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ABSTRACT 

 

Electrocardiographic PR interval measures atrial and atrioventricular 

depolarization and conduction, and abnormal PR interval is a risk factor for atrial 

fibrillation and heart block. We performed a genome-wide association study in 

over 92,000 individuals of European descent and identified 44 loci associated 

with PR interval (34 novel). Examination of the 44 loci revealed known and novel 

biological processes involved in cardiac atrial electrical activity, and genes in 

these loci were highly over-represented in several cardiac disease processes. 

Nearly half of the 61 independent index variants in the 44 loci were associated 

with atrial or blood transcript expression levels, or were in high linkage 

disequilibrium with one or more missense variants. Cardiac regulatory regions of 

the genome as measured by cardiac DNA hypersensitivity sites were enriched for 

variants associated with PR interval, compared to non-cardiac regulatory regions. 

Joint analyses combining PR interval with heart rate, QRS interval, and atrial 

fibrillation identified additional new pleiotropic loci. The majority of associations 

discovered in European-descent populations were also present in African-

American populations. Meta-analysis examining over 105,000 individuals of 

African and European descent identified additional novel PR loci. These 

additional analyses identified another 13 novel loci. Together, these findings 

underscore the power of GWAS to extend knowledge of the molecular 

underpinnings of clinical processes.  
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Introduction 
 

The PR interval on the surface electrocardiogram reflects atrial and 

atrioventricular node myocyte depolarization and conduction. Abnormalities in PR 

interval duration are associated with increased risk of atrial fibrillation, which 

carries substantial risk of morbidity and mortality, and with cardiac conduction 

defects and heart block, conditions that often necessitate pacemaker 

implantation.1 Understanding the molecular mechanisms underlying PR interval 

may provide insights into cardiac electrical disease processes, and identify 

potential drug targets for prevention and treatment of atrial fibrillation and 

conduction disease. 

Twin and family studies suggest that the heritability of PR interval is 

between 40% and 60%.2 Prior genome-wide association studies (GWAS) in up to 

30,000 individuals have identified ten loci associated with PR interval among 

European-descent individuals.3,4 The key motivation for the present study was to 

extend the biological and clinical insights derived from GWAS data by utilizing a 

>3 fold increased sample size to detect novel PR loci. We further increased 

power by performing trans-ethnic meta-analyses. To gain additional biological 

and clinical insights, we tested for pleiotropy with other clinically relevant 

phenotypes. We examined the biological and functional relevance of identified 

associations to gain insights into molecular processes underlying clinically 

important outcomes. 
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Meta-analysis of Genome-Wide Association Studies for PR interval among 

European Ancestry Individuals 

We meta-analyzed ~2.7 million single nucleotide polymorphisms (SNPs) 

from GWAS data on approximately 92,340 individuals of European ancestry from 

31 studies (Supplementary Table 1a and 1b) for association with PR interval 

using an additive genetic model. A total of 1,601 SNPs mapping to 44 loci (of 

which 34 novel in Europeans) reached genome-wide significance (P ≤ 5 x 10-8) 

(Figure 1, Table 1, Supplementary Figures 1 and 2). While genomic inflation 

factor lambda was modest (1.11), linkage disequilibrium (LD) score regression5 

showed that deviation from the expected P-value distribution was mainly caused 

by true polygenicity (Supplementary Figure 3). Using a Bayesian gene-based 

test of association (GWiS),6 we identified 61 independent signals in the 44 loci. 

For example, the top locus on chromosome 3, mapping to the two cardiac 

sodium channel genes SCN5A and SCN10A, had seven independent signals 

associated with PR interval (Figure 2a).  

