HOTAIR ancient sequence suggests regulatory roles both in cis and trans

Chirag Nepal ${ }^{1}$, Yavor Hadzhiev ${ }^{2}$, Sachin Pundhir ${ }^{1}$, Piotr Mydel ${ }^{3,4}$, Boris Lenhard ${ }^{5}$, Ferenc Müller ${ }^{2}$, Jesper B Andersen ${ }^{1}$

1. Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
2. Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
3. Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
4. Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, and Malopolska Centre of Biotechnology, Jagiellonian University, Karkow, Poland
5. Institute of Clinical Sciences MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, United Kingdom

Correspondence to: Chirag Nepal chirag.nepal@bric.ku.dk Biotech Research and Innovation Centre University of Copenhagen Ole Maaløes Vej 5, DK-2200 Copenhagen N Denmark

Keywords: HOTAIR, IncRNA, conservation, CNE, sequence complementarity, enhancer

Abstract

HOTAIR is a long noncoding RNA transcribed between HOXC11 and HOXC12 in mammals. The proposed function(s) of HOTAIR lacks consensus as to whether it regulates HoxD cluster genes in trans or HoxC cluster genes in cis. We have identified a 32-nucleotide long conserved noncoding element (CNE) as HOTAIR ancient sequence which has a paralogous copy embedded in HOXD11 noncoding transcript. All vertebrates except teleosts have two copies of CNE and the paralogous CNEs exhibit sequence complementarity in the transcribed orientation. Moreover, paralogous CNEs underwent compensatory mutations suggesting they co-evolved and might hybridize. In both human and mouse, HOTAIR CNE exhibits characteristic features of a poised enhancer in HOTAIR-unexpressed stem cells and of an active enhancer in HOTAIR-expressed cells. Tight correlation between the transcriptional activity of the CNE and HOTAIR promoter suggests HOTAIR transcription is crucial for enhancer activity. In HOTAIR-expressed cells, HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans, suggesting a dual modality of HOTAIR ancient sequence.

INTRODUCTION

Mammalian genomes are pervasively transcribed, giving rise to thousands of long noncoding RNAs (IncRNAs) (1,2). Only a handful of IncRNAs have well-characterized functions, which are attained through diverse mechanisms (chromatin regulation, alternative splicing, gene silencing, cis-regulation, trans-regulation) (3,4). Among these, HOTAIR is a prototypic model for IncRNAs regulating chromatin modifications. HOTAIR is an intergenic (between HOXC11 and HOXC12) IncRNA proposed to regulate HOXD cluster genes (i.e., HOXD8, HOXD9, HOXD10 and HOXD11) in trans by recruiting Polycomb Repressive Complex 2 (PRC2) (5). The proposed model has been questioned as PRC2 binding is promiscuous (6) and PRC2 is dispensable for HOTAIR-mediated transcriptional repression (7). Deletion of the entire mouse Hoxc cluster (including Hotair) showed little effect on gene expression and H3K27me3 levels at Hoxd genes (8). Specific deletion of Hotair produced a phenotype of homeotic transformation, skeletal malformation, global decrease in H3K27me3 levels and upregulation of posterior HoxD genes (i.e., Hoxd10, Hoxd11 and Hoxd13) (9). These observations are now challenged as specific knockouts of Hotair locus in vivo show neither homeotic transformation nor upregulation of HoxD genes but, instead, a significant change in Hoxc (especially Hoxc11 and Hoxc12) cluster genes, which argue in favor of a DNA-dependent effect of the Hotair deletion (10). The observed different regulatory mechanisms (cis versus trans) might be due to different tissues and developmental stages from different genetic backgrounds (11) and hence there is no consensus unifying model of HOTAIR regulation (12).

Some IncRNAs have enhancer-like functions (13), although it is unclear whether IncRNAs function through IncRNA transcripts or through the underlying genomic DNA with cisregulatory functions. Genomic deletion of IncRNA also removes cis-regulatory DNA elements, thus confounding whether the observed phenotype is due to the act of transcription of a IncRNA transcript or underlying genomic DNA (14). A systematic analysis involving transcription blockage and perturbation of the Lockd IncRNA sequence showed that it regulates Cdkn1b transcription through an enhancer element, while the IncRNA transcript is dispensable for Cdkn1b expression (15). Deletion of 12 genomic loci encoding IncRNAs revealed five loci where the deletion showed effects on the general process of transcription and enhancer-like activity but no requirement for the IncRNA products themselves (16). Identification of accurate 5' start sites of IncRNAs revealed that a large majority of IncRNA have enhancer-like features (1). Others like Haunt IncRNA have dual roles where Haunt DNA encodes potential enhancers to activate HoxA genes and Haunt RNA prevents aberrant HoxA expression (17).

