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 160 

 161 

Figure 1. MEG data and Hidden Markov Model network allocation. A. Top panels show a selection of MEG 162 
sensor time series for head-cast subject 1 (representative and chosen at random). Middle panel demonstrates 163 
the statepath as determined by the HMM, showing rapid transitions between different states. Timecourses 164 
recorded from a random subset of sensors is shown. Bottom panel shows a short (2s) period of data, expanded 165 
with the corresponding section of the statepath (black line). Overlying the statepath trace (black) is the modal 166 
statepath for each 200ms period (dash red line) and this modal statepath trace was used to sort each 200ms 167 
data epoch into to 1 of 8 states according to which state was most frequent during that period. These epochs 168 
of data for each of these states were aggregated together to form 8 new datasets. B. The statepath traces for 169 
the three most dominant states here (1, 7, 5) are shown correlated against the time series amplitudes in all 170 
sensors to derive a map of activity (red, greater positive correlation, blue, less positive correlation) associated 171 
with each particular state. Data are shown in sensor space in order to check that differential network 172 
parcellation had indeed occurred according to the statepath detection method and was not artefactual (e.g. 173 
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that the topography resembles that expected for an eye blink). In the example shown here – state 5 is the 174 
most common state – corresponding to the posterior alpha rhythm.  175 

 176 

Subject specific cortical mesh libraries 177 

To extract the cortical pial mesh surface, Freesurfer software was used, optimised for MPM scans 178 

(anisotropic Freesurfer filter and a hard white matter threshold with no normalisation) (Lutti et al., 179 

2014). Then, for each individual subject, the pial cortical mesh was taken and deformed using a 3D 180 

weighted Fourier analysis that effectively decomposes the original 3D mesh structure into spatial 181 

harmonic components (Chung et al., 2007). These are then sequentially combined to form a set of 182 

meshes of progressively increasing spatial detail (Figure 2B) (Stevenson et al., 2014). These meshes 183 

are called the Weighted Fourier Series (WFS) and result in a library of meshes for each subjects with 184 

different levels of spatial detail, from a completely smooth pair of ovoid surfaces (mesh 1) up to a 185 

mesh similar to that of the real brain (mesh 50)  (see Figure 2B). The WFS can be expressed as 186 

follows:  187 

 188 

where σ is the bandwidth of the smoothing kernel (set at 0.0001), L is the harmonic order of the 189 

surface, Slm is the spherical harmonic of degree l and order m, and the Fourier coefficients are given 190 

by flm=〈f, Slm〉, where f is determined by solving a system of linear equations (Chung et al., 2007). All 191 

meshes, including the true mesh, were downsampled by a factor of 10 in Freesurfer to ~ 33,000 192 

vertices to aid computational efficiency.  193 

 194 

Source reconstruction 195 

HMM parcellated datasets were projected from 272 spatial (3 channels damaged) and 16 temporal 196 

modes and inverted sequentially using our library of individualised and distorted cortical meshes 197 

(WFS) for each subject. Notably, using a cortical mesh further constrains solutions to those which are 198 

located at the cortical surface.  We firstly implemented an Empirical Bayesian Beamformer (EBB) 199 

inversion. Beamforming makes a direct estimate of source covariance based on the assumption that 200 

there are no zero-lag correlated sources, a form of spatial filtering that ensures that no two parts of 201 

the brain has exactly the same neuroelectric activity at any given time. This was compared with 202 

alternative inversion schemes that are based on different prior assumptions regarding source co-203 
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variance. Here we used standard (and non-optimized) versions of Minimum norm (MMN) (Uutela et 204 

al., 1999), LORETA (LOR) (Pascual-Marqui et al., 2002), Empirical Bayes Beamformer (EBB) and 205 

Multiple Sparse priors (MSP) (Friston et al., 2008) inversion schemes as implemented in SPM12. Each 206 

of these methods can be described by a different selection of source covariance matrices 207 

(Belardinelli et al., 2012; Friston et al., 2008; López et al., 2014).  208 

In order to quantify the quality of the fit we used two complementary metrics: cross validation and 209 