 

Putative Functional Variants 

To assess the functional relevance of the identified SNPs, we examined 

whether the index variants were in high LD with either nonsynonymous variants 

or with putative regulatory SNPs. Ten of the 44 loci had missense variants in high 

LD (r2 > 0.8) with the index SNP (Table 1, Supplementary Table 3). TTN, in 

particular, was enriched for missense SNPs, with the top signal and 

approximately one-third of the 47 genome-wide significant TTN SNPs being 
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missense (Figure 2b). To examine the possible impact of these amino acid 

substitutions on protein structure or function, we used two prediction algorithms, 

Sift7 and PolyPhen-28. The vast majority of the genome-wide significant 

missense variants at the 44 loci were categorized as tolerated by Sift and benign 

by PolyPhen-2, consistent with modest effects on PR interval not subjected to 

purifying selection (Supplementary Table 3).  

Expression quantitative trait locus (eQTL) analysis suggests that index 

SNPs in half of the identified loci (22/44) are involved in cis gene regulation in at 

least one of the two tissue types examined at a false discovery rate (FDR) of 

<0.05 (Supplementary Table 4): left atrial appendage (n = 230 samples, 10 

eQTL SNPs) and whole blood (n = 5311 samples, 16 eQTL SNPs). Several 

points are worth highlighting. First, for most of the 22 loci, the eQTL associations 

are for the gene nearest the index SNP, but for nearly one-third, they are not. 

Second, certain SNPs can be promiscuous in that they are associated with the 

transcript expression of multiple different genes. Third, despite substantially 

greater power to detect associations in whole blood compared to cardiac tissue 

due to markedly larger sample size, most of the eQTL associations found in 

cardiac atrial tissue – e.g. associations with MEIS1 (Supplementary Figure 4a), 

CAV1, FAT1, and TTN transcripts – were not found in whole blood samples and 

appear to have some tissue-specificity. Two eQTL associations were found in 

both blood and cardiac tissue (ADAM15 and SENP2 (Supplementary Figure 

4b). While several other index SNPs were also associated with eQTLs in both 

tissue types, they were associated with transcript expression levels of different 
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genes. For instance, locus 17 SNP rs2732860 was associated with TMEM182 

expression in atrial tissue but with MFSD9 expression in blood, again suggesting 

tissue-specificity for SNP–eQTL associations. Taken together, these data 

underscore the importance of examining eQTL data in tissue types relevant to 

the trait of interest: even with a modest study size of 230 cardiac atrial samples, a 

notable number of eQTL associations were uncovered.  

The majority of loci (30/44) contain index SNPs that lie in, or are in high 

LD with, regulatory regions of the genome that are marked by deoxyribonuclease 

I (DNAse I) hypersensitivity sites (DHSs), lending further support to the 

hypothesis that regulation of gene-expression plays an important role in 

determining PR interval (Table 1). To provide insight into the cellular and tissue 

structure of the phenotype, we examined P-values of all SNPs in the PR meta-

analysis and assessed cell and tissue selective enrichment patterns of 

progressively more strongly associated variants to explore localization of signal 

within specific lineages or cell types. As would be expected for the cardiac 

phenotype of PR interval, we found enrichment of signal in cardiac DHSs 

compared with DHSs from other tissue types (Supplementary Figure 5). 

Interestingly, the second most enriched tissue DHSs were in those that regulate 

microvascular endothelial cells, complementing our findings (noted above) that 

there is enrichment in genes involved in blood vessel morphogenesis.  

Using a candidate region approach in which we limited the regions 

examined only to those that contain cardiac DHSs (n=122,278), we identified an 
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additional four loci associated with PR interval after Bonferroni correction for the 

number of SNPs tested (Table 2). 