Here, we set to address whether HOTAIR regulates HOXC cluster genes in cis (10) or HOXD cluster genes in trans $(5,9)$. HOXC and HOXD clusters are duplicated from the ancestral HOXC/D cluster, by the second round of whole genome duplication (WGD), thus we asked whether HOTAIR and HOXD cluster have retained some sequence from ancestral HOXC/D
cluster. We have identified a 32-nucleotide conserved noncoding element (CNE) as the HOTAIR ancestral sequence that is present across all jawed vertebrates (except teleost) and has a paralogous copy embedded within HOXD11 noncoding transcript. Paralogous CNEs underwent compensatory mutations and exhibit sequence complementarity. HOTAIR CNE represents an active or poised enhancer in different cellular context. HOTAIR expression is positively correlated with HOXC11 and negatively correlated with HOXD11, suggesting dual modality of HOTAIR CNE.

RESULTS

Identification of HOTAIR ancient sequence and its paralog in HoxD cluster

Hox clusters have multiple conserved noncoding elements (CNEs) that are highly conserved from human to fish $(18,19)$; thus, we asked whether any region of HOTAIR (which resides on HOXC cluster) is conserved across vertebrates. We used human and zebrafish CNEs from ANCORA (19) (see Materials and Methods) and identified a 32-nucleotide long CNE that overlapped with HOTAIR intronic region (Fig. 1A), which is eight nucleotides away from the splice site and overlaps a CpG island (CGI). Identification of the homolog of CNE in zebrafish is intriguing because HOTAIR was proposed to have a de novo origin in marsupials (20) and a homolog(s) of HOTAIR RNA have not been reported in zebrafish (21-23). Thus, we mapped the orthogonal position of the CNE in zebrafish and identified its location between hoxd11a and hoxd12a (Fig. 1B), but not in the expected hoxc clusters (Fig. 1A).

As this CNE is conserved across all vertebrates (Supplementary Fig. S1A-B), we investigated whether the CNE is located in the HoxC (the capitalization "HoxC" is used to represent the HoxC cluster across multiple species) or HoxD cluster. We systematically mapped the CNE sequences across 37 organisms (34 vertebrates and 3 invertebrates) (Supplementary Table S1) and identified a homologous CNE in HoxD and HoxC clusters common to all jawed vertebrates except in teleosts and birds, but absent in lamprey (jawless vertebrate) and invertebrates (Fig. 1C). The homologous CNEs mapped between HoxD11 and HoxD12 in HoxD cluster and between HoxC11 and HoxC12 in HoxC cluster (Fig. 1C). The absence of HoxC CNE in birds is likely due to unassembled HoxC cluster (Supplementary Table S2). In contrast, teleosts have well-annotated HoxC11 and HoxC12 genes in the same cluster (Supplementary Table S2) but underwent an additional round of teleost-specific whole genome duplication (WGD) that might have resulted in lineage-specific loss. Thus, we conclude that all jawed vertebrates except teleosts have a homolog(s) of HOTAIR CNE in the HoxC and HoxD clusters.

Figure 1 Identification of the HOTAIR conserved noncoding element (CNE) and its homolog in HOXD cluster across vertebrates. (A) A genome browser view around HOTAIR locus showing CNE from ANCORA browser and UCSC PhyloP conservation track. The CNE highlighted in a rectangular box is located eight nucleotides away from the splice site. (B) Orthologs of HOTAIR CNE mapped to the zebrafish hoxd (between hoxd11 and hoxd12) cluster. (C) Homology search of the CNE across 37 species identified homologous CNEs in only HoxC and HoxD clusters. Homologs of the CNE are undetected in jawless vertebrate and invertebrates. Homologs in HoxC and HoxD clusters are represented by blue and red, respectively. Empty boxes indicate absence of homologs. (D) Schematic representation for the proposed model on the origin of the CNE. The CNE might have de novo origin in ancestral HoxC/D cluster after the first round of whole genome duplication (1R-WGD), where the second round of whole genome duplication (2R-WGD) resulted two copies of the CNE at HoxC and HoxD clusters. Additional round of teleosts specific duplication might have resulted in loss of CNE from both HoxC clusters and from one of the HoxD cluster.

