further validated this assumption using sensitivity analysis (see 315 

“Sensitivity analysis of the method” and Table 5). Below we describe the algorithm to obtain the 316 

distinct effect of each component. Figure 3 provides a graphic illustration.  317 
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 318 

Figure 3. Steps separating the distinct effect of the three factors on richness. The experimental 319 

design has two treatments (blue and orange curves). The purple shaded area on the left and the 320 

equivalent purple curve in each plot to the right represent the difference in richness (i.e., 321 

treatment effect) for each set of curves. By taking the difference again (green shaded area and 322 

curves) we can obtain the treatment effect on richness through a single component. See text for 323 

details (Eqn 1.). The three types of curves are defined in Fig. 2 and Table 3. 324 
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i) Effect of aggregation  326 

The difference between the plot-based accumulation curves of two treatments, 327 

∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡) = E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2, 𝑑 2] − E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1, 𝑑 1], gives the observed 328 

difference in richness between treatments across scales (Fig. 3A2, solid purple curve). It 329 

encapsulates the treatment effect propagated through all three components: shape of the SAD, 330 

density of individuals, and spatial aggregation. Differences between treatments in any of these 331 

factors could potentially translate into observed difference in species richness.  332 

 Similarly, the difference between the non-spatial, plot-based rarefaction 333 

curves, ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡) = E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2] − E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1], gives the expected difference 334 

in richness across treatments when spatial aggregation is removed (Fig. 3B2, purple dotted 335 

curve). The distinct effect of aggregation across treatments from one plot to k plots can thus be 336 

obtained by taking the difference between the two ΔS values (Fig. 3A3, green shaded area), i.e.,  337 

∆(𝑆21|aggregation) = ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡) − ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡) 338 

= (E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2, 𝑑 2] − E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1, 𝑑 1]) − (E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2] − E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1]) (Eqn 1) 339 

 340 

            effect of aggregation, density, and SAD                  effect of density and SAD 341 

Equation 1 demonstrates that the effect of aggregation can be thought of as the difference 342 

between treatment effects quantified by the plot-based accumulation and plot-based rarefaction 343 

curves. An algebraic rearrangement of Eqn 1 demonstrates that ∆(𝑆21|aggregation) can also be 344 

thought of as the difference between the treatments of the same type of rarefaction curve: 345 

= (E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2, 𝑑 2] − E[𝑆2|𝑘, 𝑛⃑ 2,+, 𝑁⃑⃑ 2]) − (E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1, 𝑑 1] − E[𝑆1|𝑘, 𝑛⃑ 1,+, 𝑁⃑⃑ 1]) (Eqn 2) 346 

 347 

               effect of aggregation in Treatment 2                effect of aggregation in Treatment 1 348 
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This simple duality can be extended to the estimation of the density and SAD effects, but we will 349 

only consider the approach laid out in Eqn 1 below. In Fig. 3, we separate each individual effect 350 

using the approach of Eqn 1 while the code in the mobr package uses the approach of Eqn 2.   351 

One thing to note is that the effect of aggregation always converges to zero at the 352 

maximal spatial scale (k = K plots) for a balanced design. This is because, when all plots have 353 

been accumulated, ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡) and ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡) will both converge on the 354 

difference in total richness between the treatments.  However, for an unbalanced design in which 355 

one treatment has more plots than the other, ∆(𝑆21|aggregation) would converge to a nonzero 356 

constant because E[𝑆𝑡|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡] − E[𝑆𝑡|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡] would be zero for one treatment but not 357 

the other at the maximal spatial scale (i.e., min(K1, K2) plots). This artefact is inevitable and 358 

should not be interpreted as a real decline in the relative importance of aggregation on richness, 359 

but as our diminishing ability to detect such effect without sampling a larger region.  360 

ii) Effect of density:  361 

In the same vein, the difference between the individual-based rarefaction curves of the two 362 

treatments, ∆(𝑆21|𝑁, 𝑛⃑ 𝑡,+) = E[𝑆2|𝑁, 𝑛⃑ 2,+] − E[𝑆1|𝑁, 𝑛⃑ 1,+], yields the treatment effect on 363 

richness propagated through the shape of the SAD alone, with the other two components 364 

removed (Fig. 3C2, purple dashed curve). The distinct effect of density across treatments from 365 

one individual to N individuals can thus be obtained by subtracting the ΔS value propagated 366 

through the shape of the SAD alone from the ΔS value propagated through the compound effect 367 

of the SAD and density (Fig. 3B3, green shaded area), i.e.,  368 

  369 
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∆(𝑆21|density) = ∆(𝑆21|𝑁, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡) − ∆(𝑆21|𝑁, 𝑛⃑ 𝑡,+) 370 