 

Molecular Function and Biologic Processes associated with PR genes 

Although extensive LD among common variants and the incompleteness 

of the HapMap reference panel preclude an unambiguous identification of the 

functional variant or the culprit gene, we used the following criteria to implicate 

genes in 37 of the 44 loci: (1) the gene selected was the only nearby gene (within 

a ±500kb window); (2) the gene selected has a missense variant in high LD (r2 > 

0.8) with the index SNP; or (3) the index SNP was associated with cardiac 

transcript expression levels of the selected gene (Table 1). The set of implicated 

genes, detailed in Box 1, showed strong enrichment in genes involved in cardiac 

development (P = 1.33 x 10-15), specifically the cardiac chambers (P = 2.2 x 10-

11) and bundle of His (P = 6.69 x 10-11) (Supplementary Table 2). Other notable 

biological processes include blood vessel morphogenesis (P = 7.32 x 10-9) and 

cardiac cell differentiation (P = 1.79 x 10-9). The molecular function and cellular 

component of the identified genes were largely enriched for transcription factors 

(P = 2.17 x 10-6), ion-channel related genes (P = 1.02 x 10-5), cell junction / cell 

signaling proteins (P = 4.40 x 10-6), and sarcomeric proteins (P = 4.59 x 10-5). 

 

Clinical Relevance of PR-associated Loci 

To examine the clinical relevance of the identified loci, we intersected the 

PR genes with gene membership from multiple knowledge bases encompassing 
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over 4,000 human diseases. The most highly over-represented conditions (P ≤ 1 

x 10-8) are heart diseases including congenital abnormalities and heart failure, 

sick sinus syndrome and sinus arrhythmia (phenotypes related to the sinus node 

which houses the pacemaker cells that generate heart beats), heart block 

(related to cardiac conduction between atria and ventricles), and atrial fibrillation 

(Supplementary Table 5). To further explore the molecular underpinnings of 

these clinical relationships, we jointly analyzed the PR GWAS results with the 

GWAS results of heart rate9, QRS interval (measure of ventricular conduction)10, 

and atrial fibrillation11.  

We examined PR SNPs for association with QRS, atrial fibrillation, and 

heart rate. All 61 independent SNPs from 44 loci were examined. Over half of the 

independent SNPs (31/61) representing 20 loci were also associated with at least 

one of the other electrical phenotypes (Supplementary Table 6, Figure 3). The 

cardiac sodium channel genes, SCN5A and SCN10A, clearly play a critical role in 

cardiac electrophysiology. PR prolonging variants in these genes are also 

associated with prolonged QRS duration, but with lower risks for atrial fibrillation 

and lower heart rate (Figure 3). The role of transcription factors in cardiac 

electrophysiology is equally complex. Several T-box containing transcription 

factors, important for cardiac conduction system formation in the developing 

heart, are associated with PR interval. Although TBX3 and TBX5 sit close 

together on chromosome 12, the PR prolonging allele in TBX5 prolongs QRS and 

decreases AF risk while the PR prolonging allele in TBX3 shortens QRS duration 

while also decreasing AF risk. The PR prolonging variant near TBX20 prolongs 
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QRS duration but is not associated with AF risk (Figure 3). Overall, eight of the 

13 transcription factor genes associated with PR interval were also associated 

with at least one other atrial or atrioventricular electrical phenotype. 

  

PR and QRS intervals 

Many loci regulate both atrial / atrioventricular (PR interval) and ventricular 

(QRS) depolarization and conduction: twelve of our 44 PR loci were nominally 

associated with QRS duration (Supplemental Table 6) and, similarly, 17 of 22 

previously identified QRS loci were at least nominally associated with PR interval 

(Supplementary Table 7). Several intriguing findings are worth highlighting. 

First, while SNPs in most loci that are associated with prolonged PR are also 

associated with prolonged QRS, two loci have genome-wide significant 

discordant PR – QRS relationships, in which prolonged PR variants are 

associated with shorter QRS duration (TBX3 and SNORD56B); Supplementary 

Table 6, Figure 3, Supplementary Figure 6b. Second, although TBX20 plays a 

crucial role in the development of the cardiac conduction system, the SNPs that 

are associated with atrial and atrioventricular conduction (PR) differ from those 

related to ventricular conduction (QRS) (index SNP PR rs11763856, index SNP 

QRS rs1419856, r2 = 0.001). A better understanding of the influence of these 

specific regions on cardiac conduction will require further investigation. 
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PR interval and Atrial Fibrillation 

One-third (18/61) of PR index SNPs were nominally associated with AF. 