Two rounds of WGD at the root of vertebrates have resulted in four Hox clusters (24), where the second round of WGD resulted HoxC and HoxD clusters from the ancestral HoxC/D cluster (25). Two copies of the CNE in the basal group of jawed vertebrates, such as elephant shark (cartilaginous fish) and spotted gar (basal ray-finned fish; sister group of teleosts) (Fig. 1C), suggest that the CNE was already present in the ancestral HoxC/D cluster. Therefore, it is likely that the ancestral CNE might have had a de novo origin in jawed vertebrates after the first WGD (Fig. 1D). However, it is also possible that the CNE was present before the first WGD and then disappeared from ancestral HoxA/B cluster. To understand how CNE flanking
sequences evolved after WGD, we aligned flanking sequences within species and observed limited homology (for example, in human and elephant shark; Supplementary Fig. S2A) suggesting only CNEs were under selection. Then we separately aligned HoxC and HoxD CNE flanking sequences and observed independent conservation along each cluster (Supplementary Fig. S2B) and, in turn, identified a relatively long stretch of about 175 nucleotides of HOTAIR sequence that is conserved across vertebrates (except teleosts).

Paralogous HoxD CNE is transcribed from HoxD11 noncoding transcript and exhibit sequence complementarity with HOTAIR CNE
Some CNEs are transcribed from noncoding transcripts (26); thus, we asked if human HOXD CNE is transcribed from coding/noncoding transcript. We intersected the genomic coordinates of the CNE with Ensembl genes and observed HOXD CNE is transcribed from an alternative noncoding isoform of HOXD11 (referred to as HOXD11 noncoding transcript) (Fig. 2A), which is a reported target gene that is silenced by HOTAIR in both human (5) and mouse (9). As both CNEs are embedded within their respective transcripts, we asked whether these CNEs exhibit sequence complementarity, similar to a miRNA seed and target sites. We aligned paralogous CNEs in the orientation of their respective transcripts and observed sequence complementarity (Fig. 2A), suggesting paralogous CNEs might hybridize.

To confirm whether the observed sequence complementarity in human is conserved in other vertebrates, we analyzed Ensembl-annotated genes and RNA-seq transcripts $(22,27)$ across a subset of species and identified the HOTAIR and HoxD11 noncoding transcripts in mouse, ferrets, dog and coelacanth (Supplementary Fig. S3A-B). The HoxD11 noncoding transcript was detected in chicken but undetected in teleosts (zebrafish and tetraodon; Supplementary Fig. S3A-B). For other species, we inferred the putative orientation of the missing transcript (see Materials and Methods), as illustrated for chimp and painted turtle (Supplementary Fig. S3C-D). We aligned CNEs in the 5' -> 3' orientation and observed two interesting patterns. First, the sequence complementarity observed in human is conserved across vertebrates (Fig. 2B). This suggests that sequence complementarity between paralogous CNEs is an ancient feature that has been under selection pressure for more than 300 million years. This raises an important question as to whether the key function of these transcripts is to provide transcription of the CNE. Second, both CNEs underwent substitutions at specific positions that evolved in two separate waves in vertebrates and mammals (Fig. 2B). One of the substitutions resulted in gain of complementarity in mammals and the other substitution resulted in loss of complementarity in mammals (Fig. 2B). Collectively, the co-evolution of CNEs and retention of sequence complementarity in the transcribed orientation suggest that paralogous CNEs might interact and be co-regulated.

A

Figure 2 Sequence complementarity of the HOTAIR CNE and the paralogous HoxD CNE. (A) HOTAIR CNE and HOXD CNE are represented by rectangular blue and red bars, respectively. HOTAIR CNE and HOXD CNE are zoomed and show the genomic DNA sequences. HOTAIR is transcribed from negative strand and the CNE sequence is reverse transcribed to show in 5' to 3^{\prime} orientation. Paralogous CNEs are complementary in the orientation of transcripts suggesting they might hybridize if co-expressed in the same cells. (B) Alignment of the HOTAIR CNE and HoxD CNE in transcribed orientation reveal sequence complementarity is conserved across vertebrates. Genetic substitution within paralogous CNEs occurred at specific positions that co-evolved in two successive waves in vertebrates and mammals resulting in gain of complementarity at one position and loss of complementarity at other position.

HOTAIR CNE reflects a poised enhancer in HOTAIR-unexpressed stem cells
CNEs are putative regulatory elements (28) where many of them function as enhancers (29); we thus asked whether CNEs have open chromatin state as in active regulatory elements
$(30,31)$. We selected 29 cell lines (Supplementary Table S3; see Materials and Methods) from Roadmap Epigenome (30) and classified them as HOTAIR-expressed ($\mathrm{N}=10$) and HOTAIR-unexpressed ($\mathrm{N}=19$) groups based on RNA-seq expression levels (Supplementary Fig. S4A). Among HOTAIR-unexpressed cells, H1-hESC cell line is unique as the CNE is enriched for both repressive (H3K27me3) and open chromatin (as indicated by DNase hypersensitive sites (DHSs)) marks (Supplementary Fig. S4B), suggesting it to be in the poised state. We observed enriched DHS signals around the CNE in HOTAIR-expressed cells and HOTAIR-unexpressed stem cells, but not in HOTAIR-unexpressed differentiated cells (Fig. 3A). The paralogous HOXD CNE also has a similar chromatin state in corresponding cell lines (Supplementary Fig. S4C). Similar analysis on mouse cell lines (32) (see Materials and Methods) revealed that open chromatin state around the CNE is conserved in Hotair-expressed cells and Hotair-unexpressed stem cells (Fig. 3A; Supplementary Table S3). The chromatin state of Hotair CNE gradually becomes open during reprogramming of mouse embryonic fibroblasts (MEF) to induced pluripotent stem cells (iPSC) (33) (Supplementary Fig. S4D). We conclude that the chromatin state of CNE is open in HOTAIR-unexpressed stem cells and HOTAIR-expressed cells in both human and mouse.

