
Assembly of Long Error-Prone Reads Using Repeat Graphs

Mikhail Kolmogorov1, Jeffrey Yuan2, Yu Lin3, and Pavel. A. Pevzner1

1Department of Computer Science and Engineering, University of California, San Diego
2Graduate Program in Bioinformatics and Systems Biology, University of California, San Diego

3Research School of Computer Science, Australian National University

ABSTRACT

The problem of genome assembly is ultimately linked to the problem of the characterization of all repeat
families in a genome as a repeat graph. The key reason the de Bruijn graph emerged as a popular short
read assembly approach is because it offered an elegant representation of all repeats in a genome that
reveals their mosaic structure. However, most algorithms for assembling long error-prone reads use an
alternative overlap-layout-consensus (OLC) approach that does not provide a repeat characterization. We
present the Flye algorithm for constructing the A-Bruijn (assembly) graph from long error-prone reads,
that, in contrast to the k-mer-based de Bruijn graph, assembles genomes using an alignment-based A-
Bruijn graph. In difference from existing assemblers, Flye does not attempt to construct accurate contigs
(at least at the initial assembly stage) but instead simply generates arbitrary paths in the (unknown)
assembly graph and further constructs an assembly graph from these paths. Counter-intuitively, this fast
but seemingly reckless approach results in the same graph as the assembly graph constructed from
accurate contigs. Flye constructs (overlapping) contigs with possible assembly errors at the initial stage,
combines them into an accurate assembly graph, resolves repeats in the assembly graph using small
variations between various repeat instances that were left unresolved during the initial assembly stage,
constructs a new, less tangled assembly graph based on resolved repeats, and finally outputs accurate
contigs as paths in this graph. We benchmark Flye against several state-of-the-art Single Molecule
Sequencing assemblers and demonstrate that it generates better or comparable assemblies for all analyzed
datasets.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

INTRODUCTION

The problem of genome assembly is ultimately linked to the repeat characterization problem, the
compact representation of all repeat families in a genome as a repeat graph (Pevzner et al., 2004). Long
read technologies have not made the repeat characterization problem irrelevant. Instead, they have simply
shifted the focus from short repeats to longer repeats comparable in length to the median SMS read size;
e.g., Kamath et al., 2017 analyzed many bacterial genomes that existing SMS assemblers failed to
assemble into a single contig. Since even bacterial (let alone, eukaryotic) genomes have long repeats,
SMS assemblers currently face the same challenge that short read assemblers faced a decade ago, albeit at
a different scale of repeat lengths. To address this assembly challenge, SMS technologies are often
complemented by contact (Ghurye et al., 2017) and optical (Weissensteiner et al., 2017) mapping data.

The de Bruijn graph emerged as a popular short read assembly approach because it offered an
elegant representation of all repeats in a genome. However, most long read assemblers use an alternative
overlap-layout-consensus (OLC) approach that requires an all-against-all comparison of reads, does not
yield a natural representation of all repeats in a genome, and does not provide optimal repeat resolution
(Koren et al., 2012, Chin et al., 2013, Berlin et al., 2015, Chin et al., 2016, Li, 2016, Koren et al., 2017).
Recent studies of SMS assemblies attempted to integrate the OLC approach by constructing the
alternative de Bruijn graph of reads (referred to as the assembly graph). Although these approaches
improved on the OLC-only bacterial assemblies (Lin et al., 2016, Kamath et al., 2017), the de Bruijn
graph constructed from error-prone SMS reads is very noisy making it difficult to collapse various
instances of the same repeat into a single path in the assembly graph. Developers of OLC approaches
realized the importance of repeat characterization and attempted to improve the best overlap graph
(BOG) representation (Miller et al., 2008) by developing the OLC-based Bogart graph for representing
repeats (Koren et al., 2017). However, the Bogart graph is quite different from the repeat graph and, as
acknowledged by the developers of the Canu assembler (Koren et al., 2017), it is still error-prone (see
Kamath et al., 2017 for a discussion on the differences between the de Bruijn-based and the OLC-based
repeat representation). As an alternative to these overlap graphs, which are riddled with unnecessary
edges, the string graph (Meyers, 2005) approach (implemented in the Miniasm assembler) attempts to
represent unique segments of a genome as non-branching paths. However, as discussed in Kamath et al.,
2017, the string graph does not achieve an optimal repeat resolution either.

The challenge of constructing the assembly graph from long reads. Most short read assemblers
construct the de Bruijn graph based on all k-mers in reads and further transform it into an assembly graph
using various graph simplification procedures. This approach collapses multiple instances of the same
repeat into a single path in the assembly graph and represents a genome as a genome tour that visits each
edge in the assembly graph. However, in the case of SMS reads, the key assumption of the de Bruijn
graph approach (that most k-mers from the genome are preserved in multiple reads) does not hold even
for short k-mers, let alone for long k-mers (e.g., k = 1000). As a result, various issues that have been
addressed in short read assembly (e.g., how to deal with the fragmented de Bruijn graph, how to
transform it into an assembly graph, etc.) remain largely unaddressed in the case of the de Bruijn graph
approach to SMS assemblies

Aggressive approaches to repeat resolution often produce misassemblies while conservative
approaches lead to fragmented assemblies (Kamath et al., 2017). Construction of an assembly graph is an
important step towards finding the balance between aggressive and conservative approaches since it
allows one to distinguish repeats that can be resolved from those that cannot. Constructing an assembly
graph for SMS reads improves repeat resolution as compared to various OLC assemblers (Kamath et al.,
2017) because it is better suited for finding this balance. Also, since assembly graphs represent a special
case of breakpoint graphs used for genome rearrangement studies (Lin et al., 2014), they are well suited
for the analysis of genome variations using SMS reads (Chaisson et al., 2015, Nattestad et al., 2017).

Here, we describe the Flye algorithm for constructing assembly graphs from polished contigs
rather than from error-prone reads (as in HINGE), thus making the graph more accurate (see Appendix
“Short read assemblers and the challenge of repeat resolution” for a discussion on contig assembly in the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

case of short read sequencing). Flye also complements HINGE by introducing a new algorithm that uses
small differences between repeat copies to resolve unbridged repeats that are not spanned by any reads.

Flye is built on top of the ABruijn assembler (Lin et al., 2016), which generates accurate
overlapping contigs but does not reveal the repeat structure of the genome. In contrast to ABruijn, Flye
initially generates inaccurate overlapping contigs (i.e., contigs with potential assembly errors) and
combines these initial contigs into an accurate assembly graph that encodes all possible assemblies
consistent with the reads. Flye further resolves unbridged repeats in the assembly graph thus constructing
a new, less tangled assembly graph, and finally outputs accurate final contigs formed by paths in this
graph. We benchmarked Flye against several state-of-the-art SMS assemblers using various datasets and
demonstrated that it generates accurate assemblies while also providing insights into how to plan
additional experiments (e.g., using contact or optical maps) to finish the assembly.

METHODS

Repeat graphs. Repeats in a genome are often represented as pairwise local alignments between various
regions of the genome and visualized as two-dimensional dot plots representing all alignment paths. This
pairwise representation is limited since it does not contribute to solving the repeat characterization
problem. In contrast, the repeat graph (Pevzner et al., 2004) compactly represents all repeats in a genome
and reveals their mosaic structure. The construction of an assembly graph represents a special case of the
repeat graph construction problem, which we discuss below.

Consider a tour T=v1, v2, … vn of length n visiting all vertices of a directed graph G. We say that
the i-th and j-th vertices in the tour T are equivalent if they correspond to the same vertex of the graph
(i.e., vi=vj). The set of all pairs of equivalent vertices forms a set of points (i,j) in a two-dimensional grid
that we refer to as the repeat plot PlotT(G) of the tour T (Figure 1). The transformation of a tour T
traversing a known graph G into the repeat plot PlotT(G) is a simple procedure. Below, we address a
reverse problem that is at the heart of genome assembly, repeat characterization, and synteny block
construction: given an arbitrary set of points Plot, in a two-dimensional grid, find a graph G=G(Plot) and
a tour T in this graph such that Plot = PlotT(G). In the case of repeat characterization, Plot consists of
points traversed by paths representing all local self-alignments (up to a certain stringency) of a genome
against itself. Each self-alignment reveals two instances of a repeat corresponding to genomic segments x
and y (x and y are called the spans of the alignment). Given a genome of length n and a set of its pairwise
self-alignments Plot, the goal is to construct a graph G and a tour T of length n in this graph (each
segment of the genome corresponds to a subpath of the graph traversed by the tour) such that Plot =
PlotT(G) and for each alignment with spans x and y, paths in the graph corresponding to segments x and y
coincide.
Generating all local self-alignments of a genome. Our goal is to represent all long repeats in a genome
as a repeat graph (Pevzner et al., 2004). Constructing the de Bruijn graph based on long k-mers will not
solve this problem since the differences between imperfect repeat copies mask the repeat structure of the
genome. Constructing the de Bruijn graph based on short k-mers will not solve this problem due to the
presence of repeating short k-mers within long repeats (these k-mers lead to a tangled repeat graph). Thus,
while all long similar segments can be generated based on pairwise alignments and combined into a
repeat plot Plot, it is unclear how to solve the reverse problem of combining them into the repeat graph
G(Plot) of the genome. Although Pevzner et al., 2004 described various graph simplification procedures
(that are now at the heart of various short read assemblers) to address this problem for short reads, it is not
clear how to generalize these procedures to make them applicable to SMS assemblies. Below we describe
how the concept of a punctilious repeat graph (introduced in Pevzner et al., 2004) can be modified for
assembling SMS reads.
From local alignments to a punctilious repeat graph. Let Alignments=Alignmentsk(Genome) be the set
of all pairwise local alignments of length at least k between various segments of a genome Genome.
Given a set of self-alignments Alignments of a genome Genome, we construct the punctilious repeat
graph G(Genome, Alignments) by representing Genome as a path consisting of |Genome| vertices (Figure

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

1) and simply “gluing” each pair of vertices (positions in the genome) that are aligned against each other
in one of the alignments in Alignments (Pevzner et al., 2004). Gluing vertices v and w amounts to
substituting them by a single vertex that is connected by edges to all vertices that either vertex v or vertex
w is connected to. We consider branching vertices (i.e., vertices with either in-degree or out-degree
differing from 1) in the resulting graph and substitute each non-branching path of length m between them
by a single edge of length m. Edges in the punctilious assembly graph are classified into long (longer than
a predefined threshold d) and short (Figure 1).