Of these 18 prolonged PR SNPs, six are associated with increased AF risk, 

whereas 12 paradoxically lowered AF risk. This observation is consistent with the 

relationship between PR interval and AF described in population studies, where 

we showed that while both short (<120 ms) and long (>200 ms) PR interval are 

associated with increased AF risk, short PR interval is associated with higher risk 

than long PR interval.11 For both concordant (meaning relationships where the 

PR prolonging variant is associated with increased AF risk) and discordant PR – 

AF relationships, the larger the SNP effect size for PR interval, the larger the 

odds ratio for association with AF (Supplementary Figure 6a). The CAV1 index 

SNP associated with increased PR interval and decreased AF risk reached 

genome-wide significance for both phenotypes. Furthermore, of 23 previously 

described AF GWAS loci, 11 were at least nominally associated with PR 

interval.12 Interestingly, despite adequate power to identify modest associations, 

several loci, including PITX2, the most significant AF GWAS locus, showed no 

association with PR interval (Supplementary Table 7). Therefore, these loci may 

have a mode of action independent of atrial and atrioventricular depolarization or 

conduction. 

 

PR interval and Heart Rate 

Ten PR loci were nominally associated with heart rate, including two 

sarcomeric proteins, MYH6 and TTN. At the MYH6 locus, variant rs365990 is 
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associated prolonged PR interval and with slower heart rates, whereas an 

independent MYH6 signal (<20 kb away; rs11465506) also associates with 

prolonged PR but is associated with markedly faster heart rates. We then 

examined heart rate SNPs for association with PR and found half of the heart 

rate SNPs were associated with PR interval, with both concordant and discordant 

effects. Adjusting for heart rate in the regression model did not impact the effect 

size or significance of the PR-genotype associations, even though resting heart 

rate is modestly associated with PR interval (Supplementary Figure 7). 

 

Joint phenotype meta-analyses 

Finally, we performed joint phenotype analyses, with PR-heart rate, PR-

QRS, and PR-atrial fibrillation as outcomes, to increase the power of finding loci 

involved in cardiac electrical activity. As described above, prolonged PR variants 

can have either a concordant or discordant association with another electrical 

phenotype. Therefore, we modeled the outcome for each joint analysis in two 

ways: with a variant having a concordant effect on PR-QRS, PR-HR, and PR-AF, 

and a discordant effect (Supplementary Figures 6a-c). These analyses yielded 

10 novel loci associated with atrial electrical activity: five related to atrial and 

ventricular conduction (from PR-QRS analyses); two related to atrial electrical 

activity and arrhythmias (from PR-AF analyses); two related to atrial 

depolarization and heart rate (from PR-HR analyses); and one related to both 

PR-QRS and PR-AF (Table 2, Box 1, Supplementary Figure 8, 

Supplementary Table 8). Additional support for association of several of these 
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loci were obtained by the DHS analysis, detailed above, and by trans-ethnic 

meta-analysis with African Americans, described below, lending further support 

to the validity of these associations (Table 2, Supplementary Figure 8). 

 

Trans-ethnic Analyses 

Our study had less power to find associations among African Americans (n 

= 13,415) than among European-descent individuals (n = 92,340). Nonetheless, 

16 of the 44 European-identified loci nominally replicated among African 

Americans, suggesting that a large proportion of genetic associations with PR 

interval are shared between the two ethnic groups (Supplementary Table 7). 

For European-descent GWAS PR SNPs at least nominally associated with PR 

among African Americans, the estimated effect was in the same direction for the 

two populations (Supplementary Figure 6d). 