Figure 3 The HOTAIR CNE represents a poised enhancer in HOTAIR-unexpressed stem cells in both human and mouse. (A) The HOTAIR CNE chromatin is open in HOTAIR-expressed and HOTAIR-unexpressed stem cells in human and mouse. Y-axis is normalized DNase I hypersensitive sites (DHS) coverage in reads per million (RPM). "N" denotes the number of cell lines. (B) The HOTAIR CNE is marked by p300, H3K4me1 and bimodal H3K27me3 peaks in H9-hESC (human) and iPSC (mouse) cell line that collectively define a poised enhancer. Y-axis is normalized coverage in reads per million (RPM). (C) A genome browser view around the HOTAIR locus with transcription factors, DHS, histone modifications and RNA-seq tracks from H1-hESC cell line. HOTAIR is unexpressed (as shown by RNA-seq track) and marked by broad H3K27me3 peak. The CNE is marked by depleted

H3K27me3 marks, reflecting a nucleosome-depleted region which is supported by enriched DHS peaks and binding of multiple transcription factors.

A subset of embryonic stem cell-specific enhancers are poised, characterized by presence of both activating and repressing marks (34); thus, we asked whether CNE reflects a poised enhancer in HOTAIR-unexpressed stem cells. We observed that H3K4me1, H3K27me3 and p300 signals are enriched at the CNE (Fig. 3B) in human H9-hESC (34) and mouse iPSC (33), supporting that HOTAIR CNE is a poised enhancer. However, the HOXD CNE lacks p300 and bimodal H3K27me3 peaks (Supplementary Fig. S4E). Poised enhancers have bimodal H3K27me3-modified nucleosomes (34), which is observed in HOTAIR CNE (H1hESC and H9-hESC) (Fig. 3B; Supplementary Fig. S4F) but not in HOXD CNE.

We next analyzed all ENCODE transcription factors (TFs) (35) and observed CTBP2, YY1, SP1 and CHD1 are specifically enriched on the CNE exclusively in H1-hESC (Fig. 3C; Supplementary Table S4). YY1 has a known dual function in repressing or activating transcription depending upon the cofactors it recruits (36). The binding of YY1 on regulatory elements and their associated RNA species has been shown to play a role at enhancers (37). PRC2 components (SUZ12 and EZH2) are marked throughout the locus (Fig. 4C) that are not specific to stem cells (Supplementary Table S4). A recent study on mouse embryonic stem cells using promoter capture $\mathrm{Hi}-\mathrm{C}$ data showed extensive promoter contacts for HoxC and HoxD clusters (38). Poised enhancers establish physical interactions with their target genes in ESCs in a PRC2-dependent manner (39), whether HOTAIR CNE might have a similar role in stem cells remains speculative. We conclude that in both human and mouse, the HOTAIR CNE possess characteristics features of a poised enhancer in stem cells.

HOTAIR CNE reflects an active enhancer in HOTAIR-expressed cells

Bidirectional transcription of enhancer RNAs (eRNAs) is a hallmark of active enhancers (40). We therefore analyzed the FANTOM5 (41) CAGE signals at the CNE and observed bidirectional transcription flanking the CNE (Fig. 4A; dashed rectangular box), supporting its role as an active enhancer. The CNE and the promoter region of HOTAIR primary and alternative transcripts are co-expressed (Fig. 4B; Supplementary Table S5), as exemplified during differentiation of myoblast to myotube (Supplementary Fig. S5A). The expression of HOTAIR promoter and CNE are positively correlated (Fig. 4C), which also holds true for two other alternative promoters except for the distal promoter (labelled as dp1) (Supplementary Fig. S5B). Negative correlation of distal promoter is mostly due to large number of samples where only distal promoter is expressed (Fig. 4B). The genomic region between bidirectional CAGE tags around the CNE is about the length of one nucleosome (Fig. 4D) and is conserved across vertebrates (Supplementary Fig. S2B). DHS, H3K4me1 and H3K27ac peaks are also enriched around the CNE (Fig. 4A) in myoblast and myotube (30), thus providing additional evidence as an active enhancer. The CNE is flanked by bimodal H3K4me1 peaks, a characteristic feature of active enhancers (Fig. 4E). Due to lack of
appropriate cell lines (embryonic hindlimbs, genital tubercle and piece of trunk corresponding to the sacro-caudal region) where Hotair is expressed (8-10), we did not detect CAGE tags in either Hotair CNE or promoter across mouse FANTOM5 samples (Supplementary Fig. S5C). However, we observed that H3K4me1 and H3K27ac are enriched in mouse embryonic (E10.5 days) hindlimbs (42) (Fig. 4F; Supplementary Fig. S5D).