 371 

= (E[𝑆2|𝑁, 𝑛⃑ 2,+, 𝑁⃑⃑ 2] − E[𝑆1|𝑁, 𝑛⃑ 1,+, 𝑁⃑⃑ 1]) − (E[𝑆2|𝑁, 𝑛⃑ 2,+] − E[𝑆1|𝑁, 𝑛⃑ 1,+]) (Eqn 3) 372 

 373 

                                effect of density and SAD                          effect of SAD 374 

 375 

Note that in Eqn 3, spatial scale is defined with respect to numbers of individuals sampled (N) 376 

(and thus the grain size that would be needed to achieve this) rather than the number of samples 377 

(k).  378 

iii) Effect of SAD:  379 

The distinct effect of the shape of the SAD on richness between the two treatments is simply the 380 

difference between the two individual-based rarefaction curves (Fig. 3B, purple dashed curve), 381 

i.e.,  382 

∆(𝑆21|SAD) = ∆(𝑆2|𝑝, 𝑛⃑ 2,+) − ∆(𝑆1|𝑝, 𝑛⃑ 1,+)   (Eqn 4) 383 

The scale of Δ(S21|SAD) ranges from one individual, where both individual rarefaction curves 384 

have one species and thus Δ(S21|SAD) = 0, to Nmin = min(N1,+, N2, +), which is the lower total 385 

abundance between the treatments. 386 

The formulae used to identify the distinct effect of the three factors are summarized in Table 4.  387 

  388 
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Table 4. Calculation of effect size curves. 389 

Factor Formula Note 

Aggregation ∆(𝑆21|aggregation)

= ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡, 𝑑 𝑡)

− ∆(𝑆21|𝑘, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡) 

 

Artificially, this effect always converges to 

zero at the maximal spatial scale (K plots) for 

a balanced design, or a non-zero constant for 

an unbalanced design.    

Density ∆(𝑆21|density)

= ∆(𝑆21|𝑁, 𝑛⃑ 𝑡,+, 𝑁⃑⃑ 𝑡)

− ∆(𝑆21|𝑁, 𝑛⃑ 𝑡,+) 

 

To compute this quantity, the x-axes of the 

plot-based rarefaction curves are converted 

from plots to individuals using average 

individual density 

SAD ∆(𝑆21|SAD)

= ∆(𝑆2|𝑁, 𝑛⃑ 2,+)

− ∆(𝑆1|𝑁, 𝑛⃑ 1,+) 

This is estimated directly by comparing the 

individual rarefaction curves between two 

treatments. 

 390 

Significance tests and acceptance intervals 391 

In the continuous-scale analysis, we also applied Monte Carlo permutation procedures to 1) 392 

construct acceptance intervals (or non-rejection intervals) across scales on simulated null 393 

changes in richness, and 2) carry out goodness of fit tests on each component (Loosmore and 394 

Ford 2006, Diggle-Cressie-Loosmore-Ford test [DCLF]; Baddeley et al. 2014). See Supplement 395 

S3 for descriptions of how each set of randomizations was developed to generate 95% 396 

acceptance intervals (ΔSnull) which can be compared to the observed changes (ΔSobs). Strict 397 

interpretations of significance in relation to the acceptance intervals is not warranted because 398 

each point along the spatial scale (x-axis) is effectively a separate comparison. Consequently, a 399 

problem arises with multiple non-independent tests and the 95% bands cannot be used for formal 400 

significance testing due to Type I errors. The DCLF test (see Supplement S3) provides an overall 401 

significance test with a proper Type I error rate (Loosmore and Ford, 2006) but this test in turn 402 
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suffers from Type II error (Baddeley et al. 2014).  There is no mathematical resolution to this 403 

and user judgement should be emphasized if formal p-tests are needed. 404 

Sensitivity Analysis 405 

Although the logic justifying the examination separating the effect of the three components is 406 

rigorous, we tested the validity of our approach (and the significance tests) by simulations using 407 

the R package mobsim (May et al. preprint, May 2017). The goal is to establish the rate of type I 408 

error (i.e., detecting significant treatment effect through a component when it does not differ 409 

between treatments) and type II error (i.e., nonsignificant treatment effect through a component 410 

when it does differ). This was achieved by systematically comparing simulated communities in 411 

which we altered one or more components while keeping the others unchanged (see Supplement 412 