Examining only the index signal may underestimate the true number of 

locus associations that replicate. For instance, the TBX5 locus index SNP 

rs6489953 is part of a large LD block associated with PR interval among 

individuals of European descent. This SNP is not significantly associated with PR 

interval among African Americans (beta = 0.04, P = 0.90, Supplementary Table 

6, Figure 2c). There is, however, a very strong SNP-PR association signal in the 

TBX5 among African Americans (index SNP rs7955405, beta = 1.16, P = 9.2 x 

10-16 in African Americans), Figure 2c. This SNP is in high LD with rs6489953 

among European descent individuals (HapMap CEU r2 = 0.62), but not among 

populations from African descent (HapMap YRI r2 = 0.03). Hence, examination of 
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only the top European descent index signal would miss the association among 

African Americans. Furthermore, interrogation of the TBX5 locus among African 

Americans narrows the association block, allowing for fine mapping of the 

association signal (Figure 2c). A second noteworthy interethnic difference is that 

there are SNP associations among those of European descent, for instance 

rs1896312 in TBX3, where despite adequate power, no association could be 

established among African Americans (Figure 2c). 

 Our trans-ethnic GWAS meta-analysis of PR interval among 13,415 

African Americans and 92,340 European-ancestry individuals identified five 

additional novel loci associated with atrial and atrioventricular conduction (PR 

interval) (Table 2, Supplementary Figure 8).  

 

Discussion 

Our GWAS meta-analytic study of over 92,000 individuals of European 

ancestry identified 44 loci associated with cardiac atrial and atrioventricular 

conduction (PR interval). The implicated genes at these loci show strong 

enrichment for genes involved in processes related to cardiac conduction, 

namely, cardiovascular system development and, specifically, in development of 

the cardiac chamber and bundle of His. Similarly, diseases overrepresented by 

these genes are processes related to arrhythmias and heart block, consistent 

with the current knowledge of the physiology and epidemiology of cardiac atrial 

conduction.  
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 Using HapMap13 imputation, we tested over 2.7 million SNPs, and while 

we did not directly test all common variants with this approach, nor did we test 

low-frequency variants (with minor allele frequencies below 1%), we identified 

many index SNPs in LD with functional variants, either through amino acid 

changes or involvement in gene regulation. For most newly identified loci, we are 

able to pinpoint a gene that may be causative, either because the index SNP (or 

a SNP in high LD with it) is a missense variant in the gene, or because it 

regulates the expression of the gene. Regulation of gene expression can be 

tissue specific, and our findings underscore the importance of examining eQTL 

data in tissue types relevant to the trait of interest. 

 

 A total of 34 novel loci were identified for PR interval in Europeans. 

Several have been identified previously in a related phenotype or in a different 

ancestral population, reassuring the validity of our results. Two loci, EFHA1 and 

LRCH1, were previously identified for association with the PR segment.14 In 

addition, the novel locus CAMK2D was found to associated with P-wave duration, 

and MYH6 with P-wave duration and P-wave terminal force.15 The ID2 locus on 

chromosome 2 was found in a GWAS on PR interval in Hispanic/Latino 

populations.16 A locus that was identified in two studies in Asian populations,17,18 

SLC8A1, did not reach genome-wide significance in our meta-analysis, but was 

suggestive with the strongest SNP being rs13026826 (beta for A-allele: 0.278, 

P=1.036 x 10-6). 
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 Contrasting meta-analyzed association results from European descent 

individuals with results from a smaller sample of African Americans, we find that, 

with few exceptions, a large proportion of genetic associations with PR interval 

are shared between the two ethnic groups. We then combined data from 

Europeans and African Americans in a trans-ethnic meta-analysis, allowing us to 

find additional loci. With over 105,000 samples in total, our power to find 

association – even with small effect sizes – was substantial for common variants. 

Future studies should examine sequence or other data that provide better 

assessment of rare and common functional variants, as was done previously for 

SCN5A.19 

 

 We also combined our results on PR interval with previously published 

results on heart rate, QRS duration, and atrial fibrillation, and identified loci 

contributing to atrial arrhythmias and atrioventricular conduction. We observed 

significant pleiotropy of effect of these SNPs, with over half of the SNPs 

associated with PR interval (atrial conduction) in the study also associated 

ventricular conduction (QRS interval), atrial arrhythmias (atrial fibrillation), and 

heart rate (RR interval). 