Figure 1. Constructing the repeat plot of a tour in a graph (left) and constructing the repeat graph from a
repeat plot (right). (Left) A tour T = …A1B2C3D4…B5C6D7E8…A9B10C11D12E13… in a graph G with red, green, and
blue instances of a repeat. Dots represent multiple vertices that appear before, between, and after these three
instances of the repeat. The repeat plot PlotT(G) consists of three diagonals representing the three instances of the
repeat in the tour. The trivial self-alignment of the entire genome against itself is shown by the dotted diagonal
(since the repeat plot is symmetric, the points below this diagonal are not shown). Since vertex A in the graph is
visited twice in the tour T, it results in a single point (1,9) in PlotT(G). Vertex B results in points (2,5), (2,10), and
(5,10), vertex C results in points (3,6), (3,11), and (6,11), vertex D results in points (4,7), (4,12), and (7,12), and
vertex E results in the point (8,13). (Right) Constructing the punctilious repeat graph from the repeat plot by gluing
vertices with indices i and j for each point (i,j) in the repeat plot. Each non-branching path in the graph is substituted
by a single edge with length equal to the number of edges in this path. The lengths of the short edges (A,B) and
(D,E) in the resulting graph are equal to 1 and the length of the long edge (B,D) is equal to 2 (for the edge length
threshold d=1)..The punctilious repeat graph (second graph from the bottom) is transformed into the repeat graph
(bottom-most graph) by contracting short edges (A,B) and (D,E).
Figure 1 presents a simple repeat plot where the ending positions of various pairwise alignments are
coordinated. In reality, they are typically not coordinated, e.g., three alignment paths corresponding to
three repeat copies starting at position x, y, and z hardly ever start at points (x,y), (x,z), and (y,z) in the

repeat plot. Because each repeat with m copies results in (m2) local alignments, there will be (m2)

gluing operations for the starting positions of this repeat and the same number of gluing operations for the
ending positions of this repeat. Note that each of these operations may form a new branching vertex in the
punctilious repeat graph. For example, gluing the endpoints of the three diagonals in Figure 1 results in
the branching vertices A, B, C, and D in the graph. Punctilious repeat graphs of real genomes often
contain many branching vertices making it difficult to compactly represent repeats. We address this
challenge by transforming the punctilious repeat graph into a simpler repeat graph.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

From punctilious repeat graph to repeat graph. Since endpoints of alignment paths representing the
same repeat are not coordinated among all pairwise alignments of this repeat, these uncoordinated
alignments result in a complex repeat graph with many short edges (shorter than a predefined length
threshold d). The repeat graph G(Genome, Alignments, d) is defined as the result of contracting all short
edges in the punctilious repeat graph (Figure 1). The contraction of an edge is simply the gluing the
endpoints of this edge, followed by the removal of the loop-edge resulting from this gluing. Since the
genome represents a tour visiting all edges in the repeat graph, we define the multiplicity of an edge in the
repeat graph as the number of times this edge is traversed in the tour. Edges of multiplicity 1 are called
unique edges and edges of multiplicity more than 1 are called repeats.
An alternative approach to constructing repeat graphs. The described approach, although simple in
theory, results in various complications in the case of real genomes (see Pevzner et al., 2004), particularly
in the case of inconsistent pairwise alignments (see Appendix “Consistent alignments”). In difference
from the approach in Pevzner et al., 2004, Flye constructs an approximate version of the repeat graph that
focuses on the endpoints of alignments rather than the entire alignment paths, resulting in simpler repeat
graphs that are better suited for assembling SMS reads.

Some branching vertices in the repeat graph have arisen from the contraction of multiple vertices
in the punctilious repeat graph into a single branching vertex in the repeat graph, e.g., vertices A and B
were contracted into a single vertex A/B in the repeat graph in Figure 1. Consider the set of all vertices in
the punctilious repeat graph that gave rise to branching vertices in the repeat graph (vertices A, B, D, and
E in Figure 1) and let Endpoints = Endpoints(Genome, Alignments, d) be the set of all positions in the
genome that gave rise to these vertices (Endpoints={1,2,4,5,7,8,9,10,12,13} in Figure 1). This set of
vertices forms a set of short contiguous genomic segments that contain the endpoints of all pairwise
alignments in Alignments. As an example in Figure 1, the set Endpoints forms segments [1,2], [4,5],
[7,8,9,10], and [12,13].

Figure 2. Repeat graph construction from local alignments within a genome. (Left) Alignment paths for all local
self-alignments within a genome XABYABZBU (with three instances of a mosaic repeat: AB, AB, and B)
represented as a repeat plot. The self-alignment of the entire genome is shown by the dotted diagonal. Alignment
endpoints are clustered together if their projections on the main diagonal coincide or are close to each other (clusters
of closely located endpoints for d=0 are painted with the same color). For example, rightmost endpoints (shown in
blue) of all three alignments form a single cluster because every two of them share the same projection on the main
diagonal. This clustering reveals three clusters (yellow, purple, and blue) with eight endpoints (Top right)
Projections of the clustered endpoints on the main diagonal define eight vertices of the repeat graph. (Middle right).
Gluing endpoints that belong to the same clusters. (Bottom right) Gluing parallel edges in the resulting graph
(parallel edges are glued if there exists an alignment between their sequences), which results in the approximate
repeat graph.

Flye approximates the set Endpoints by recruiting all horizontal and vertical projections of endpoints of
alignments from Alignments to the main diagonal in the repeat plot. Figure 2 presents three alignments
resulting in eight projected points on the main diagonal. Two alignment endpoints are close if their
projections on the main diagonal are located within distance threshold d (including the case when a

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

vertical projection of one endpoint coincides or is close to a horizontal projection of another endpoint).
Flye clusters close endpoints together based on single linkage clustering, resulting in three clusters with
eight endpoints in Figure 2 (clusters for d=0 are painted with the same color). Flye further approximates
the repeat graph by gluing endpoints that belong to the same clusters as shown in Figure 2. However, the
repeat graph constructed based on the clustering of closely located endpoints may differ from the repeat
graph constructed based on the punctilious assembly graph. Appendix “Inconsistent alignments result in
incorrect clustering-based repeat graph” illustrates that mosaic repeat structures and inconsistencies of
local alignments may result in an “incorrect” clustering-based repeat graph. Below we explain how Flye
iteratively extends the set Endpoints to address this complication.
Extending the set of alignment endpoints. Given a set of alignments Alignments, Flye first projects their
endpoints onto the main diagonals in the repeat plot, resulting in the set Endpoints. Each point in an
alignment-path in the |Genome|×|Genome| grid has two projections (horizontal and vertical) on the main
diagonal. Note that projections of some internal points in an alignment path may belong to Endpoints; for
example, both projections of the middle-point of the longest alignment-path in Figure 2 belong to
Endpoints. Such internal points should be re-classified as new alignment endpoints (essentially by
breaking an alignment into two parts) to avoid inconsistencies during the construction of the repeat graph.
Below we explain how to extend the set Endpoints to address this complication.

A point in an alignment-path is called a valid point if both its projections belong to Endpoints,
and an invalid point if only one of its projections belongs to Endpoints (see Appendix: “Inconsistent
alignments result in incorrect clustering-based repeat graph” for an example of an invalid point). Invalid
points complicate the task of generating a new set of alignment endpoints (by sub-partitioning the
alignment paths) since alignment endpoints have two rather than a single projection on the main diagonal.
Flye thus iteratively adds the missing projection for each invalid point to the set Endpoints on the main
diagonal until there are no invalid points left. Afterwards, it clusters points in Endpoints that are less than
d nucleotides apart using single linkage clustering. Each resulting cluster corresponds to a segment
between its minimal and maximal positions on the main diagonal and these segments form a set
EndpointSegments. Two segments from EndpointSegments are equivalent if there exists a valid point in
one of the alignments such that one of its projections to the main diagonal falls into the first segment and
another falls into the second segment.

Flye selects a middle point from each segment in EndpointSegments and glues the two middle
points for every pair of equivalent segments. Finally, it glues together parallel edges (edges that start and
end at the same vertices) if the genome segments corresponding to these edges are aligned in Alignments,
i.e., if there exists an alignment with its x- and y-spans overlapping both these segments.
From the repeat graph of a genome to the assembly graph of contigs. ABruijn constructs a set of
contigs Contigs by implicitly “extending” paths in an (unknown) assembly graph. When the path
extension process reaches a branching vertex, ABruijn decides whether to continue or to stop the path
extension (as described in Lin et al., 2016) in order to avoid assembly errors. Since ABruijn does not
know the exact locations of branching vertices, it extends the path beyond the branching vertex by at least
a predefined threshold of minOverlap nucleotides even in the case that it decides to stop the path
extension process. As a result, various contigs constructed by ABruijn overlap. Flye uses these overlaps
for assembly graph construction and concatenates all contigs in Contigs (separated by delimiters) in an
arbitrary order into a single sequence Contigs*. It further constructs the assembly graph as the repeat
graph Graph(Contigs*, Alignments, d) of the concatenate. Pevzner et al., 2004 demonstrated that the
assembly graph of reads approximates the repeat graph of the genome. Thus, the assembly graph
constructed from accurate contigs (which can be viewed as virtual reads) also approximates the repeat
graph of the genome. Below we discuss the construction of assembly graphs from inaccurate contigs.
Constructing an accurate assembly graph from misassembled contigs. In contrast to all existing SMS
assemblers that invest significant effort into making sure that generated contigs are correctly assembled
(that they represent subpaths of the genomic tour in the assembly graph), Flye does not attempt to
construct accurate contigs (Flye contigs instead represent arbitrary paths in the assembly graph).
However, it constructs an accurate assembly graph from inaccurate contigs.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Flye randomly walks in the (unknown) assembly graph to generate random paths from this graph.
Each non-chimeric read from Reads defines a subpath of a genomic tour in an (unknown) assembly
graph. Flye extends this path by switching from the current read to any other overlapping read rather than
a carefully chosen overlapping read like in Lin et al., 2016. Thus, the contig extension is greatly speed-up
since it merely selects a read that shares a sufficiently long common jump-subpath with the current read
(Lin et al., 2016) and avoids a time-consuming test to check if this selection is correct.

Since the resulting FlyeWalk algorithm (Figure 3) does not invoke the contig correctness
check, it constructs paths (sequence of overlapping reads) that do not necessarily follow the genome tour
through the assembly graph. Although it may appear counter-intuitive that inaccurate contigs constructed
by FlyeWalk result in an accurate assembly graph, note that inaccurate contigs in the de Bruijn graph (a
special case of the assembly graph) certainly result in an accurate assembly graph. Indeed, an assembly
graph constructed from arbitrary paths in a de Bruijn graph is the same as the original de Bruijn graph (as
long as these paths include all k-mers from the assembly graph). See Appendix “Flye constructs an
accurate assembly graph from inaccurate FlyeWalk contigs.”