Figure 4 The HOTAIR CNE reflects an active enhancer in HOTAIR-expressed muscle cells. (A) A genome browser view with FANTOM5 CAGE tags (combined tracks) and individual tracks on myoblast and myotube along with RNAseq, H3K4me/me3, H3K27ac/me3, and DNase hypersensitive site (DHS) tracks from ENCODE. Horizontal bars across each histone and DHS tracks are annotated peaks. Forward and reverse strand CAGE tags are represented by blue and red. Bidirectional CAGE tags flanking the HOTAIR CNE is shown in dashed rectangular boxes. In both myoblast and myotube, the HOTAIR CNE is flanked by bidirectional CAGE tags and overlaps H3K4me1 and H3K27ac peaks. (B) Expression levels of the HOTAIR CNE and alternative promoters across FANTOM5 samples. (C) Expression level of the CNE is correlated with the HOTAIR promoter. (D) A zoomed view of CAGE tags (from myoblast and myotube differentiation time points) around the CNE shows bidirectional CAGE peaks that roughly represent the length of a nucleosome. (E-F) Bimodal H3K4me1 peaks flank the CNE in human myoblast (e) and embryonic 10.5days hindlimbs in mouse (F).

Thus, we have shown that HOTAIR CNE possesses characteristic features of an active enhancer in HOTAIR-expressed cells, in both human and mouse. Importantly, transcription of
the HOTAIR promoter is tightly linked to enhancer activity of the CNE, suggesting transcription of the CNE is a key function of the HOTAIR transcript. This notion is further supported by the evolution of CNE paralogs that reveal transcribed paralogous CNEs have retained sequence complementarity and thus have been actively selected during evolution (Fig. 2; Supplementary Fig. S3C-D). This observation suggests that transcription directly on the CNE might be a key contributor to the selection acting on the CNE.

HOTAIR CNE expression is positively correlated with HOXC11 and negatively correlated with HOXD11

The lack of consensus on whether HOTAIR regulates the HoxD cluster posterior (HoxD11, HoxD12) genes in trans $(5,9)$ or HoxC cluster (Hoxc10, Hoxc11) genes in cis (10) prompted us to ask how the expression levels of HOTAIR CNE is correlated with reported target genes in large samples of HOTAIR-expressed cells. We reasoned that HOTAIR CNE reflects an active enhancer and could potentially explain cis regulation, while the sequence complementarity between HOTAIR CNE and HOXD CNE (embedded within HOXD11) could potentially regulate HOXD cluster genes in trans. To this end, we analyzed 694 cell types from FANTOM5 (41) and plotted the expression levels of genes across four HOX clusters (Supplementary Fig. S6A). We next selected only the HOTAIR-expressed cells and observed positive correlation with HOXC posterior genes and a trend towards negative correlation with HOXD posterior genes (Fig. 5A). It is striking to note that among HOXC and HOXD cluster posterior genes, HOXC11 expression has the best positive correlation ($\mathrm{R}=0.64$; p-value: $2.2 \mathrm{E}-13$) in the HOXC cluster and HOXD11 coding ($\mathrm{R}=-0.25$; p -value: 0.009) and noncoding transcript ($\mathrm{R}=-0.23$; p -value: 0.017) has the best negative correlation, both of which are target genes regulated by HOTAIR in human (5) and mouse $(9,10)$. The observed negative correlation on HOXD cluster genes will diminish if analyzed by combining HOTAIR-expressed and HOTAIR-unexpressed cells. To confirm whether the observed correlation is present in other datasets, we analyzed gene expression data of breast cancer patients from TCGA (43). We selected only those patients $(\mathrm{N}=605)$ where HOTAIR is expressed (see Materials and Methods) and observed a similar trend of positive correlation with HOTAIR and HOXC cluster posterior genes and a trend of weak negative correlation with HOTAIR and HOXD cluster posterior genes (Supplementary Fig. S6B). Similarly, HOXC11 has the highest positive correlation ($\mathrm{R}=0.207$; p -value:2.63E-07) and HOXD11 has highest negative correlation ($\mathrm{R}=-$ 0.107; p-value:0.008). The act of transcription by HOTAIR, transcribes the HOTAIR CNE (putative enhancer) and collectively regulates neighboring genes in cis. On the other hand, sequence complementarity of HOTAIR CNE with paralogous HOXD CNE embedded in the HOXD11 noncoding transcript might negate the expression of HOXD11. Our observations suggest that HOTAIR CNE might simultaneously regulate HOXC11 in cis and HOXD11 in trans.