 

Our series of GWAS studies, including transethnic and cross-trait meta-

analytic studies, has identified 57 loci, 47 of which are novel, associated with 

cardiac atrial and atrioventricular electrical activity among individuals of European 

and African ancestry. Understanding the biology of a trait in this way provides 
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insight into related disease processes and may help identify potential approaches 

to drug therapy. 
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Figures 

Figure 1: Genome-wide results of PR interval in 92,000 individuals of European descent. 2.8 million SNPs were 

tested for association with PR interval in 31 cohorts. The Manhattan plot shows the meta-analysis association results: 44 

independent loci (labeled) are associated at the genome-wide significance level of P ≤ 5 x 10-8, as marked by the dashed 

line.
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Figures 2a-c: Regional 

association plots of specific 

loci associated with PR 

interval. Each SNP is plotted 

with respect to its chromosomal 

location (x axis) and its P value 

(y axis on the left). The blue 

line indicates the recombination 

rate (y axis on the right) at that 

region of the chromosome. 

Blue outlined squares mark 

non-synonymous SNPs. Green 

triangles depict association 

results of the African 

Americans meta-analysis, only 

SNPs with P < 0.1 are shown. 

(a) Locus 2 and 3 (SCN10A-

SCN5A) on chromosome 3. 

The index SNPs for the two 

genes are named with their rs-

numbers and highlighted with 

two different colors (blue and 

red). Other SNPs in linkage 

disequilibrium with the index 

SNP are denoted in the same 

color; color saturation indicates 

the degree of correlation with 

the index SNP. (b) Locus 19 

(TTN) on chromosome 2; and 

(c) Locus 9 and 10 (TBX5-

TBX3) on chromosome 12. 
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Figure 3: Heatmap showing 
overlapping loci between four 
traits. For each locus associated 
with PR interval, we tested 
strength of the association and 
direction of effect for three 
related traits: QRS duration, 
atrial fibrillation, and heart rate. 
While the genetic bases of these 
three traits show a distinct 
overlap with that of PR interval, 
we observe for each trait 
overlapping loci with both 
concordant and discordant 
associations, with some variants 
that prolong PR interval 
prolonging QRS duration or RR 
interval (concordant 
associations), whereas others 
shorten QRS duration or 
decrease RR interval. Similarly, 
some variants that prolong PR 
interval increase AF risk 
(concordant association) while 
others decrease AF risk 
(discordant). 
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Tables 
 

Table 1: Description of novel and previously identified loci. For each locus we list the number of independent signals, 

whether this locus is nominal significant in African Americans, if missense SNPs are in LD with the index SNP or SNPs, if 

the index SNP is in LD with or located in a cardiac DHS, and if the locus contains cardiac or blood eQTLs. Abbreviations: 

Chr - chromosome, CA - coded allele, CAF - coded allele frequency, SE - standard error. 

 

European ancestry INDEX SNPs in previously identified PR loci 
Indep
Sig 

AA 
PR Missense CardiacDHS CardiaceQTL 

Locus SNP Chr 
Closest 
Gene CA CAF 

Beta 
(ms) 

SE 
(ms) P-value n p<0.05 r2>0.8 r2>0.8 FDR<0.05 

1 rs4430933 2 MEIS1 A 0.39 1.3 0.11 5.06E-30 1 YES - YES MEIS1 
2 rs6599250 3 SCN10A T 0.41 3.8 0.11 4.42E-242 2 YES SCN10A YES - 
3 rs11708996 3 SCN5A C 0.15 3.1 0.18 1.06E-68 5 YES SCN5A YES - 
4 rs343849 4 ARHGAP24 A 0.30 -2.1 0.13 3.12E-61 1 YES - YES - 