Figure 4, left, presents a rather complex assembly graph of the SMS reads from an E. coli strain
NCTC9964 (EC9964 dataset described in the Appendix “Information about the BACTERIA datasets”).
Flye further untangles this graph into a graph with just six edges (Figure 4, middle) as described below.

FlyeWalk(AllReads, MinOverlap)
Contigs ← empty set of contigs
UnprocessedReads ← AllReads
for each Read in UnprocessedReads

Path ← ExtendRead(UnprocessedReads, Read, MinOverlap)
ContigReads ← MapReads(AllReads, Path, MinOverlap)
ContigSequence ← Consensus(AllReads, ContigReads, MinOverlap)
add ContigSequence to Contigs
remove ContigReads from UnprocessedReads

return Contigs

ExtendRead(UnprocessedReads, Read, MinOverlap)
Path ← sequence of reads consisting of a single read Read
while forever

NextRead ← FindNextRead(UnprocessedReads, Read, MinOverlap)
if NextRead = empty string

 return Path
else

 add NextRead to Path
 Read ← NextRead
 remove Overlap(Read)from UnprocessedReads

Figure 3. Pseudocode of the FlyeWalk algorithm. FlyeWalk iteratively extends each unprocessed read to form a
path formed by the selected reads. Each such path contributes to a contig and FlyeWalk outputs the set of all contigs
resulting from such path extensions. ExtendRead generates a random walk in the assembly graph, which starts at a
given read and constructs a path (sequence of overlapping reads) that contributes to a constructed contig. It
terminates when there are no unprocessed reads overlapping the current read by at least MinOverlap nucleotides.
FindNextRead finds an unprocessed read that overlaps with the given read by at least MinOverlap nucleotides and
returns an empty string if there are no such reads. MapReads finds all reads that map to a given path of reads (by at
least MinOverlap nucleotides). Consensus constructs the consensus of all reads that contribute to a given contig.
Overlap finds all reads that overlap a given read by at least MinOverlap nucleotides.

Contracted assembly graph. Flye aligns all reads to the constructed assembly graph (Appendix
“Aligning reads to assembly graph”) and classifies all edges in the assembly graph into unique and repeat
edges (Appendix “Classifying edges of the assembly graph”). It further transforms the assembly graph
into the contracted assembly graph by contracting all its repeat edges. Aligning a read to the assembly
graph induces its alignment to the contracted assembly graph, and we focus on spanning reads that align
to multiple edges in the contracted assembly graph. Untangling incident edges e=(w,v) and f=(v,u) in the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

contracted assembly graph amounts to substituting them by a single edge (w,u). Below we describe how
Flye uses spanning reads to untangle the contracted assembly graph.
Untangling the contracted assembly graph. A spanning read in the contracted assembly graph is
classified as an (e,f)-read if it traverses two consecutive edges e and f in this graph. For each pair of
incident edges e and f in the contracted assembly graph, we define transition(e,f) as the number of (e,f)-
reads plus the number of (f’,e’)-reads, where e’ and f’ are complementary edges for e and f, i.e., edges
representing a complementary strand.

Given a set of spanning reads in the contracted assembly graph, we construct a transition graph
as follows. Each edge e in the contracted assembly graph corresponds to vertices eh and et in the transition
graph, representing the head and tail of e, respectively (a complementary edge for e correspond to the
same vertices, but in the opposite order). Each (e,f)-spanning read defines an undirected edge between eh

and f t in the transition graph with weight equal to transition(e,f).
Note that the transition graph is bipartite for the simple case when the two subgraphs of the

contracted assembly graphs corresponding to complementary strands do not share vertices. However, it is
not necessarily bipartite in the case of genomes that contain long inverted repeats. Flye thus applies
Edmonds’ algorithm (Edmonds, 1965) to find a maximum weight matching in the transition graph and
uses this matching for untangling the contracted repeat graph. For each edge (eh,f t) in the constructed
matching, Flye additionally checks the confidence of the transition between edges e and f (see Appendix
“Additional details on untangling assembly graphs”) and untangles e and f for each edge (eh,f t) in the
transition graph that passes this check. After iterative untangling of edges in the contracted assembly
graph (and the corresponding iterative repeat resolution in the assembly graph), the assembly graph
typically contains only long unbridged repeat edges that are not spanned by any reads.

Figure 4. Resolving an unbridged repeat. (Left) An initial assembly graph of the EC9964 genome visualized with
Bandage (Wick et al., 2015). (Middle) Assembly graph (after untangling repeats in the graph on the left using
spanning reads) contains a single unbridged repeat REP (and its complement REP’) of length 22.0 kb. Two
complementary strands are fused together in a single connected component. It is unclear whether the genome
traverses the assembly graph as IN1 REP OUT1 REP’ or as IN1 REP OUT2 REP’. (Right top) The edges ending in
the initial node of the edge REP are denoted as IN1 and IN2, and the edges ending in the terminal node of the edge
REP are denoted OUT1 and OUT2. 93, 71, 75, and 76 reads overlap with both IN1 and REP, IN2 and REP, REP and
OUT1 and REP and OUT2, respectively. The span of 383 reads falls entirely within the edge REP. (Right middle)
After assigning 93 reads that overlap with both IN1 and REP to the first repeat copy, and 71 reads that overlap with
both IN2 and REP to the second repeat copy, we “move forward” into the repeat and construct two differing
consensus sequences for a prefix of REP of length 8.6 kb and divergence 9.8%. Similarly, we construct two
consensus sequences for a 6.8 kb long suffix of REP with divergence 16.8% when we “move backward” into the
repeat. The length of the repeat edge is reduced to 22.0 – 8.6 – 6.8 = 6.6 kb, resulting in the emergence of 13 + 18 =
31 spanning reads for this repeat, all of them supporting a cis transition (IN1 with OUT1 and IN2 with OUT2). (Right
bottom) Two resolved instances of the repeat with consensus sequences REP1 and REP2 with divergence 6.9%.

Resolving unbridged repeats. Resolving unbridged and nearly identical repeat instances is a difficult
problem. SMS assemblers often fail to resolve unbridged repeats longer than 10 kb that are common even
in bacterial genomes (Kamath et al., 2017). Although variations between different repeat copies allow for
the possibility of resolving such repeats (at least in theory), no algorithm for resolving them using short

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

reads has been successful so far. In the case of SMS reads, the problem is further complicated by high
error rates that make it difficult to distinguish repeat copies with smaller divergence than 10%.

This challenge is somewhat related to the challenge of constructing phased diploid genome
assemblies recently addressed by the developers of the Falcon and Canu assembler (Chin et al., 2016,
Koren et al., 2017), but there are important differences specific to repeat resolution, notably, that repeats
are flanked by unique edges. We leverage those differences in our approach, which we describe using the
EC9964 dataset described in the Appendices “Resolving unbridged repeats” and “Information about the
BACTERIA datasets”. For simplicity, we illustrate our algorithm using a 22.0 kb long unbridged repeat
with two copies (referred to as R22) in the EC9964 genome. Flye and HINGE constructed topologically
identical assembly graphs with this repeat unresolved (Figure 4, left), but Flye eventually resolved it
using variations between its repeat copies.

Figure 4 shows this repeat with a corrupted consensus sequence REP in the subgraph of the
assembly graph. Although it is impossible to resolve this repeat (i.e., to pair each entrance to this repeat
with the corresponding exit) if its two copies are identical, it becomes possible if there are sufficient
variations between these copies. The goal is to resolve the two distinct repeat copies and to transform the
single sequence REP into two different repeat instances REP1 and REP2 as shown in Figure 4. Appendix
“Resolving unbridged repeats” describes how Flye resolves unbridged repeats by (i) identifying the
variations between repeat copies, (ii) matching each read with a specific repeat copy using these
variations, and (iii) using these reads to derive a distinct consensus sequence for each repeat copy.

RESULTS

Datasets. We benchmarked various SMS assemblers using the following datasets:
 BACTERIA dataset contains 21 datasets from the National Collection of Type Cultures

(NCTC), a project aimed at completing 3000 bacterial genomes using SMS technology
(http://www.sanger.ac.uk/resources/downloads/bacteria/nctc/). We selected these 21 out of 997
datasets because they were studied in detail in Kamath et al. (2017) and used to benchmark
various assemblers. Taking this into account, we only benchmarked Flye against HINGE on these
datasets, since HINGE outperformed the other assemblers studied in Kamath et al. (2017).

 YEAST dataset contains Pacific Biosciences (PB) and Oxford Nanopore Technology (ONT)
reads from S. cerevisiae S288c genome of length 12.1 Mb (16 chr.), used in the recent
benchmarking of various SMS assemblers (Giordano et al., 2017). Similar to the original study,
we used the full set of ONT reads (31x coverage) but down-sampled PB reads from the original
120x to 31x coverage to have their coverage and reads length distribution be similar to the ONT
data.

 WORM dataset contains Pacific Biosciences reads (coverage 40X) from C. elegans genome of
length 100 Mb (6 chr.) (https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set).

 HUMAN and HUMAN+ datasets. The HUMAN dataset contain ONT reads (30x coverage)
from the GM12878 human cell line (Jain et al., 2017). The HUMAN+ dataset combines the
HUMAN-dataset with a dataset of ultra long ONT reads (5x coverage) generated using the
recently developed ultra-long read protocol (Jain et al., 2017). The N50 is equal to 12.5 kb and
99.7 kb for the standard and the ultra-long reads, respectively.

Benchmarking Flye, Canu, Falcon, HINGE, and Miniasm. We used QUAST version 5.0 (Mikheenko
et al., 2018) to benchmark the latest versions of all assemblers (see Appendix “Additional information on
benchmarking”). QUAST distinguishes between local and global misassemblies (such as inversions of
large segments) using a parameter minimum misassembly size. However, using the default value for this
parameter, tuned for short read assemblies, results in many local misassemblies with span below 6000
nucleotides reported by QUAST. These misassemblies often represent misalignments of long repetitive
sequences such as the Ty1 transposon in yeast. We thus decided to ignore local misassemblies by setting a
large minimum misassembly size of 6,000 bp (the minimum alignment identity was set to a low 90%).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://github.com/PacificBiosciences/DevNet/wiki/C.-elegans-data-set
https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Also, since Miniasm returns assemblies with a much larger number of mismatches and indels than other
assemblers, it is not well suited for reference alignment-based quality evaluation, even with a low
minimum alignment identity threshold. To make a fair comparison for Miniasm, we ran the ABruijn
contig polishing module (Lin et al., 2016) on the Miniasm output to improve the accuracy of its contigs.
Analyzing the BACTERIA dataset. Kamath et al., 2017 analyzed various NCTC datasets to
demonstrate the advantages of the HINGE assembly graph approach. This analysis revealed that many
NCTC datasets result in complex assembly graphs with long unbridged repeats that are nearly impossible
to resolve. In contrast, various OLC assemblers attempting to resolve these repeats led to misassemblies.