Figure 5 Correlation of expression levels of HOTAIR CNE with HOXC and HOXD clusters posterior genes in HOTAIR-expressed cells across FANTOM5 samples. (A) Expression levels of HOTAIR CNE with HOXC and HOXD cluster posterior genes on individual cell types. X-axis represents expression level of HOTAIR CNE and y-axis represents the expression levels of HOXC and HOXD cluster genes. Expression level is measured as tags per million (TPM). Expression levels of HOTAIR CNE and HOXC cluster genes show a trend of positive correlation where HOXC11 (highlighted in green) has the highest positive correlation. Expression levels of HOTAIR CNE and HOXD cluster genes showed a trend of weak negative correlation where HOXD11 coding and noncoding (highlighted in green) is the most negatively correlated gene.

DISCUSSION

We have identified and characterized the HOTAIR CNE as the ancestral sequence, which also has a paralogous coy in the HoxD cluster across vertebrates. Lack of the CNE in teleosts HoxC cluster is unexplained given it is conserved in other fish (spotted gar and elephant shark) and is likely one of the consequences of teleosts lineage whole genome duplication. Conservation of HOTAIR CNE and flanking sequences even in early fish (elephant shark, spotted gar) and tetrapod (coelacanth) (Supplementary Fig. S2B) does suggest an ancestral form of HOTAIR across all vertebrates, but needs additional RNA-seq transcript evidence which is currently limited to only few species due to limited data. Importantly, the length of the HOTAIR CNE flanking sequences that is conserved across vertebrates (Supplementary Fig. S2B) roughly represents region of DHS peak and bidirectional CAGE tags.

Figure 6 Schematic representation of various features of the HOTAIR CNE and its paralog in HoxD cluster in human and mouse. (A) The HOTAIR CNE has a paralog in HoxD cluster. Transcribed paralogous CNEs exhibits sequence complementarity and this complementarity is conserved across vertebrates. Based on HOTAIR expression, cell types are divided into HOTAIR-expressed and HOTAIR-unexpressed groups, where HOTAIR-unexpressed cells are further divided into stem cells and terminally differentiated cells based on DHS signals. Chromatin states, transcription factor bindings and CAGE signals on homologous CNEs are shown schematically.

Many of the tested CNEs act as enhancers in reporter construct (29). In fact, the homologous Hoxd CNE drives expression in a proximal posterior part of developing forelimbs (44) but does not work in its own context in zebrafish, as it requires the mouse promoter. However,
deletion of Hoxd CNE in vivo revealed no phenotype (45), and it was speculated that the difference might be due to other phenotypes that were not detected or has a redundant copy of the sequence that have masked the effect. We have now identified a paralog of the Hoxd CNE in Hotair (Fig. 1). This raises an interesting question whether paralogous CNEs have redundant functions, such that deletion of one CNE might be compensated by the other CNE. Putting this into the context of deletion of Hotair locus (including CNE) in vivo $(9,10)$, it remains unknown whether the effects of Hotair CNE deletion is compensated for, to a certain extent, by paralogous Hoxd CNE. Duplicated CNEs have retained only a single copy (28); thus, retention of both copies of duplicated CNE is rare and provides an interesting model to test redundancy/sub-functionalization of CNEs.

Mechanistically, HOTAIR was proposed to regulate HOXD cluster genes by recruiting PRC2 (5), but this model has now been questioned since PRC2 is dispensable from HOTAIRmediated transcriptional repression (7). Our observation of sequence complementarity between HOTAIR CNE and HOXD CNE (Fig. 2; Supplementary Fig. S3A-B; Fig. 6), suggest sequence-specific binding. This notion is further supported by the observed simultaneous genetic substitutions of CNEs during evolution. Moreover, paralogous CNEs are generally coexpressed in the same cell lines (Fig. 6a), simultaneously maintaining open or closed chromatin (Fig. 6) and expression of the HOTAIR CNE and HOXD11 (previously reported target gene of HOTAIR (5,9)) is negatively correlated which collectively provide strong arguments that these CNEs might interact.