5 rs255292 5 

BNIP1 / 
NKX2-5 / 
CREBRF C 0.42 -1.1 0.12 5.99E-21 1 YES - YES CREBRF 

6 rs3807989 7 CAV1 / CAV2 A 0.41 2.0 0.12 8.65E-69 1 YES - YES CAV1 & CAV2 
7 rs652673 11 WNT11 C 0.22 -0.8 0.15 4.41E-08 1 - - - - 

8 rs17287293 12 
C12orf67 / 

SOX5 G 0.15 -2.2 0.16 2.33E-41 1 YES - - - 
9 rs1896312 12 TBX3 C 0.29 1.6 0.13 1.16E-34 4 - - - - 
10 rs6489953 12 TBX5 C 0.17 1.2 0.15 1.94E-16 2 - - - - 
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European ancestry index SNPs in Novel PR loci 
Indep
Sig 

AA 
PR Missense CardiacDHS CardiaceQTL 

Locus SNP Chr 
Closest 
Gene CA CAF Beta SE P-value n p<0.05 r2>0.8 r2>0.8 FDR<0.05 

11 rs4648819 1 SKI G 0.11 -1.7 0.28 4.68E-10 1 - - - - 
12 rs7538988 1 EPS15 C 0.03 -2.1 0.37 1.14E-08 1 - - YES - 

13 rs12127701 1 
MYBPHL / 

SYPL2 G 0.06 1.7 0.28 1.54E-09 1 - MYBPHL - 
MYBPHL & 

SYPL2 

14 rs11264339 1 ADAM15 T 0.48 -0.7 0.11 5.94E-10 1 - EFNA1 YES 
ADAM15 & 

CLK2 
15 rs397637 1 OBSCN T 0.28 0.8 0.12 7.11E-10 1 - OBSCN YES - 
16 rs3856447 2 ID2 A 0.39 1.2 0.11 1.20E-26 2 - - YES - 
17 rs2732860 2 TMEM182 G 0.52 -0.9 0.11 3.03E-15 2 - - YES TMEM182 
18 rs13018106 2 FIGN C 0.42 -0.8 0.12 1.53E-11 1 YES - YES - 
19 rs922984 2 TTN T 0.07 1.5 0.23 1.79E-11 2 - TTN YES TTN 
20 rs9826413 3 EOMES T 0.06 2.0 0.36 1.69E-08 1 - - - - 
21 rs900669 3 FRMD4B A 0.25 0.8 0.13 5.71E-09 1 YES - YES - 
22 rs13087058 3 PDZRN3 C 0.37 -1.0 0.12 5.82E-17 1 - - YES PDZRN3 
23 rs16858828 3 PHLDB2 C 0.18 0.9 0.15 2.41E-08 1 - - YES - 
24 rs6441111 3 CCNL1 C 0.52 0.8 0.13 6.96E-11 1 YES - YES - 
25 rs7638853 3 SENP2 A 0.34 -0.7 0.12 2.44E-08 1 - SENP2 YES SENP2 
26 rs17446418 4 CAMK2D G 0.26 0.8 0.13 3.41E-09 1 - - YES - 
27 rs3733409 4 FAT1 T 0.13 0.9 0.17 2.67E-08 1 YES FAT1 YES FAT1 
28 rs7729395 5 PAM T 0.05 2.4 0.37 1.00E-10 1 - PAM - - 

29 rs11763856 7 
TBX20 / 

HERPUD2 T 0.03 3.1 0.49 4.47E-10 2 YES - YES - 
30 rs2129561 7 MKLN1 A 0.42 -1.0 0.12 3.39E-15 1 - - - - 
31 rs881301 8 FGFR1 C 0.41 0.8 0.12 5.04E-10 1 - - YES - 
32 rs12678719 8 ZFPM2 G 0.27 0.8 0.13 3.77E-10 1 - - - - 

33 rs12359272 10 
ALDH18A1 / 

SORBS1 A 0.37 1.0 0.13 3.68E-16 2 - - YES - 
34 rs12257568 10 SH3PXD2A / T 0.41 1.0 0.12 5.83E-18 2 YES - - - 
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OBFC1 