Free energy. For cross validation error, a subset of sensors (10%; 27 sensors) are turned off. An 210 

estimate of current flow is made based on the remaining 90% of the MEG channels (and a specific 211 

inversion scheme). This current flow is then projected back outside of the head to the 10% of 212 

disabled sensors and the error between the predicted and measured data calculated. This was 213 

repeated 10 times for each inversion with different randomly selected subsets of removed sensors 214 

for each iteration. The cross validation error was then converted to a percentage of source data 215 

explained and averaged across all iterations and across the 4 network datasets inverted per subject. 216 

The Free Energy metric approximates the log model evidence for the final generative model based 217 

on all of the sensor data by rewarding the accuracy of fit whilst also penalizing model complexity 218 

(Friston et al., 2007). 219 

Both cross validation error explained and Free Energy provide metrics which can be used to directly 220 

compare different models of the same data with increasing values of each suggesting an improved 221 

model fit (Henson et al., 2009). Whilst the Free Energy provides a useful relative model fit metric for 222 

any given dataset the absolute value is data dependent and therefore cannot be used to compare 223 

between datasets. In contrast, the cross validation error explained gives a meaningful quantification 224 

of the total amount of data explained and can be used to compare across the different groups (head-225 

cast versus non head-cast). 226 

Here we performed these inversions using our subject specific libraries of anatomically degraded 227 

meshes from the WFS with different levels of distortion and compared them to an inversion 228 

performed using the real mesh for each subject. In order to facilitate comparisons of how the 229 

anatomical distortion affected the inversions for different subjects with different baseline measures 230 

of model fit to their real brain meshes, we normalised the cross validation percentage error 231 

explained and free energy metrics by subtracting the values for the real mesh to derive a relative 232 

measure (ΔCV & ΔF). As such, a worse fit gives a negative value of ΔCV / ΔF and we would predict 233 

that as the anatomical complexity of the mesh increases (mesh is less distorted) and approaches that 234 

of the real mesh – the quality of the model should improve and the ΔCV / ΔF should approach zero. 235 

Across our group of subjects we determined the level of distortion at which this first becomes 236 
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statistically distinguishable from the real mesh using a t-test of ΔCV values for each harmonic 237 

compared to zero and similarly for ΔF using Bayesian model comparison. This point, labelled the 238 

highest distinguishable harmonic (HDH), identifies the minimum amount of mesh distortion that can 239 

be reliably distinguished from the real mesh by inversion and can be converted into a conventional 240 

spatial metric (mms) by comparing vertex distances. The three dimensional (Euclidean) distance (in 241 

mm) between every vertex from the HDH to the corresponding vertex on the true mesh was 242 

therefore calculated and the upper, 95th percentile, distance averaged over all vertices in the mesh. 243 

This method is more conservative than that previously employed (Stevenson et al., 2014), as this 244 

directly matches corresponding vertices and therefore reduces the underestimation that could result 245 

if, following harmonic distortion, a vertex now lies closer to a non-corresponding other vertex. This 246 

distance therefore represents an upper bound on the spatial discriminability of both head-cast and 247 

non-head-cast resting state data.  248 

 249 

Control analyses 250 

In order to verify our findings, we performed a number of control analyses with distorted 251 

data/sensors positions for the head-cast / EBB inversion. Firstly, we used our same data but 252 

destroyed its correspondence with the MEG sensor locations by randomly shuffling the MEG 253 

channels labels and repeated the analysis above 10 times for each subject and averaged over the 254 

ΔCV and ΔF for these different shuffled dataset inversions.  Following this, we used the correct 255 

sensor labels but next degraded our data by introducing different amounts of scaled white noise to 256 

change the signal-to-noise ratio of the sensor level data (5 dB TO  - 20 dB) (Troebinger et al., 2014a). 257 