S4). Overall, the benchmark performance of our method was good. When a factor did not differ 413 

between treatments, the detection of significant difference was low (Supplemental Table S4.1). 414 

Conversely, when a factor did differ, the detection of significant difference was high, but 415 

decreased at smaller effect sizes. Thus, we were able to control both Type I and Type II errors at 416 

reasonable levels. In addition, there did not seem to be strong interactions among the components 417 

– the error rates remained consistently low even when two or three components were changed 418 

simultaneously.  419 

An empirical example 420 

In this section, we illustrate the potential of our method with an empirical example, 421 

previously analyzed by Powell et al. (2013). Invasion of an exotic shrub, Lonicera maackii, has 422 

caused significant, but strongly scale-dependent, decline in the diversity of understory plants in 423 

eastern Missouri (Powell et al. 2013). Specifically, Powell et al. (2013) showed that the effect 424 

size of the invasive plant on herbaceous plant species richness was large at relatively plot-level 425 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2018. ; https://doi.org/10.1101/244103doi: bioRxiv preprint 

https://doi.org/10.1101/244103
http://creativecommons.org/licenses/by/4.0/


26 

 

spatial scales (1 m2), but the proportional effect declines with increasing windows of 426 

observations, with the effect becoming negligible at the largest spatial scale (500 m2). Using a 427 

null model approach, the authors further identified that the negative effect of invasion was 428 

mainly due to the decline in plant density observed in invaded plots. To recreate these analyses 429 

run the R code achieved here: 430 

https://github.com/MoBiodiv/mobr/blob/master/scripts/methods_ms_figures.R.   431 

The original study examined the effect of invasion at multiple scales using the slope and 432 

intercept of the species-area relationship. We now apply our MoB approach to data from one of 433 

their sites from Missouri, where the numbers of individuals of each species were recorded from 434 

50 1-m2 plots sampled from within a 500-m2 region in the invaded part of the forest, and another 435 

50 plots from within a 500-m2 region in the uninvaded part of the forest. Our method leads to 436 

conclusions that are qualitatively similar to the original study, but with a richer analysis of the 437 

scale dependence. Moreover, our new methods show that invasion influenced both the SAD and 438 

spatial aggregation, in addition to density, and that these effects went in different directions and 439 

depended on spatial scale.  440 
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 441 

Figure 4. Simple two scale analysis output for case study. Biodiversity statistics for the invaded 442 

(red boxplots and points) and uninvaded (blue boxplots and points) for vascular plant species 443 

richness at the α (i.e., single plot), beta (i.e., between plots), and γ (i.e., all plots) scales. The p-444 

values are based on 999 permutations of the treatment labels. Rarefied richness (Sn, panels f-h) 445 

was computed for 5 and 250 individuals for the α (f) and γ (h) scales respectively.  446 

The two-scale analysis suggests that invasion decreases average richness (S) at the α (Fig. 447 

4a, 𝐷̅ = 5.2, p = 0.001) but not γ scale (Fig. 4c, 𝐷̅ = 16, p = 0.438). Invasion also decreased total 448 
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abundance (N, Fig. 4d,e, p = 0.001) which suggests that the decrease in S at the α scale may be 449 

due to a decrease in individual abundance. Rarefied richness (Sn, Fig. 4f,h) allows us to test this 450 

hypothesis directly. Specifically, we found Sn was higher in the invaded areas (significantly so 𝐷̅ 451 

= 15.59, p = 0.001 at the γ scale defined here as n = 250; Fig. 4h) which indicates that once the 452 

negative abundance effect was controlled for, invasion actually increased diversity through an 453 

increase in species evenness.  454 

To identify whether the increase in evenness due to invasion was primarily because of 455 

shifts in common or rare species, we examined ENS of PIE (SPIE) and the undetected species 456 

richness (f0) (see Fig.5).  At the α scale, invasion did not strongly influence the SAD (Fig. 5a,d), 457 

but at the γ scale, there was evidence that invaded sites had greater evenness in the common 458 

species (Fig. 5f, 𝐷̅ = 5.78, p = 0.001). In other words, the degree of dominance by any one 459 

species was reduced. 460 

 461 
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 462 

Figure 5. The two-scale analysis applied to metrics of biodiversity that emphasize changes in the 463 