We ignored small connected components in the assembly graphs (representing plasmids that do not
share repeats with chromosomes) and classified assemblies of the BACTERIA datasets into three groups:
(i) complete if the assembly graph consists of a single loop representing a circular chromosome, (ii) semi-
complete if the assembly graph contains multiple edges but there exists a single solution of the Chinese
postman problem (Edmonds and Johnson, 1973) in this graph, representing a complete circular
chromosome, and (iii) tangled if the assembly graph is neither complete nor semi-complete. While
HINGE does not distinguish between complete and semi-complete assemblies, we argue that ignoring this
separation may lead to assembly errors. Indeed, a semi-complete assembly graph results in a unique
assembly only in the case of uni-chromosomal genomes. In the case of multi-chromosomal genomes or in
the case of plasmids that share repeats with a uni-chromosomal genome, there exist multiple possible
assemblies from a semi-complete assembly graph. Since 10% of known bacterial species are multi-
chromosomal (Jha et al., 2012) and since a large fraction of uni-chromosomal genomes have plasmids
sharing repeats with the chromosome (Antipov et al., 2015), assuming that a semi-complete assembly
graph results in a complete genome reconstruction is dangerous even in the case of bacterial genomes.
Figure 5, left presents an example of a repeat that was resolved by HINGE based on the graph structure.

Figure 5. Differing assembly graphs constructed by Flye and HINGE. (Left) Flye and Hinge assembly graphs of
the KP9657 dataset. There is a single unique edge entering into (and exiting) the unresolved “yellow” repeat and
connecting it to the rest of the graph. Thus, this repeat can be resolved if one excludes a possibility that it is shared
between a chromosome and a plasmid. In contrast to HINGE, Flye does not rule out this possibility and classifies the
blue repeat as unresolved. (Right) Flye and Hinge assembly graphs of the EC10864 dataset show a mosaic repeat of
multiplicity four formed by yellow, blue, red and green edges (the two copies of each edge represent complementary
strands). HINGE reports a complete assembly into a single chromosome.

Before resolving unbridged repeats, Flye assembled genomes from the BACTERIA dataset into four
complete, one semi-complete, and 16 tangled assembly graphs. After resolving unbridged repeats, Flye
assemblies resulted in six complete, three semi-complete, and 12 tangled assembly graphs. The number of
edges in the tangled assembly graph constructed by Flye varied from 3 to 25.

Flye disagrees with HINGE on only three BACTERIA datasets: (i) HINGE reports a complete
assembly of KS11692, while Flye reports a tangled assembly graph that lacks circularization (the mean
read length of the dataset is only 3928); (ii) HINGE reports a better assembly of the EC10864 dataset
(Figure 5, right); (iii) Flye reports a better assembly of the EC9964 dataset after resolving an unbridged
repeat (Figure 4). See Appendix “Information about the BACTERIA dataset” for more details.
Analyzing the YEAST dataset. Table 1 illustrates that all tools but HINGE produced YEAST-PB
assemblies with similar NGA50 ranging from 525 kb for Falcon to 567 kb for Canu (Flye fully assembled
11 out of 16 yeast chromosomes). Assembling this dataset with the original 120x coverage (rather than the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

downsampled 31x coverage) results in very similar assemblies, e.g., NGA50 increased from 561 kb to
581 kb for the Flye assembly. HINGE resulted in a lower NGA50 of 328 kb. Miniasm and Flye generated
more accurate assemblies (10 misassemblies each) as compared to Canu, Falcon and HINGE (20, 26 and
25 misassemblies, respectively). Canu and Flye had the highest reference coverage (99.3% and 98.9%,
respectively) and the most accurate contigs with the same average sequence identity 99.95%. Although
Miniasm generated the least accurate contigs with only ≈90% identity with the reference, its contigs have
become almost as accurate as the Flye contigs after the ABruijn-based polishing.

The YEAST-ONT assemblies show a similar trend, with Miniasm+ABruijn, Flye, and Canu
producing the most accurate assemblies (8, 13 and 16 misassemblies, respectively). However, the Flye
assembly was more contiguous (NGA50 = 769 kb versus 545 kb for Canu and 542 kb for Miniasm).
Although most misassemblies represent small rearrangements, Miniasm and Falcon erroneously fused
two chromosomes each in the YEAST-ONT dataset. For additional information, see Appendix “Assembly
graph of the YEAST-ONT dataset”.

dataset assembler length
(Mb)

#contigs NG50
(kb)

reference
coverage

reference
% identity

misassemblies NGA50 (kb)

YEAST
PB

Flye 12.1 28 751 99.0% 99.95% 10 561

Canu 12.2 43 588 99.3% 99.95% 20 567

Falcon 11.9 42 562 96.7% 99.81% 26 525

HINGE 12.3 45 440 97.4% 98.41% 25 325

Miniasm+ABruijn 12.0 33 542 97.9% 99.93% 10 538

YEAST
ONT

Flye 12.1 25 807 98.4% 99.04% 13 773

Canu 12.0 29 774 98.6% 98.96% 16 545

Falcon 11.9 41 716 97.4% 98.81% 18 637

HINGE 12.2 64 309 94.2% 97.94% 43 292

Miniasm+ABruijn 11.6 27 756 98.0% 99.03% 8 542

WORM Flye 103 123 2,131 99.3% 99.93% 62 1,682

Canu 108 262 2,264 99.2% 99.93% 91 1,287

Falcon 101 106 2,291 98.7% 99.78% 89 1,286

HINGE 103 64 2,710 99.0% 99.51% 126 1,287

Miniasm+ABruijn 104 110 2,371 99.2% 99.93% 70 1,588

HUMAN Flye 2,803 3,262 3,558 91.2% 98.50% 587 3,194

Canu 2,646 2,883 3,103 88.5% 97.20% 748 2,244

MaSuRCA 2,877 8,773 4,670 90.5% 99.79% 8,439 3,684

HUMAN+ Flye 2,797 2,222 5,837 91.5% 98.50% 939 4,474

Canu 2,759 2,327 5,824 89.0% 97.19% 1,288 3,778

Table 1. Assembly statistics for the YEAST, WORM, and HUMAN/HUMAN+ datasets. Minimum misassembly
size was set to 6000. Since Miniasm generates error-prone contigs, we polished them using ABruijn to provide a fair
comparison.

Analyzing the WORM dataset. Flye generated contigs with the lowest number of misassemblies (62),
while other tools generated assemblies with the number of misassemblies varying from 70 for
Miniasm+ABruijn to 126 for HINGE. Flye and Miniasm+ABruijn produced the largest NGA50 of 1,682
kb and 1,588 kb, respectively, while the other assemblies produced an NGA50 of 1,287 kb. Additionally,
manual analysis of the reported misassemblies revealed the differences between the Flye assembly and
the reference genome, which might be attributed to errors in the reference (see Appendix “Reconstruction
of tandem repeats in the WORM dataset”). Miniasm+ABruijn, Flye, Canu, HINGE, and Falcon took 290,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

480, 781, 803, and 945 minutes to assemble the WORM dataset (see Appendix “Additional details in
benchmarking”).
Analyzing the HUMAN and HUMAN+ datasets. We compared the Canu and Flye assemblies of the
HUMAN and HUMAN+ datasets. We also downloaded a hybrid MaSuRCA assembly (Zimin et al., 2017)
using the 30x ONT reads and the Illumina reads (available at the MaSuRCA web site).

For the HUMAN dataset, Flye and Canu generated assemblies with NGA50 equal to 3.2 Mb (587
assembly errors) and 2.2 Mb (748 assembly errors), respectively. Combining the HUMAN dataset of the
ONT reads with short Illumina reads resulted in only a modest increase of NGA50 in the MaSuRCA
hybrid assembly (3.6 Mb), while increasing the number of misassemblies by an order of magnitude
(8,439 assembly errors). Manual inspection revealed that most errors in the MaSuRCA assembly were
clustered within the difficult to assemble telomeric and centromeric chromosome regions. For the
HUMAN+ dataset, Flye and Canu generated assemblies with NGA50 equal to 4.5 Mb (939 assembly
errors) and 3.8 Mb (1,249 assembly errors), respectively. Based on a comparison of NGA50 statistics for
Flye and MaSuRCA, it appears that when the coverage by long reads exceeds 30x, the contribution of
short reads may be limited to reducing the error rate in the consensus sequences (for the ONT assemblies)
rather than improving the quality of the assembly.

Flye, Canu, and MaSuRCA took 10,000, 40,000 and 50,000 CPU hours to generate assemblies of
the HUMAN dataset (as reported by Canu, and MaSuRCA authors).

DISCUSSION

In this manuscript we described the Flye algorithm for building the assembly graph of SMS reads and
showed that repeat characterization is a useful complement for genome assembly algorithms. We showed
that unbridged repeats that are not resolved with conventional read-spanning algorithms can be further
untangled using the variations between repeat copies. Additionally, repeat graphs provide a useful
framework for planning extra experiments for genome finishing.

We also compared Flye with popular long read assemblers. Flye and HINGE showed good
agreement in the structure of the resulting assembly graphs on the BACTERIA datasets; however Flye
significantly improved on HINGE on the more complex YEAST and WORM datasets. A possible
explanation could be that Flye builds the assembly graph from accurate contigs while HINGE builds it
from error-prone reads, thus limiting the graph resolution. Flye and Miniasm generated the most accurate
and contiguous assemblies of the YEAST and WORM datasets compared to Canu, Falcon, and HINGE.
Interestingly, both Miniasm and Flye (in contrast to Canu and Falcon) work with raw rather than error-
corrected reads. In summary, Flye resulted in comparable or more accurate assemblies on all datasets.
Specifically, in the case of WORM, HUMAN and HUMAN+ datasets, Flye generated significantly more
contiguous and accurate assemblies than Canu.

Acknowledgements. We are grateful to Bahar Beshaz and Sergey Nurk for their insightful comments.

Availability. Flye is freely available at http://github.com/fenderglass/Flye. The supplementary files,
including the assemblies generated by Flye are available at https://doi.org/10.5281/zenodo.1143753.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

REFERENCES

Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2015). hybridSPAdes: an algorithm for
hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009-1015.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes:
a new genome assembly algorithm and its applications to single-cell sequencing. Journal of
computational biology, 19(5), 455-477.

Berlin, K., Koren, S., Chin, C. S., Drake, J. P., Landolin, J. M., & Phillippy, A. M. (2015). Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing. Nature
biotechnology, 33(6), 623-630.