HOTAIR has been the prototypic model of functional IncRNA and, thus, the presence of an embedded enhancer (characterization based on bidirectional CAGE tags, DHS and histone peaks) was unexpected (Fig. 6). Most importantly, transcriptional activity of the CNE is coupled to HOTAIR transcription, suggesting that a key function of the HOTAIR transcript is to provide active transcription for the CNE. Though the expression of the HOTAIR CNE is positively correlated with HOXC11 (Fig. 5), it remains unknown whether the observed cis regulation of Hotair (10) is mediated through the CNE. However, we observed that HOTAIR expression is positively correlated with HOXC11 and negatively correlated with HOXD11 and suggest a unifying model of HOTAIR regulation through CNE. Our findings have opened an avenue for multiple testable hypotheses that should clarify ongoing controversies whether HOTAIR regulates HoxC or HoxD cluster genes in cis or trans $(5,7-10)$ or can regulate both HoxC and HoxD cluster genes simultaneously. Our results should guide future experiments to resolve ongoing controversies. Future studies should focus on understanding how specific deletion of $\mathrm{CNE}(\mathrm{s})$ alters HOTAIR regulation in different cellular contexts.

MATERIALS AND METHODS

Genome assemblies and gene annotations
Analyses on human and mouse were done in hg 19 and mm 9 genome version respectively.

The genome assemblies of 37 species are listed in Supplementary Table S1. Gene models were downloaded from UCSC (46). The conserved noncoding elements (CNEs) were downloaded from ANCORA (19).

Roadmap Epigenome, ENCODE, mouse ENCODE and FANTOM5 data sets

Roadmap Epigenome data were downloaded from NIH Roadmap Epigenome browser (30). Annotated chromatin states were downloaded from 127 cell lines. Histone modifications (H3K4me1/3, H3K27ac/me3) and DNase I hypersensitive sites (DHSs) data were downloaded as mapped (tagAlign format) files. RNA-seq data for 57 cell lines were downloaded in the computed gene expression (RPKM) matrix (30). Only 29 cell lines that have all four (H3K4me1/3, H3K27ac/me3) histone modifications, DHS and RNA-seq were used for downstream analysis.

Histone modification and RNA-seq data from ENCODE were downloaded as mapped BAM files. ENCODE transcription factor ChIP-seq were downloaded as annotated peaks (35). Histone modifications (H3K4me1/3, H3K27ac/me3), DHS and RNA-seq data from mouse ENCODE were downloaded as mapped BAM files (32). Samples with replicates were merged into a single file. A threshold of 0.5 RPKM (reads per kilobase per million) was used as the cutoff expression to determine whether HOTAIR is expressed or not in the given RNA-seq samples.

Human and mouse CAGE-seq data were downloaded from FANTOM5 $(41,47)$. Replicates were pooled into single file and resulting CAGE tags in each sample were quantified as tags per million (TPM) (21). CAGE tags with the highest expression level defined dominant transcription start site (TSS). CAGE based expression level was computed by summing all CAGE tags in defined the promoter region (300 bases upstream and downstream of TSS). To compare the expression correlation across four HOX clusters genes, we selected only 694 cell types only if any of HOX genes was expressed at the minimum of 5 TPM.

Data sets used from multiple studies

RNA-seq transcripts for multiple species were used from previous studies($21,22,27$). Raw data during reprogramming of mouse embryonic fibroblast to iPSC were download from GEO (GSE90894) (33). Raw data for H3K27me3, H3K4me1, H3K27ac and p300 from H9-hESC cell lines were download from GEO (GSE24447) (34). Mouse embryonic (10.5 days) hind limb data were downloaded from GEO (GSE84793) (42). Raw fastq reads were mapped using bowtie2 (48). Only unique mapping reads were considered for downstream analysis. Breast cancer patients mRNA (lllumina Human v3 microarray) data (43) were downloaded from TCGA portal. Expression levels are measured in z-scores. We filtered samples where HOTAIR expression ($<=0.5$) and were left with 605 patients.

Mapping of HOTAIR CNE across multiple species

The HOTAIR CNE sequences from both human and zebrafish was used as a query sequence. We used BLAST (blastall -p blastn $-\mathrm{d}-\mathrm{e} 0.01-\mathrm{m} 8)(49)$ to find homologous sequences against 37 species (Supplementary Table S1). Even at the permissive e-value cutoff of 0.01 , only two homologous sequences were identified.