SAD. Colors as described in Fig. 4. f0 (a-c) is more sensitive to rare species, and SPIE (d-f) is more 464 

sensitive to common species. The p-values are based on 999 permutations of the treatment labels, 465 

and outliers were removed from the f0 plot.  466 

The β diversity metrics were significantly higher (Fig. 4b,g, Fig. 5e, p = 0.001) in the 467 

invaded sites (with the exception of βf0, Fig. 5b), suggesting that uninvaded sites had lower 468 

spatial species turnover and thus were more homogenous. It did not appear that changes in N 469 

were solely responsible for the changes in beta-diversity because βSn displayed a very similar, but 470 

slightly weaker, pattern as raw βS (Fig. 4b,g).  471 

Overall the two-scale analysis indicates: 1) that there are scale-dependent shifts in 472 

richness, 2) that these are caused by invasion decreasing N, and increasing evenness in common 473 

species, and increasing species patchiness.  474 
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Applying the continuous scale analysis, we further disentangled the effect of invasion on 475 

diversity through the three components (SAD, density, and aggregation) across all scales of 476 

interest. The results are shown in Fig. 6 which parallels the panels of the conceptual Fig. 3. Fig. 477 

6a-c present the three sets of curves for the two treatments: the plot-based accumulation curve, in 478 

which plots accumulate by their spatial proximity (Fig. 6a); the (non-spatial) plot-based 479 

rarefaction curve, in which individuals are randomized across plots within a treatment (Fig. 6b); 480 

and the individual-based rarefaction curve, in which species richness is plotted against number of 481 

individuals (Fig. 6c). Fig. 6d-f show the effect of invasion on richness, obtained by subtracting 482 

the red curve from the blue curve for each pair of curves (which correspond to the curves of the 483 

same color in Fig. 3). The bottom panel, which shows the effect of invasion on richness through 484 

each of the three factors, is obtained by subtracting the curves in the middle panel from each 485 

other. The contribution of each component to difference in richness between the invaded and 486 

uninvaded sites is further illustrated in Fig. 6. 487 

 488 
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 489 

Figure 6. Applying the MoB continuous scale analysis on the invasion data set. The colors are as 490 

in Fig. 3. Panel a, shows the invaded (red) and uninvaded (blue) accumulation and rarefaction. In 491 

panel b, the purple curves show the difference in richness (uninvaded – invaded) for each set of 492 

curves. In panel c, the green curves show the treatment effect on richness through each of the 493 

three components, while the grey shaded area shows the 95% acceptance interval for the null 494 

model, the cross scale DCLF test for each factor was significant (p = 0.001). The dashed line 495 

shows the point of no-change in richness between the treatments.  496 

Consistent with the original study, our approach shows that the invaded site had lower 497 

richness than the uninvaded site at all scales (Fig. 6a). Separating the effect of invasion into the 498 
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three components, we find that invasion actually had a positive effect on species richness 499 

through its impact on the shape of the SAD (Fig. 6i, Fig. 7a), which contributed to approximately 500 

20% of the observed change in richness (Fig. 7b). This counterintuitive result suggests that 501 

invasion has made the local community more even, meaning that the dominant species were 502 

most significantly influenced by the invader. However, this positive effect was completely 503 

overshadowed by the negative effect on species richness through reductions in the density of 504 

individuals (Fig. 6h, Fig. 7a), which makes a much larger contribution to the effect of invasion 505 

on richness (as large as 80%, Fig. 7b). Thus, the most detrimental effect of invasion was the 506 

sharp decline in the number of individuals. The effect of aggregation (Fig. 6g), is much smaller 507 

compared with the other two components and was most important at small spatial scales. Our 508 

approach thus validates the findings in the original study, but provides a more comprehensive 509 

way to quantify the contribution to richness decline caused by invasion by each of the three 510 

components, at every spatial scale.  511 

  512 
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 513 

 514 

Figure 7. The effect of invasion on richness via individual effects on three components of 515 