35 rs1372797 11 NAV2 T 0.12 -1.1 0.18 2.36E-09 2 - - YES - 
36 rs11067773 12 MED13L C 0.09 -1.3 0.23 1.02E-08 1 - - - - 
37 rs718426 13 EFHA1 G 0.41 -1.2 0.11 3.25E-24 1 - - YES - 
38 rs2585897 13 XPO4 A 0.16 1.2 0.15 9.28E-16 1 YES - YES - 
39 rs9590974 13 LRCH1 C 0.34 1.1 0.12 1.02E-19 1 - - YES - 
40 rs11465506 14 IL25 / MYH6 A 0.02 -6.4 1.04 7.06E-10 2 YES MYH6 YES - 
41 rs4901308 14 FERMT2 T 0.19 -0.8 0.15 2.04E-08 1 - - - - 

42 rs17767398 14 
SNORD56B 

SIPA1L1 G 0.26 1.0 0.13 6.44E-13 1 - - YES - 
43 rs904974 15 TLE3 T 0.16 1.1 0.19 4.53E-08 1 YES - - - 

44 rs1984481 17 MYOCD C 0.54 -0.8 0.12 1.37E-11 1 - - YES - 
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Table 2: Novel loci identified by transethnic and pleiotropic meta-analyses. We combined GWAS results of 

Europeans and African Americans and identified an additional five loci associated with PR interval. To identify loci 

associated with atrioventricular conduction, we combined data on PR interval with association results of QRS duration (six 

novel loci), of RR interval (two novel loci), and of atrial fibrillation (three loci). Furthermore, we tested SNPs in DHSs only, 

adjusting the significance threshold accordingly, and found another four SNPs significantly associated with PR interval. 

Because some of the loci overlapped, these analyses led to 13 novel loci in total. 

      
P-value 

Locus SNP Chr Position 
Closest 
Gene Supporting Analysis DHS 

AA-EA 
Joint 

PR QRS 
concor-

dant 

PR QRS 
discor-

dant 

PR AF 
concor-

dant 

PR AF 
discor-

dant 

PR RR 
concor-

dant 
45 rs2030569 3 66496608 SLC25A26 AA-EAJoint - 2.539E-08 - - - - - 
46 rs3732733 3 71286767 FOXP1 DHS; AA-EAJoint 1.247E-07 4.837E-08 - - - - - 
47 rs2970852 4 23430621 PPARGC1A DHS; PR-QRSConcordant 5.600E-08 - 7.547E-09 - - - - 

48 rs1254724 6 2525198 C6orf195 
DHS; PR-QRSDiscordant; PR-

AFDiscordant 7.716E-08 - - 4.264E-08 - 1.163E-08 - 
49 rs11970286 6 118787067 SLC35F1 AA-EAJoint; PR-AFConcordant - 4.166E-08 - - 8.862E-10 - - 

50 rs4871397 8 124635197 KLHL38 
DHS; AA-EAJoint; PR-

AFConcordant 1.123E-07 3.165E-10 - - 3.356E-11 - - 
51 rs1771644 10 31354140 ZNF438 PR-QRSConcordant - - 3.025E-08 - - - - 
52 rs174545 11 61325882 FADS1 PR-QRSConcordant - - 2.638E-08 - - - - 
53 rs11839149 13 48801335 CAB39L PR-QRSConcordant - - 1.440E-08 - - - - 
54 rs8046873 16 81309433 CDH13 AA-EAJoint - 3.369E-09 - - - - - 
55 rs1006325 20 39067017 TOP1 PR-RRConcordant - - - - - - 3.965E-08 
56 rs11906462 20 60569397 C20orf166 PR-RRConcordant - - - - - - 1.708E-08 

57 rs13047360 21 27773451 
NCRNA0011

3 PR-QRSDiscordant - - - 1.122E-08 - - - 
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