In both cases (sensor shuffling and noise addition) one would expect the ability to discriminate the 258 

true generative model from distorted ones to decrease. 259 

  260 
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RESULTS 261 

Anatomical cortical model 262 

In order to determine the sensitivity of the inversion to the level of detail in the underlying 263 

anatomical mesh model we calculated the ΔCV and ΔF for each subject in the head-cast dataset 264 

across their subject specific library of distorted meshes (Fig. 2). This showed increasing cross 265 

validation sensor data explained (ΔCV; reduced error) and increasing Free energy (ΔF) for all 266 

subjects. Statistical group level testing revealed that meshes lower (more deformed) than the 35 267 

harmonic could be distinguished from the real mesh by ΔCV (HDH 35; t11= -2.49, p=0.03) and lower 268 

than 31 by ΔF (BMC, exceedance p = 0.046; Fig. 2) 269 

 270 

 271 

Figure 2. Relative Cross Validation and Free Energy results for a library of different meshes for head-cast 272 
resting data using an EBB inversion. A. Increasing cross validation data explained (ΔCV) and relative Free 273 
Energy ΔF with improving spatial resolution of harmonic meshes (from left  right). Top plots show individual 274 
subject ΔCV (left) and ΔF (right) values with superimposed mean value (dashed black line). Lower panels show 275 
the group level statistical significance using t test (ΔCV) and Bayesian model comparison (ΔF). B. Example 276 
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selection of meshes from 1 subject showing different levels of distortion, from smooth ovoid surfaces (WFS 277 
mesh  1) up to real mesh (shown inset). 278 

 279 

Inversion algorithms / source covariance priors 280 

The effect of source co-variance prior assumptions was then assessed by repeating the process for 281 

three other commonly implemented inversion algorithms (MNM, LOR, MSP) on our head-cast 282 

dataset. These showed lower anatomical mesh discriminability for all alternative algorithms with an 283 

HDH for MNM of 25 (t11=-1.80 -, p=0.036 ), an HDH of 25 (t11=-1.79; p=0.039) for LOR and an HDH of 284 

17 for MSP (t11=-2.55; p=0.027) (Fig 3A).  285 

The mean distance between vertices on these meshes and the real mesh was then calculated for 286 

each subject. These were then averaged to give a spatial measure of anatomical discriminability (Fig 287 

3A), under the different prior covariance assumptions as implemented in the different inversion 288 

algorithms. This ranged from 3.7 mm for EBB to 6.0 mm for MNN/LOR and 9.4 mm for MSP (Fig 3B). 289 

Directly comparing the absolute cross validation error explained (CVp) across inversion conditions 290 

(using the real mesh) demonstrated a significant difference between EBB and the other 3 algorithms 291 

(EBB/MMN; paired t-test – t11=7.6 ,p<0.001; EBB/LOR; paired t-test – t11=7.6 ,p<0.001; EBB/MSP; 292 

paired t-test – t11=14.4,p<0.001).    293 

 294 

 295 

Figure 3. Effect of different inversion schemes on head-cast resting state resolution. A. Relative 296 
cross validation error explained (ΔCV) for head-cast MEG dataset (12 subjects), shown for 4 different 297 
inversion types (EBB, MNM, LOR & MSP) according to mean distance of the distorted mesh (x axis) 298 
from the real mesh. Lower panel shows the group level statistical significance by t-testing (note 299 
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MMN and LOR have very similar values and therefore lines are closely overlapping). B. Mean 300 
distance of vertices from highest significant mesh identified in the left hand panel and the real mesh 301 
for each subject. Error bars show SEM of this distance across subjects using their individualised 302 
meshes and group level HDH. 303 

Notably – a 2 factor within subject ANOVA of cross validation with factors – inversion type (EBB, 304 

MMN, MSP) and mesh smootheness (harmonic 1 & harmonic 50) showed a strongly significant 305 

interaction between inversion type and mesh harmonic level (F2=29.9, p<0.000). Post hoc 306 

examination showed that this was driven by a stronger effect of mesh distortion on the MSP 307 

inversion algorithm than EBB or MMN. 308 

 309 

Head-cast versus conventional MEG 310 

The EBB algorithm was therefore taken forwards for a comparison of head-cast versus non – head-311 

cast datasets (Fig 4). We found that the HDH was higher for the head-cast recorded dataset at 35 312 

(t11= -2.49, p=0.03) than for the non – head-cast related dataset at 29 (t11=-2.70, p=0.021). 313 

Furthermore, the absolute (non-normalised) cross validation error explained (CV) was higher in the 314 

head-cast (83.2 ± 0.71 %) than in the conventional recordings (79.7 ± 1.79 %) although this did not 315 

reach significance (t11=1.79; p=0.1). 316 

 317 

 318 

 319 

 320 
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Figure 4. Comparison of head-cast versus conventional MEG Cross validation results.  A. 321 
Comparison of ΔCV for different recording methodologies with head-cast data (blue) showing higher 322 
discrimination (35) than non-head-cast data (red; 29). B. Absolute cross validation error explained is 323 
also higher in the head-cast versus the conventional MEG. Note that this holds for all inversion types 324 
and for all levels of mesh distortion, but was not significantly different on statistical testing. 325 