Chaisson, M.J.P., J. Huddleston, M.Y Dennis, P. H. Sudmant, M. Malig, F. Hormozdiari, F. Antonacci, U.
Surti, R. Sandstrom, M. Boitano, J. M Landolin, J. A Stamatoyannopoulos, M. W Hunkapiller, J. Korlach,
E. E Eichler (2015) Resolving the complexity of the human genome using single-molecule sequencing.
Nature 51, 608-611

Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., et al. (2013). Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing data. Nature methods, 10(6),
563-569.

Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., et al. (2016). Phased
diploid genome assembly with single-molecule real-time sequencing. Nature methods, 13(12), 1050-
1054.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of mathematics, 17(3), 449-467.

Edmonds, J., & Johnson, E. L. (1973). Matching, Euler tours and the Chinese postman. Mathematical
programming, 5(1), 88-124.

Giordano, F., Aigrain, L., Quail, M. A., Coupland, P., Bonfield, J. K., Davies, R. M., et al. (2017). De
novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Scientific reports, 7.

Ghurye, Jay, Mihai Pop, Sergey Koren, Derek Bickhart, and Chen-Shan Chin. "Scaffolding of long read
assemblies using long range contact information." BMC genomics 18, no. 1 (2017): 527.

Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for genome
assemblies. Bioinformatics, 29(8), 1072-1075.

Jain, M., Koren, S., Quick, J., Rand, A.C., Sasani, T.A., Tyson, J.R., Beggs, A.D., Dilthey, A.T., Fiddes,
I.T., Malla, S. and Marriott, H., 2017. Nanopore sequencing and assembly of a human genome with ultra-
long reads. BioRxiv (2017), p.128835.

Jha, J. K., Baek, J. H., Venkova-Canova, T., & Chattoraj, D. K. (2012). Chromosome dynamics in
multichromosome bacteria. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(7),
826-829.

Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A., & David, N. T. (2017). HINGE: long-read
assembly achieves optimal repeat resolution. Genome research, 27(5), 747-756.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., et al. (2012). Hybrid
error correction and de novo assembly of single-molecule sequencing reads. Nature biotechnology, 30(7),
693-700.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
research, 27(5), 722-736.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32(14), 2103-2110.

Y Lin, S Nurk, PA Pevzner (2014) What is the difference between the breakpoint graph and the de Bruijn
graph? BMC genomics 15 (6), S6

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., & Pevzner, P. A. (2016). Assembly of long
error-prone reads using de Bruijn graphs. Proceedings of the National Academy of Sciences, 113(52),
E8396-E8405.

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K, Mobarry C, Sutton
G. 2008. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24: 2818–2824.

Mikheenko A, Prjibelski A., Saveliev V, Antipov D., and Gurevich A. 2018 Versatile genome assembly
evaluation with QUAST-LG (submitted)

Myers EW. 2005. The fragment assembly string graph. Bioinformatics 21 (Suppl 2): i79–ii85.

M. Nattestad , S. Goodwin, K. Ng , T. Baslan , F. J. Sedlazeck, P. Rescheneder, T. Garvin , H. Fang, J.
Gurtowski , E. Hutton , E. Tseng , C.S. Chin , T. Beck , Y. Sundaravadanam , M. Kramer, E Antoniou , J.
D. McPherson , J. Hicks , W. R. McCombie , M. C. Schatz (2017) Complex rearrangements and oncogene
amplifications revealed by long-read DNA 2 and RNA sequencing of a breast cancer cell line. bioRxiv
doi: http://dx.doi.org/10.1101/174938

Pevzner, P. A., Tang, H., & Tesler, G. (2004). De novo repeat classification and fragment
assembly. Genome research, 14(9), 1786-1796.

Prjibelski, A. D., Vasilinetc, I., Bankevich, A., Gurevich, A., Krivosheeva, T., Nurk, S., et al. (2014).
ExSPAnder: a universal repeat resolver for DNA fragment assembly. Bioinformatics, 30(12), i293-i301.

Schwartz, E., & Schwartz, E. (2009). Microbial megaplasmids. Berlin: Springer.
Vyahhi, N., Pyshkin, A., Pham, S., & Pevzner, P. (2012). From de Bruijn graphs to rectangle graphs for
genome assembly. Algorithms in Bioinformatics, 249-261.

Weissensteiner, M. H., Pang, A. W., Bunikis, I., Höijer, I., Vinnere-Petterson, O., Suh, A., & Wolf, J. B.
(2017). Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem
repeat arrays with population genetic implications. Genome Research, 27(5), 697-708.

Wick, R. R., Schultz, M. B., Zobel, J., & Holt, K. E. (2015). Bandage: interactive visualization of de novo
genome assemblies. Bioinformatics, 31(20), 3350-3352.

Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from
short and long sequencing reads. PLoS Comput Biol 13(6): e1005595

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Zimin, A.V., Puiu, D., Luo, M.C., Zhu, T., Koren, S., Marçais, G., Yorke, J.A., Dvořák, J. and Salzberg,
S.L., 2017. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor
of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Research, 27(5), pp.787-792.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

APPENDICES

 Short read assemblers and the challenge of repeat resolution
 Consistent alignments
 Inconsistent alignments result in incorrect clustering-based repeat graph
 Flye constructs an accurate assembly graph from inaccurate FlyeWalk contigs
 Aligning reads to the assembly graph
 Classifying edges of the assembly graph
 Additional details on untangling assembly graphs
 Resolving unbridged repeats
 Defining the minimum divergence threshold
 Additional benchmarking information
 Information about the BACTERIA dataset
 Assembly graph of the YEAST-ONT dataset
 Reconstruction of tandem repeats in the WORM dataset

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Short read assemblers and the challenge of repeat resolution

Although popular short read assemblers construct the assembly graph of individual reads (before
resolving repeats using paired reads), they output a set of contigs (after the repeat resolution step) rather
than an assembly graph constructed from the paired reads. For example, the SPAdes assembler
(Bankevich et al., 2012) constructs the assembly graph of individual reads, uses it for repeat resolution,
and outputs the resulting scaffolds (Prjibelsky et al., 2014). A better option would be to construct the
assembly graph of these scaffolds (which are less tangled than the assembly graph of individual reads)
and to apply the repeat resolution step again on this graph for a more accurate repeat resolution. Another
advantage of this (less tangled) assembly graph lies in applications relating to hybrid assembly, e.g., co-
assembly of short and long reads (Antipov et al., 2015, Wick et al., 2017). However, although some
studies attempted to construct the assembly graph directly from paired reads (Vyahhi et al., 2012), the
popular short read assemblers have failed to incorporate this approach into their pipelines so far.

Appendix: Consistent alignments

Each multiple alignment of m sequences induces (m2) pairwise alignments. A set of pairwise

alignments (described by the repeat plot) is consistent if they can be combined into a single multiple
alignment that induces each pairwise alignment in the set. However, the concept of multiple alignment is
usually defined for the case of aligning multiple sequences rather than for aligning a sequence against
itself. Below we describe the concept of a multiple self-alignment of a genome and define the notion of
consistent pairwise self-alignments. This notion is important since A-Bruijn graphs result in a simple
repeat graph in the case of consistent self-alignments but face various complications in the case of
inconsistent self-alignments (see Pevzner et al., 2004 for examples of inconsistent alignments). The Flye
algorithm bypasses the complications caused by inconsistent pairwise alignments enabling assemblies of
long error-prone reads.

We define a multiple alignment of a single sequence against itself as simply a partition of its
positions into non-overlapping subsets, with each subset corresponding to a column of the multiple
alignment. For example, a multiple alignment of the sequence ACTGGCTGACT can be represented as a
partition of 10 positions into six “painted” subsets: A0C1T2G3G4C5T6G7A8C9T10. Figure A1 visualizes such
a partitioning as a multiple alignment where each column represents positions from the same subset:

 9 10 9 10 5 6
 8 5 6 4 1 2 0 1 2
 0 1 2 3 4 5 6 7 8 9 10

 A C T G G C T G A C T

Figure A1. Multiple self-alignment defined by partitioning of the sequence A0C1T2G3G4C5T6G7A8C9T10 into
six subsets. In difference from the traditional representation of a multiple alignment (where each entry represents a
nucleotide in the multiple alignment matrix, the entries in the multiple self-alignment matrix represent positions in
the sequence.

Every pair of numbers i < j in the same column of the multiple alignment defines a point (i,j) in the two
dimensional plot. The collection of all such points defines the dot plot of the multiple alignment. We refer
to a rectangle in the dot plot with lower left corner (x,y) and upper right corner (x’,y’) as (x,y, x’,y’). A
local alignment between segments (x,x’) and (y,y’) of a genome defines a set of 2-dimensonal points in the
rectangle (x, y, x’, y’) corresponding to matches in this alignment. A local alignment between segments
(x,x’) and (y,y’) is consistent with the multiple alignment if the dot plot of the multiple alignment
coincides with the dot-plot of the pairwise alignment within the rectangle (x, y, x’, y’). A set of local

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

alignments is consistent if there exists a multiple alignment that is consistent with all local alignments in
this set.

Appendix: Inconsistent alignments result in incorrect clustering-based repeat graph

Figure A2 presents an example of an inconsistent alignment and illustrates that it results in a more
complex repeat graph than the graph shown in Figure 2 in the main text. Although it may appear to be a
minor annoyance in the case of the small example in Figure A2, inconsistent alignments may result in
huge repeat graphs in the case of real genomes, making it difficult to analyze repeats in such cases. Also,
although it may appear easy to add a missing diagonal (in the simple case shown in Figure A2) to make
the alignment consistent, transforming inconsistent alignments into consistent ones is a challenging
problem in the case of real genomes.

The punctilious repeat graph in Figure A2 has seven vertices (since there exist seven projections
of alignment endpoints to the main diagonal), in contrast to the punctilious repeat graph in Figure 2 in the
main text that has eight vertices. This deficiency of the punctilious repeat graph in Figure A2 motivates
the algorithm for extending the set Endpoints as described in the main text. Note that the middle point of
the long diagonal in Figure 2 represents an invalid point since only one of its projections belongs to the
set of seven endpoint projections on the main diagonal. The algorithm described in the main text adds this
projection to the set Endpoints and results in the same repeat graph as shown in Figure 2 in the main text.