community structure: SAD in red, density in blue, aggregation in purple across scales. The raw 516 

differences (a) and proportional stacked absolute values (b). The x-axis represents sampling 517 

effort in both numbers of samples (i.e., plots) and individuals (see top axis). The rescaling 518 

between numbers of individuals and plots we carried out by defining the maximum number of 519 

individuals rarefied to (486 individuals) as equivalent to the maximum number of plots rarefied 520 

to (50 plots), other methods of rescaling are possible.  In panel (a) the dashed black line indicates 521 

no change in richness.  522 

Discussion 523 

How does species richness differ between experimental conditions or among sites that 524 

differ in key parameters in an observational study? This fundamental question in ecology often 525 

lacks a simple answer, because the magnitude (and sometimes even the direction) of change in 526 
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richness may vary with spatial scale (Chase et al. submitted, Chalcraft et al. 2004, Fridley et al. 527 

2004, Knight and Reich 2005, Palmer et al. 2008, Chase and Knight 2013, Powell et al. 2013, 528 

Blowes et al. 2017). Species richness is proximally determined by three underlying 529 

components—N, SAD and aggregation—which are also scale-dependent (Powell, Chase & 530 

Knight 2013, McGill 2011); this obscures the interpretation of the link between change in 531 

condition and change in species richness.  532 

The MoB framework provides a comprehensive answer to this question by taking a 533 

spatially explicit approach and decomposing the effect of the condition (treatment) on richness 534 

into its individual components. The two-scale analysis provides a big-picture understanding of 535 

the differences and proximate drivers of richness by only examining the single plot (α) and all 536 

plots combined (γ) scales. The continuous scale analysis expands the endeavor to cover a 537 

continuum of scales, and quantitatively decomposes change in richness into three components: 538 

change in the shape of the SAD, change in individual density, and change in spatial aggregation. 539 

As such, we can not only quantify how richness changes at any scale of interest, but also identify 540 

how the change occurs and consequently push the ecological question to a more mechanistic 541 

level.  For example, we can ask to what extent the effects on species richness are driven by 542 

numbers of individuals.  Or instead, whether common and rare species, or their spatial 543 

distributions, are more strongly influenced by the treatments.   544 

Here we considered the scenario of comparing a discrete treatment effect on species 545 

richness, but clearly the MoB framework will need to be extended to other kinds of experimental 546 

designs and questions (fully described in Supplement S5).  The highest priority extension of the 547 

framework is to generalize it from a comparison of discrete treatment variables to continuous 548 

drivers such as temperature and productivity. Additionally, we recognize that abundance is 549 
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difficult to collect for many organisms and that there is a need to understand if alternative 550 

measures of commonness (e.g., visual cover, biomass) can also be used to gain similar insights.  551 

Finally, we have only focused on taxonomic diversity here, whereas other types of 552 

biodiversity—most notably functional and phylogenetic diversity—are often of great interest, 553 

and comparisons such as those we have overviewed here would also be of great importance for 554 

these other biodiversity measures.  Importantly, phylogenetic and functional diversity measures 555 

share many properties of taxonomic diversity that we have overviewed here (e.g., scale-556 

dependence, non-linear accumulations, rarefactions, etc) (e.g., Chao et al. 2014), and it would 557 

seem quite useful to extend our framework to these sorts of diversities. We look forward to 558 

working with the community to develop extensions of the MoB framework that are most needed 559 

for understanding scale dependence in diversity change.  560 

MoB is a novel and robust approach that explicitly addresses the issue of scale-561 

dependence in studies of diversity, and quantitatively disentangles diversity change into its three 562 

components. Our method demonstrates how spatially explicit community data and carefully 563 

framed comparisons can be combined to yield new insight into the underlying components of 564 

biodiversity. We hope the MoB framework will help ecologists move beyond single-scale 565 

analyses of simple and relatively uninformative metrics such as species richness alone. We view 566 

this as a critical step in reconciling much confusion and debate over the direction and magnitude 567 

of diversity responses to natural and anthropogenic drivers. Ultimately accurate predictions of 568 

biodiversity change will require knowledge of the relevant drivers and the spatial scales over 569 

which they are most relevant, which MoB (and its future extensions), helps to uncover.  570 

 571 
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