 326 

Control analyses 327 

Finally, we checked our analyses by repeating our inversions (Head-cast dataset, EBB algorithm) but 328 

only after degrading the consistent relationship between our sensor positions and sources by 329 

shuffling the sensor labels. As expected, this resulted in a breakdown of the previously shown 330 

relationship between Cross validation and Free Energy with mesh distortion. Notably we found that 331 

lower harmonics (smoother) meshes now showed higher ΔCV (Fig 5A) (smoother surfaces superior 332 

when sensors shuffled). Thereafter we degraded our data (without sensor shuffling) by the addition 333 

of varying levels of Gaussian white noise (5  -50 dB) and again repeated our analysis (Figure 4B). 334 

This demonstrated that with increasing levels of noise (decreasing SNR), the curve describing the 335 

relationship between Cross validation and harmonic mesh function flattened and the crossing point 336 

(HDH) reduced, indicating that the inversion was no longer able to statistically distinguish the more 337 

complex meshes from the real mesh, as would be expected if the data are primarily noise. 338 

 339 

 340 

 341 

 342 

 343 
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Figure 5. Effects of shuffling sensors (A) and replacing data with varying levels of Gaussian White noise (B). 344 
A. The relationship between the Cross validation % error explained (ΔCV) of inversion and increasing harmonic 345 
mesh after random shuffling of sensor labels. Note the decreasing Cross validation fit with increasing mesh 346 
harmonic (increasing mesh detail) with the dashed line showing the average across all subjects. B. The 347 
relationship between (mean of all 12 subjects) ΔCV of inversion and increasing harmonic mesh after addition 348 
of Gaussian white noise across a range of noise additions (from SNR 5 to SNR -20). 349 

 350 

 351 

Discussion 352 

Resting state data is rapidly dynamic, emulates task induced network changes and is simple to 353 

acquire (Baker et al., 2014; O’Neill et al., 2017). Here we show that it can provide a ready substrate 354 

for principled testing of MEG recording methods and inversion assumptions including anatomical 355 

forward modelling and functional (co-variance) priors. 356 

We showed that in moving the cortical surface from heavily distorted to the true anatomy, all of the 357 

models, based on commonly used imaging assumptions, showed a significant and monotonic 358 

improvement. This improvement saturated for some imaging assumptions before others, with the 359 

beamformer based algorithms (closely followed by Minimum norm) continuing to improve up until 360 

the cortical surface deviated by on average 4mm from the ground-truth. We also found that a 361 

marginal, although non-significant, improvement in our models when using MEG data based on 362 

head-cast recordings compared to conventional recordings. Critically rather than compare methods 363 

through simulation or through a limited task set (with ground truth from another modality) we have 364 

presented a method to optimize MEG recording methods, forward and inverse models without 365 

introducing selection bias and based on a plentiful supply of non-invasive human data. 366 

We compared between algorithms in two ways: by the model fit (or amount of data predicted), and 367 

by comparing the sensitivity of each algorithm to the true anatomy. These two tests need not 368 

necessarily have been in accord. For example- had we used a bunny-shaped blancmange mould 369 

instead of a cortical surface we would still have been able to rank the algorithms  based the amount 370 

of data predicted; but we would not have expected any monotonic improvement as features were 371 

added to the bunny. A related control analysis (figure 5) is that when used the same data but with 372 

shuffled lead-fields (destroying the link between the sensors and the anatomy) the amount of data 373 

we are able to predict actually decreases as the cortical model approaches the truth. It is therefore 374 

striking that the models that benefitted most from the true cortical manifold were also those that 375 

predicted the most data. This not only adds anatomical validity (confirming that the data being 376 

described is indeed generated by pyramidal cell populations normal to the cortical surface) but also 377 

allows us to quantify algorithm performance in millimetres (Stevenson et al., 2014). 378 
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Across anatomy (Fig. 2) and inversion assumptions (Fig. 3), the parametric (Free energy from 379 