Figure A2. Inconsistent local alignments result in an “incorrect” repeat graph (as compared to the repeat
graph shown in Figure 2 in the main text), thus necessitating an extension of the set of the alignment
endpoints. (Left) Alignment paths for two local self-alignments within a genome XABYABZBU. Only two out of
three pairwise alignments between instances of a mosaic repeat (AB, AB, and B) are shown since the third
alignment did not pass the percent identity threshold, resulting in an inconsistent set of pairwise alignments.
Alignment endpoints are clustered together if their projections on the main diagonal coincide or are close to each
other (clusters of closely located endpoints for d=0 are painted with the same color). This clustering reveals three
clusters with seven endpoints (Top right) Projections of the clustered endpoints on the main diagonal define seven
vertices of the repeat graph. (Middle right). Gluing endpoints that belong to the same clusters. (Bottom right) Gluing
parallel edges in the resulting graph (parallel edges are glued if there exists an alignment between their sequences),
which results in the approximate repeat graph.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Flye constructs an accurate assembly graph from inaccurate FlyeWalk contigs

Consider the circular genomic tour in the assembly graph for the E. coli strain NCTC9964 formed by four
edges IN1, REP, OUT1, REP’ and the corresponding complementary path formed by the complementary
edges REP, OUT2, REP’, IN2 (Figure 4). Paths IN1, REP, OUT2, REP’ and IN2, REP, OUT1, REP’ form a
set of incorrect contigs that however are assembled in the correct assembly graph by Flye. Below we
explain why it holds for an arbitrary set of paths constructed by Flye from contigs constructed by
FlyeWalk.

The construction of the repeat graph assumes that the genome Genome and the two-dimensional
self-alignment matrix Alignments are given. Note that the alignment matrix defines the pairwise
alignments (or lack of similarities) between any two substrings of the genome. Given a set of substrings
from Genome, these alignments form Alignments-imposed pairwise alignments. A set of substrings of a
genome is called a covering set if for every pair of consecutive positions in Genome there exists a
substring containing these positions. In practice, we use a more stringent condition that requires that for
each m consecutive positions in Genome (where m is a pre-defined threshold), there exists a substring
(read) spanning all these positions.

A useful property of the repeat graph is that it can be constructed from alignments of substrings of
Genome without knowledge of the entire sequence Genome and the entire matrix Alignments.
As demonstrated in Pevzner et al., 2004, if reads form a covering set, then gluing of reads according to
their Alignments-imposed similarities, produces the same repeat graph as gluing of the entire Genome.
The order in which the reads are subjected to such gluing does not affect the resulting graph.

Let Genome be an (unknown) genomic sequence of an (unknown) length with an (unknown)
alignment matrix Alignments. Let s(1),..., s(t) be a covering set of strings for Genome, and A be the
collection of t*(t - 1)/2 sub-matrices of Alignments for every pair of substrings s(i) and s(j). Every such |
s(i)| ×|s(j)| sub-matrix is a snapshot of a “small” area of the matrix Alignments. The question is whether
one can reconstruct the repeat graph from these snapshots rather than from the entire matrix Alignments.

We emphasize that coordinates of the strings s(1),..., s(t) and their ordering in the sequence
Genome are unknown. However, Pevzner et al., 2004 demonstrated that the repeat graph of Genome
coincides with the assembly graph of the sequence s(1) * s(2) * … *s(t), the concatenate of all substrings
(with delimiters) in any order. We use this result to demonstrate that the Flye assembly of inaccurate
FlyeWalk contigs results in an accurate assembly graph.

Consider the set Contigs constructed by FlyeWalk and map all reads to all these contigs. Since
FlyeWalk utilizes all reads, each read will be mapped to a single contig or to multiple contigs (for
simplicity, we assume that chimeric reads have been removed). We now concatenate all reads starting
from reads in the first contig, followed by reads in the second contig, etc., resulting in a sequence of
reads:

{s(1,1), s(1,2),…,s(1,n1)}, {s(1.1), s(2,1),…,s(2,n2)}, … ,{s(t,1), s(t,1),…,s(t,nt)}

where s(i,j) stands for the j-th read in the i-th contig.
Since all reads are included in this concatenate, the repeat graph constructed from this

concatenate coincides with the repeat graph of the genome (Pevzner et al., 2004). Note that gluing all
reads from the first contig simply results in the consensus of this contig constructed by FlyeWalk.
Iterating it for all contigs, we will get the following sequence of contigs as the result of these (but not all)
gluing operations:

contig1, contig2, … ,contigt

Therefore, the gluing of all contigs constructed by FlyeWalk (some of them may be misassembled)
results in the same assembly graph as gluing all reads, and thus results in the repeat graph of the genome.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Aligning reads to the assembly graph

Flye aligns all reads to the constructed assembly graph using the concept of common jump-subpaths (Lin
et al., 2016). First, each read is matched against the edges of the assembly graph. For each repeat edges in
the assembly graph, we store all copies of the corresponding repeat (from the original contigs), rather than
a single consensus of all sequences contributing to this repeat edge. We then match a read to all these
copies and select the best alignment to improve the recruitment of reads to the edges of the assembly
graph. If a read is mapped to multiple edges in the assembly graph, we find a maximum scoring path in
the graph formed by such edges using dynamic programming.

Appendix: Classifying edges of the assembly graph.

After constructing the assembly graph, Flye aligns all reads to this graph and forms a read-path for each
read. Given alignments of all reads against the assembly graph, Flye computes the mean depth of
coverage cov across the entire assembly graph and classifies an edge as low-coverage (if its coverage is
below 2*cov) and high-coverage otherwise. While most low coverage edges are unique (traversed only
once in the genomic tour), some of them are repetitive since the coverage varies along the genome.

To accurately classify unique and repetitive edges in the assembly graph, Flye complements
coverage-based classification using information about the read-paths. An edge e’ in the assembly graph is
a successor of an edge e if it follows e in one of the read-paths. A low-coverage edge is classified as
unique if it has a single successor. All other edges (i.e., high-coverage edges or low-coverage edges with
multiple successors) are classified as repetitive. To avoid classifying chimeric connection in the assembly
graph as successor edges and to minimize the influence of misaligned reads, Flye imposes an additional
restriction on the edge to classify it as a successor: a fraction of the reads supporting each successor
(among all reads contributing to the successor of a given edge) should exceed a threshold.

Appendix: Additional details on untangling assembly graphs

After reconstructing the maximum weight matching, which defines the set of edges in the transition
graph, Flye additionally checks each of the inferred edges as follows. For each edge (u, v) from the
matching, we compute the total weight s of all edges in the transition graph adjacent to u or v. If
transition(u, v) < s / 2, the edge is called weak and is consequently ignored. Weak edges typically occur
because long repeats may be spanned by a few reads in an ambiguous way.

Flye iteratively untangle edges and finds maximum weight matchings until no extra repeats can
be resolved. Note that some edges that were initially classified as repetitive may become unique during
the next iteration of the algorithm (for example, if they were a part of a bigger mosaic repeat that was
partially resolved).

Appendix: Resolving unbridged repeats

Flye takes advantage of the small variations between different repeat copies to resolve unbridged repeats.
The basic idea is to (i) identify the variations between repeat copies, (ii) match each read with a specific
repeat copy using these variations, and (iii) use these reads to derive a distinct consensus sequence for
each repeat copy. The success of this approach is contingent upon the presence of a sufficient number of
variations between the different repeat copies. Therefore, the first step is to estimate the number and
positions of variations between the repeat copies and to calculate the divergence of the various repeat
copies from reads alone.
Revealing variable positions within repeats. To reveal the variable positions within a repeat, we map all
reads to the consensus sequence of the repeat (constructed by the ABruijn polishing procedure) and
generate a multiple sequence alignment of all reads that are contained within or overlap with the repeat.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Afterwards, we determine the most frequent symbol in each column of the alignment, count the
occurrences of every other symbol (A, C, G, T, or “-”) in this column, and determine the substitution,
deletion, and insertion rate for each symbol in each column as described in Lin et al., 2016. If the
substitution, deletion, or insertion rate for a symbol is higher than a predetermined threshold, the position
is called a tentative divergent position. The repeat divergence is then estimated by dividing the total
number of tentative divergent positions by the length of the repeat.

Since substitutions and indels frequently occur in non-divergent positions of SMS reads, it is
important to choose thresholds that are higher than this background distribution of errors, but low enough
to capture the truly divergent positions. To select thresholds, we analyzed the R22 repeat in the assembly
graph of the EC9964 dataset (Figure 4). Since this repeat has many variations between two repeat copies
(1515 (6.9%) true divergent positions, (943 substitutions (4.3%), 346 deletions (1.6%), and 226 insertions
(1.0%)), it was manually resolved with high confidence. With the accurate sequences of two repeat copies
identified, we are able to distinguish the background distribution of mutation rates imposed by errors in
non-variable positions from the mutation rates at variable positions to identify appropriate thresholds.

We mapped reads from EC9964 to the consensus of the R22 repeat and calculated the
substitution, deletion, and insertion rates for the second most frequent symbol at each column of the
alignment. Figure A3 illustrates that variable positions feature higher substitution, deletion, and insertion
rates than non-variable positions within a repeat. We thus identify tentative divergent positions based
solely on mutation rates by selecting a mutation rate threshold that provides a good separation between
the two distributions (0.1, 0.2, and 0.3 for substitutions, deletions, and insertions, respectively). This
results in the identification of 924 out of 943 substitutions, 270 out of 346 deletions and 54 out of 226
insertions for the R22 repeat. At the same time, we misclassified 81 identical positions as divergent (61
substitutions, 5 deletions, and 15 insertions), resulting in a false positive rate of 0.4%. In all, we identified
1329 tentative divergent positions, which leads to a divergence estimate of 6.0%, a slight underestimation
of the true divergence rate of 6.9%

.
Figure A3. Separating divergent and identical positions within repeats using mutation rates computed for
R22 repeat in the EC9964 dataset. Substitution (top), deletion (middle), and insertion (bottom) rates for the second
most frequent symbol at each position in the multiple alignment of reads. Mutation rates for identical (divergent)
positions are shown in blue (red). The number of positions with a given mutation rate (y-axis) is shown in a
logarithmic scale. The cutoffs 0.1, 0.2, and 0.3 result in a good separation of identical and divergent positions for
substitutions, deletions, and insertions, respectively.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Resolvable and unresolvable repeats. Based on the identified tentative divergent positions, we classify a
repeat as resolvable based on the following two criteria:

 The divergence rate exceeds a minimum divergence threshold. Based on simulated data, we set up
a minimum 0.1% divergence threshold, i.e., at least one divergent position per each 1000 bp on
average (see Appendix “Defining the minimum divergence threshold”). When the divergence rate
falls below 0.1%, there is often a shortage of reads covering multiple divergent positions, which
is necessary for successful repeat resolution.

 The maximal distance between consecutive divergent positions does not exceed the maximum
distance threshold. E.g., if two consecutive divergent positions are 15 kb apart but the maximal
read length is 10 kb, there will be no reads spanning these positions that can be used for repeat
resolution. Moreover, it turns out that the maximal read length is too conservative of a threshold,
since consecutive divergent positions may be less than that length but the repeat is still
unresolvable (Figure A4). On the other hand, we found that selecting the average read length as
the threshold is too lenient. Based on our analysis of the BACTERIA dataset, we set the default
threshold for the maximal distance between consecutive divergent positions as twice the average
read length, which varies from 12 kb to 20 kb in the BACTERIA datasets.

If either of the above criteria does not hold, the repeat is classified as unresolvable. Note that some
repeats initially classified as resolvable may be later classified as unresolved if the algorithm described
below fails to resolve them.

Figure A4. Histogram of divergent positions for a 24 kb long repeat from the EC9007 dataset with a large 8 kb
gap between two consecutive divergent positions located at 15002 and 23150 nucleotides from the start of the
repeat. The repeat remained unresolved since there is only one read spanning this gap, which does not reveal a
confident pairing of the incoming and outgoing edges for this repeat.

Repeat Resolution Algorithm. The idea of the algorithm is to utilize the tentative divergent positions to
assign each read to a specific repeat copy and then use the assigned reads to derive a distinct consensus
sequence for each repeat copy. For example, the 93 reads that span edges IN1 and REP (Figure 4 in the
main text) can be assigned to one repeat copy and the 71 reads that span edges IN2 and REP can be
assigned to another repeat copy. However, it is unclear how to assign other reads overlapping with the
edge REP to a specific repeat copy.

In each iteration of the algorithm, reads are assigned to a specific repeat copy and then all the
reads assigned to each repeat copy are used to construct a consensus sequence for that copy. Thus, as the
algorithm proceeds, more and more reads are assigned to specific repeat copies and the consensus

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

sequence for each repeat copy grows longer and longer. The algorithm terminates when no new reads can
be assigned to read copies and the consensus sequences stop growing in length. There are two goals: to
obtain distinct consensus sequences for each repeat copy and to determine the correct pairings of
incoming and outgoing edges for each repeat copy.

Initially, the algorithm assigns all reads spanning edges IN1 and REP (IN2 and REP) to the first
(second) repeat copy and computes the consensus of each repeat copy using the recruited reads. Since the
recruited reads do not span the entire edge REP, we only construct two consensus sequences
corresponding to prefixes of REP, where there is substantial read coverage by the recruited reads (at least
10X for each repeat copy to ensure that consensus sequences are sufficiently accurate). Both consensus
sequences are truncated to the length of the shortest consensus sequence to prevent bias in the read
recruitment process in future iterations. In the case of the EC9964 dataset, we constructed two consensus
sequences corresponding to 8.6 kb long prefixes of REP with divergence 9.8% (Figure 4). As a result, we
now have two consensus sequences for the entire edge REP that differ in some of the first 8.6 kb but
coincide in the remaining part.

The two constructed consensus sequences serve as two templates for mapping reads to specific repeat
copies in successive iterations. In this way, we can be conservative in gradually constructing the
consensus sequences from only reads that have been assigned to a specific repeat copy with high
confidence. In each successive iteration, the algorithm follows a series of three steps:

 Evaluating the tentative divergent positions. We map all classified reads again, this time to two
consensus copies of the repeat (rather than a single consensus copy as in the initial iteration) to
construct a more accurate alignment. We further consider the consensus sequence of each repeat
copy and compare the most frequent symbols (A, C, G, T, “-”) occurring in the set of already
classified reads for each repeat copy at each tentative divergent position. If the most frequent
symbol at a position differs for two repeat copies, then that position is called a confirmed
divergent position, otherwise it is called a rejected divergent position. The most frequent symbols
of all the confirmed divergent positions for a certain repeat copy represent a “signature” of this
copy. Since some positions within a repeat may not have been reached by the two consensus
sequences yet, they remain classified as tentative divergent positions.

 Assigning reads to various repeat copies. We now map all unclassified reads to two consensus
copies of the repeat and utilize the confirmed divergent positions to assign some unclassified
reads to a specific repeat copy. For each read, we compute its vote for each repeat copy as the
number of confirmed divergent positions at which the symbol of the read agrees with the
consensus of this repeat copy. The read is assigned to a specific repeat copy if its vote for this
copy is larger than the vote for another copy (the read remains unassigned in the case of ties).

 Constructing new consensus sequences for each repeat copy. We use all reads that have been
assigned to a specific repeat copy to construct a new consensus sequence of this copy. The
consensus is only called up to where the coverage of the reads is at least 10X in both repeat
copies to ensure that consensus sequences are accurate, and then both consensus sequences are
truncated to the length of the shortest consensus sequence. The algorithm then proceeds to the
next iteration unless no new reads mapping to the original repeat consensus were classified or all
of the consensus sequences are identical to those in the previous iteration, for which cases it
terminates.

At the conclusion of the algorithm, a consensus sequence has been constructed for each repeat copy and a
set of confirmed divergent positions for each repeat copy has been obtained.

Although we discussed the algorithm as “moving forward” into the repeat” (e.g., moving ahead
from edges IN1 and IN2 in Figure 4 in the main text), the same procedure is performed by “moving
backward” in the opposite direction (e.g., moving backwards from edges OUT1 and OUT2 in Figure 4 in
the main text), or equivalently, moving forward along the reverse complement of the repeat. Eventually,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

as the repeat consensus sequences extend forward and backward (Figure 4 in the main text), this
procedure may result in the emergence of spanning reads, i.e., reads that are assigned to both a repeat
copy originating from one of the incoming edges (IN1 or IN2) and a repeat copy originating from one of
the outgoing edges (OUT1 or OUT2). Spanning reads are grouped depending on which incoming/outgoing
edges they are assigned to: IN1 and OUT1, IN2 and OUT2, IN1 and OUT2, and IN2 and OUT1. We further
classify all spanning reads into one of two categories called cis (IN1/OUT1 and IN2/OUT2) and trans
(IN1/OUT2 and IN2/OUT1) since there are only two ways to resolve the repeat: pairing IN1/OUT1 with
IN2/OUT2, or pairing IN1/OUT2 with IN2/OUT1.

When the number of spanning reads in one of the categories exceeds a threshold (the default
value is five) and exceeds the number of spanning reads in another category by at least a factor of two, all
reads in the “winning” category are assigned to the corresponding repeat copies and the consensus of each
repeat copy is re-computed. Afterwards, Flye continues moving forward and backward into the repeat
recruiting more and more spanning reads until all remaining reads are classified as spanning reads.

If our attempts to resolve the repeat did not result in the emergence of spanning reads or if the
conditions above on the number of spanning reads do not hold, the repeat is classified as unresolved (note
that some resolvable repeats may be classified as unresolved). Note that even in the case of unresolved
repeats, our algorithm still generates more accurate consensus sequences for the prefixes and suffixes of
the repeat. Table A1 summarizes the results of the algorithm on 11 datasets from BACTERIA containing
repeats of multiplicity two (10 datasets from BACTERIA do not contain such repeats).

Dataset Repeat
length
(kb)

Coverage Divergence #Tentative
DP

#Confirmed
DP

Max. DP
distance

Remaining
gap (kb)

#cis
spanning

reads

#trans
spanning

reads

KN5052A 32 131X 4.8% 1540 623 6952 1k 0 1
KN5052B 39 231X 0.3% 150 0 7122 2k 0 0
KN5052C 32 174X 1.3% 410 246 4487 0 31 40
EC7921A 12 177X 17% 2085 1213 367 0 26 335
EC9006A 22 140X 0.5% 138 87 4395 4k 0 1
EC9007A 24 329X 5.4% 1449 70 8148 6k 1 0
EC9012A 30 106X 4.9% 1482 1184 1658 0 636 21
EC9016A 16 95X 8.2% 163 88 2768 1k 0 0
KN9657A 36 85X 0.1% 48 0 6006 26k 0 0
EC9964A 22 138X 6.0% 1329 767 580 0 666 0
EC11022A 30 83X 5.9% 1784 988 2236 0 25 73
EC11022B 24 82X 0.2% 61 13 2754 12k 0 0
SA11962A 8 292X 9.4% 779 607 291 0 691 0
KL12158B 12 88X 0.1% 14 0 4795 5k 0 0

Table A1. Analysis of unbridged repeats of multiplicity 2 in genomes from the BACTERIA dataset. The
results of repeat resolution after running Flye for the 11 out of 21 BACTERIA datasets that contain repeats of
multiplicity 2. The label of each dataset denotes the bacterial species, its strain, and a letter referring to a specific
repeat of multiplicity 2 found in the assembly graph (e.g. EC5052A, EC5052B, and EC5052C refer to 3 repeats A,
B, and C present in the assembly graph for the E. coli NCTC5052 dataset). Bolded rows refer to repeats that were
successfully resolved using Flye. The divergence is computed by dividing the number of tentative divergent
positions (DP) by the repeat length. Max. DP distance refers to the maximal distance between tentative divergent
positions in a repeat. Remaining gap refers to the length of the repeat remaining without separate consensus
sequences for each copy after we have “moved into the repeat” from both the forward and reverse directions.
Spanning reads refer to reads that are assigned to both a repeat copy originating from an incoming edge and a repeat
copy originating from an outgoing edge (as defined in the text). cis spanning reads are assigned to either IN1 and
OUT1 or IN2 and OUT2, and trans spanning reads are assigned to either IN1 and OUT2 or IN2 and OUT1.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Defining the minimum divergence threshold

To determine the minimum divergence threshold for which the repeat resolution algorithm could be
applied successfully, we simulated several repeats of multiplicity two of length 10 kb, 20 kb, and 40 kb,
with divergence rates ranging from 0.01% to 0.45%. Variations between the different copies of these
repeats were introduced by adding substitutions and indels randomly to both copies until the desired
divergence rate was reached. Next, we simulated Pacific Biosciences reads from these repeats with
coverage 100X, mean error rates of 15% and read lengths between 5 kb and 15 kb. When the repeat
resolution algorithm was applied to these datasets, we found that all simulated repeats with divergence
rate greater than 0.1% were successfully resolved. We thus chose 0.1% to be the minimum divergence
threshold.