empirical Bayes) and non-parametric (cross-validation) metrics of model fit were in accord. This 380 

helps build confidence in the parametric free-energy metric which is considerably faster, makes use 381 

of all the available data, and has a direct probabilistic interpretation. The Bayesian formalism is 382 

however predicated on comparing how different models explain the same data; the use of cross-383 

validation, which provides an absolute quantitative measure of data predicted, also allowed us to 384 

compare between different datasets (head-cast and non-head-cast). 385 

Resting state MEG analysis has been impeded by the spectral/dimensional complexity of the 386 

datasets (Vidaurre et al., 2016) as well as reduced spatial resolution that limits the ability to 387 

discriminate different sources (Colclough et al., 2016; Liuzzi et al., 2016). Recent improvements in 388 

methods have permitted enhanced temporal discrimination (Baker et al., 2014; Woolrich et al., 389 

2013). These and other development have resulted in the emergence of a number of potential 390 

clinical applications for resting state MEG, although these have yet to transition to clinical utilisation, 391 

in part due to reduced spatial resolution (Bosboom et al., 2006; Bosma et al., 2009; Hinkley et al., 392 

2011). It is notable that most of the empirical MEG literature on the resting state is dominated by 393 

what we found here to be the most likely functional priors (beamformer and Minimum norm 394 

assumptions). 395 

We confirm here earlier reports that within-session head movements are greatly reduced for head-396 

cast versus non-head-cast MEG (Bonaiuto et al., 2017b; Meyer et al., 2017a, 2017b) however we 397 

were surprised that the head-cast did not offer a greater modelling improvement over the non-398 

head-cast data. Empirically this could be due to recording problems- for example in some subjects it 399 

is possible that their heads were not within the head-casts in their expected position. i.e. although 400 

the head-casts remained still the subject’s anatomy was not where we expected it to be. Another 401 

limitation could be that the models we are using do not capture the physics or physiology of the 402 

generators of the measured magnetic fields; and that the resolution is constrained by the models 403 

and not the recording. This could include for example, unmodelled noise sources such as the 404 

heartbeat, eye-blinks and other sources of noise. Although the HMM states we used were visually 405 

inspected to avoid common artefacts such as eye-blinks, it is possible that some of the modelling 406 

deficiencies come from failure to explain data that does not arise from the cortex (eg heart-beats, 407 

passing cars etc). Finally, the head-cast and non-head-cast cohorts did not overlap and a more 408 

sensitive analysis would have been to perform a within subject comparison. 409 

We found the Multiple Sparse Priors algorithm had the least dependence on the true anatomy and 410 

also explained the least data. We should note however that the MSP-based analyses implemented 411 
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here were generic and constructed from a limited set of 512 patches (or priors) placed at evenly 412 

spaced vertices. The MSP algorithm, although perhaps the most elegant and comprehensive method 413 

we tested, is also computationally disadvantaged by the need to search over a large space of 414 

possible patch/prior combinations and the inherent pitfalls of local extrema in this optimization. A 415 

more robust way to implement this algorithm would have been to select the best model from many 416 

random patch choices (Troebinger et al., 2014b).  417 

This study was analysed using broadband (1-90 Hz) resting state data. Therefore, whether a similar 418 

level of spatial discriminability at the mm scale can be demonstrated when more selective data is 419 

used (e.g. frequency filtered or spatially restricted) remains to be shown. For example, future work 420 

might test different frequency bands (eg <30Hz, >30Hz) against different anatomy for example 421 

infra/supra granular cortical surfaces (Arnal and Giraud, 2012; Bastos et al., 2012; Bonaiuto et al., 422 

2017a, 2017b). 423 

Conclusion 424 

This study uses resting state data to compare different forward models, inversion assumptions and 425 

recording methods to provide a principled (non – biased) method for optimising and quantifying 426 

source localisation. All source localisation techniques were able to benefit from increasing 427 

anatomical precision in the underlying model but this was most pronounced for EBB in head-cast 428 

recorded data. Using this method, we demonstrate a notably high sensitivity (<4mm) to underlying 429 

anatomical distortion and also provide evidence for the anatomical validity of cortical sources in 430 

MEG source inversion.  431 
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