Appendix: Additional details on benchmarking

Software versions. We used the latest versions of all assemblers that were available in October 2017.
However, we ran Canu 1.3 instead of the latest Canu 1.6 version on the YEAST-ONT dataset since
version 1.6 failed to produce output within 24 hours. All assemblers were benchmarked with their
default/suggested parameters:

 Flye - 2.3 (commit e73884c)
 Canu - 1.6 (commit 2d3f55a)
 Falcon - 0.3.0 (FALCON-Integrate commit 7498ef9)
 HINGE - 0.5.0 (commit 79fdf66)
 Miniasm - 0.2-r168-dirty (commit 40ec280) / Minimap 0.2-r124-dirty (commit fdf32ad)
 QUAST 5.0-dev (commit 974846a)

Dataset Assembler Wall clock time Peak memory usage

YEAST PB
12 Mb genome, 31x

8 threads max

Flye (w/o polishing) 25m (9m) 7G (7G)

Canu 93m 5G

Falcon 62m 10G

HINGE 9m 5G

Miniasm+ABruijn (Miniasm) 16m (1m) 5G (5G)

YEAST ONT
12 Mb genome, 31x

8 threads max

Flye (w/o polishing) 28m (18m) 7G (7G)

Canu 283m 8G

Falcon 103m 11G

HINGE 11m 8G

Miniasm+ABruijn (Miniasm) 31m (3m) 5G (5G)

WORM
100 Mb genome, 40x

24 threads max

Flye (w/o polishing) 480m (348m) 27G (27G)

Canu 781m 20G

Falcon 945m 18G

HINGE 803m 52G

Miniasm+ABruijn (Miniasm) 290m (10m) 23G (23G)

Table A2. Running time and memory usage of various SMS assemblers. We used a desktop machine with
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (up to 8 threads available) for the YEAST dataset assemblies; a single
computational node with Intel(R) Xeon(R) CPU X5680 @ 3.33GHz for the WORM dataset assemblies (up to 24
threads available). Since we performed an additional polishing step on the Miniasm output, the running time for Flye
and Miniasm are given for runs with and without contig polishing.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Information about the BACTERIA dataset

Dataset Bacterial species Flye Flye + unbridged
repeat resolution

HINGE Agreement

EC4450 Escherichia coli Tangled * n/a Tangled Yes

KP5052 Klebsiella pneumoniae Tangled Tangled Tangled Yes

SA6134 Staphylococcus aureus Complete n/a Complete Yes

EC7921 Escherichia coli Tangled Complete Complete Yes

EC8333 Escherichia coli Tangled * n/a Tangled Yes

EC8781 Escherichia coli Tangled n/a Tangled Yes

EC9002 Escherichia coli Complete n/a Complete Yes

EC9006 Escherichia coli Tangled Tangled Tangled Yes

EC9007 Escherichia coli Tangled Tangled Tangled Yes

EC9012 Escherichia coli Tangled Semi-complete Complete Yes

EC9016 Escherichia coli Tangled Tangled Tangled Yes

EC9024 Escherichia coli Tangled n/a Tangled Yes

EC9103 Escherichia coli Complete n/a Complete Yes

KP9657 Klebsiella pneumoniae Tangled Tangled Tangled Yes

EC9664 Escherichia coli Tangled Complete Tangled No

EC10864 Escherichia coli Tangled n/a Complete No

EC11022 Escherichia coli Tangled Semi-complete Complete Yes

KS11692 Klebsiella sp Tangled* n/a Complete No

KP12158 Klebsiella planticola Semi-complete Semi-complete Complete Yes

KC12993 Kluyvera cryocrescens Complete n/a Complete Yes

Table A3. Comparison of Flye and HINGE on bacterial genomes from the BACTERIA dataset. HINGE results
were taken from (Kamath et al., 2017). Since most sub-datasets in the BACTERIA dataset were generated with an
older P5-C3 chemistry, the MinOverlap parameter of Flye was set to 3000 by default to account for shorter mean
read lengths. Additionally, for the EC4450, EC8333 and KC12993 datasets, we used MinOverlap = 2000 to account
for even shorter mean read lengths. EC9016 dataset was run using MinOverlap = 5000, as the lower parameter
values produced fragmented assemblies. “Tangled*” stands for “Tangled/Lack Circularization”. “n/a” indicates that
the assembly graph has no unbridged repeats of multiplicity two.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix: Assembly graph of the YEAST-ONT dataset

Figure A5. The Flye assembly graph of the YEAST-ONT dataset. Flye assembled the YEAST-ONT dataset into a
graph with 22 unique and 14 repeat edges and generated 23 contigs as unambiguous paths in the assembly graph.
Each unique contig is formed by a single unique edge and possibly multiple repeat edges, while repetitive contigs
consist of the repetitive edges which were not covered by the unique contigs. The assembly graph was generated
using the graphviz tool.

Appendix: Reconstruction of tandem repeats in the WORM dataset

Figure A6. (Case A) Dot-plots showing the alignment of a read from chromosome X against the Flye assembly
(left), the Miniasm assembly (middle) and the reference genome of C. elegans (right). The reference genome
contains a tandem repeat of length 1.9 kb (10 copies) on chromosome X. In contrast, the Flye and Miniasm
assemblies of this region suggest a tandem repeat of length 5.5 kb (27 copies) and 2.8 kb (13 copies), respectively.
15 reads that spans over the tandem repeat supports the Flye assembly (the mean length between the flanking unique
sequence matches the cluster length reconstructed by Flye).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure A7. (Case B) Dot-plots showing the alignment of a read from chromosome 1 against the Flye assembly
(left), the Miniasm assembly (middle) and the reference genome of C. elegans (right). The reference genome
contains a tandem repeat cluster of length 2 kb on chromosome 1. In contrast, the Flye and Miniasm assemblies of
this region suggest a tandem repeat of length 10 kb and 5.6 kb, respectively. A single read that spans over the tandem
repeat supports the Flye assembly. Since the mean read length in the WORM dataset is 11 kb, it is expected to have
a single read spanning a given 10.0 kb region, but many more reads spanning any 5.6 kb region (Miniasm assembly)
or 2.0 kb region (reference genome). Six out of 23 reads cross the “left” border (two out of 18 reads cross the “right”
border) of this tandem repeat by more than 5.6 kb, thus contradicting the length estimate given by Miniasm.

Figure A8. (Case C) Dot-plots showing the alignment of a read from chromosome X against the Flye assembly
(left), the Miniasm assembly (middle) and the reference genome of C. elegans (right). The reference genome
contains a tandem repeat of length 3 kb on chromosome X. In contrast, the Flye and Miniasm assemblies of this
region suggest a tandem repeat of length 13.6 kb and 8 kb, respectively. A single read that spans over the tandem
repeat reveals the repeat cluster to be of length 12.2k, which suggests that the Flye length estimate was more
accurate.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure A9. (Case D) Dot-plots showing the alignment of a read from chromosome 1 against the Flye assembly
(left), the Miniasm assembly (middle) and the reference genome of C. elegans (right). The reference genome
contains a tandem repeat of length 1.5 kb on the chromosome 1. In contrast, the Flye and Miniasm assemblies of this
region suggest a tandem repeat of length 14 kb and 9.7 kb, respectively. Three reads that span over the tandem
repeat reveal the repeat cluster to be of length 14k, which suggests that the Flye length estimate is more accurate.

Figure A10. (Case E) Dot-plots showing the alignment of a read from chromosome 5 against the Flye
assembly (left), the Miniasm assembly (middle) and the reference genome of C. elegans (right). The reference
genome contains a tandem repeat of length 1.5 kb on the chromosome 1. In contrast, the Flye and Miniasm
assemblies of this region suggest tandem repeat clusters of length 17 kb and 4.3 kb, respectively. One read that spans
over the tandem repeat reveals the repeat cluster to be of length 18.0 kb, which suggests that the Flye length estimate
was more accurate.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247148doi: bioRxiv preprint

https://doi.org/10.1101/247148
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Resolving unbridged repeats. Resolving unbridged and nearly identical repeat instances is a difficult problem. SMS assemblers often fail to resolve unbridged repeats longer than 10 kb that are common even in bacterial genomes (Kamath et al., 2017). Although variations between different repeat copies allow for the possibility of resolving such repeats (at least in theory), no algorithm for resolving them using short reads has been successful so far. In the case of SMS reads, the problem is further complicated by high error rates that make it difficult to distinguish repeat copies with smaller divergence than 10%.
	Revealing variable positions within repeats. To reveal the variable positions within a repeat, we map all reads to the consensus sequence of the repeat (constructed by the ABruijn polishing procedure) and generate a multiple sequence alignment of all reads that are contained within or overlap with the repeat. Afterwards, we determine the most frequent symbol in each column of the alignment, count the occurrences of every other symbol (A, C, G, T, or “-”) in this column, and determine the substitution, deletion, and insertion rate for each symbol in each column as described in Lin et al., 2016. If the substitution, deletion, or insertion rate for a symbol is higher than a predetermined threshold, the position is called a tentative divergent position. The repeat divergence is then estimated by dividing the total number of tentative divergent positions by the length of the repeat.
	Since substitutions and indels frequently occur in non-divergent positions of SMS reads, it is important to choose thresholds that are higher than this background distribution of errors, but low enough to capture the truly divergent positions. To select thresholds, we analyzed the R22 repeat in the assembly graph of the EC9964 dataset (Figure 4). Since this repeat has many variations between two repeat copies (1515 (6.9%) true divergent positions, (943 substitutions (4.3%), 346 deletions (1.6%), and 226 insertions (1.0%)), it was manually resolved with high confidence. With the accurate sequences of two repeat copies identified, we are able to distinguish the background distribution of mutation rates imposed by errors in non-variable positions from the mutation rates at variable positions to identify appropriate thresholds.
	Resolvable and unresolvable repeats. Based on the identified tentative divergent positions, we classify a repeat as resolvable based on the following two criteria:
	Repeat Resolution Algorithm. The idea of the algorithm is to utilize the tentative divergent positions to assign each read to a specific repeat copy and then use the assigned reads to derive a distinct consensus sequence for each repeat copy. For example, the 93 reads that span edges IN1 and REP (Figure 4 in the main text) can be assigned to one repeat copy and the 71 reads that span edges IN2 and REP can be assigned to another repeat copy. However, it is unclear how to assign other reads overlapping with the edge REP to a specific repeat copy.
	In each iteration of the algorithm, reads are assigned to a specific repeat copy and then all the reads assigned to each repeat copy are used to construct a consensus sequence for that copy. Thus, as the algorithm proceeds, more and more reads are assigned to specific repeat copies and the consensus sequence for each repeat copy grows longer and longer. The algorithm terminates when no new reads can be assigned to read copies and the consensus sequences stop growing in length. There are two goals: to obtain distinct consensus sequences for each repeat copy and to determine the correct pairings of incoming and outgoing edges for each repeat copy.
	Initially, the algorithm assigns all reads spanning edges IN1 and REP (IN2 and REP) to the first (second) repeat copy and computes the consensus of each repeat copy using the recruited reads. Since the recruited reads do not span the entire edge REP, we only construct two consensus sequences corresponding to prefixes of REP, where there is substantial read coverage by the recruited reads (at least 10X for each repeat copy to ensure that consensus sequences are sufficiently accurate). Both consensus sequences are truncated to the length of the shortest consensus sequence to prevent bias in the read recruitment process in future iterations. In the case of the EC9964 dataset, we constructed two consensus sequences corresponding to 8.6 kb long prefixes of REP with divergence 9.8% (Figure 4). As a result, we now have two consensus sequences for the entire edge REP that differ in some of the first 8.6 kb but coincide in the remaining part.