Determining the orientation of transcripts overlapping CNEs

The HOTAIR transcript is annotated in multiple species $(22,46)$, such as human, chimp, mouse, ferret and dog, and its orientation is antisense to HoxC11 and HoxC12 genes. Species lacking HOTAIR annotation, orientation of HOTAIR CNE was assigned antisense to annotated HoxC cluster genes. In multiple species, such as human, chimp, mouse, ferret, dog and chicken, HoxD CNE is embedded within the untranslated region of HoxD11 noncoding transcript, which is an alternative splice variant of HoxD11 coding gene. Thus, orientation of HoxD CNE was assigned similar to that of annotated HoxD11 gene. Among teleosts fish, we analyzed RNA-seq transcripts in zebrafish(21,22) and tetraodon (27), and did not identify HoxD11 noncoding transcript.

Software and tools

Multiple alignments were generated using ClustalW (50) and Jalview (51). Sequence logos were generated using WebLogo (52). Visualization of multiple data were done by uploading bigwig tracks on UCSC genome browser and images were downloaded. Bedtools (53), bash, perl and R scripts were used for data analysis.

FUNDING

C.N is the recipient of a postdoctoral fellowship from the Danish Medical Research Council (6110-00557A). The laboratory of J.B.A is supported by the Danish Medical Research Council (4183-00118A), Danish Cancer Society (R98-A6446) and Novo Nordisk Foundation (14040). P.M acknowledges funding from National Science Center (2014/14/E/NZ6/00162, Poland). F.M thanks funding support by the BBSRC and a Wellcome Trust Investigator Award, UK.

ACKNOWLEDGEMENTS

We are very grateful to ENCODE, FANTOM5, Roadmap Epigenome consortia and other researchers for making data freely available. We thank Colm J. O'Rourke, Michal Lubas and Albin Sandelin for critical comments on the manuscript. C.N acknowledges Boris Lenhard, Vidar Martin Steen, Piotr Mydel and Jesper B Andersen for supporting him.

AUTHOR'S CONTRIBUTION

C.N conceived the story, analyzed data and interpreted results. Y.H, S.P, P.M, B.L, F.M and J.B.A contributed to data analysis and critical discussions. All authors contributed to writing the manuscript.

CONFLICT OF INTEREST

Authors declare no conflict of interest and no competing financial interest.

SUPPLEMENTARY TABLES LEGENDS

Supplementary Table S1. The genomic coordinates of the CNE in HoxC and HoxD cluster across species. Lack of homolog is denoted by "-". The orientation of the HOTAIR CNE is antisense to the annotated HoxC11 gene and the orientation of the transcript overlapping HoxD CNE is similar to that of annotated HOXD11. Number of mismatches between paralogous CNEs is shown. Evidence of Ensembl or RNA-seq annotated host transcriptencoding CNEs is denoted by "Y" and if there is no evidence, as in case of teleosts it is denoted by "N". No evidence of transcripts due to lack of data is denoted by "NA".

Supplementary Table S2. Summary of annotation of HoxC cluster genes in aves and teleosts. Only few HoxC genes are annotated in aves and are located in different contigs. Except chicken, other aves do not have annotated HoxC11 and HoxC12 genes. In teleosts, HoxC cluster genes are well annotated and located in the same cluster.

Supplementary Table S3. List of cell lines from Roadmap Epigenome samples that are classified into three groups based on HOTAIR expression from RNA-seq.

Supplementary Table S4. Enrichment of transcription factors bound on the HOTAIR CNE and promoter.

Supplementary Table S5. Expression level of the HOTAIR CNE and promoter across FANTOM5 samples.

REFERENCES

1. Hon, C.C., Ramilowski, J.A., Harshbarger, J., Bertin, N., Rackham, O.J., Gough, J., Denisenko, E., Schmeier, S., Poulsen, T.M., Severin, J. et al. (2017) An atlas of human long non-coding RNAs with accurate 5' ends. Nature, 543, 199-204.
2. Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S. et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 47, 199-208.
3. Guttman, M. and Rinn, J.L. (2012) Modular regulatory principles of large non-coding RNAs. Nature, 482, 339-346.
4. Mercer, T.R. and Mattick, J.S. (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol, 20, 300-307.
5. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. et al. (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129, 1311-1323.
6. Davidovich, C., Zheng, L., Goodrich, K.J. and Cech, T.R. (2013) Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol, 20, 1250-1257.
7. Portoso, M., Ragazzini, R., Brencic, Z., Moiani, A., Michaud, A., Vassilev, I., Wassef, M., Servant, N., Sargueil, B. and Margueron, R. (2017) PRC2 is dispensable for HOTAIR-mediated transcriptional repression. EMBO J, 36, 981-994.
8. Schorderet, P. and Duboule, D. (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. PLoS Genet, 7, e1002071.
9. Li, L., Liu, B., Wapinski, O.L., Tsai, M.C., Qu, K., Zhang, J., Carlson, J.C., Lin, M., Fang, F., Gupta, R.A. et al. (2013) Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep, 5, 3-12.
10. Amandio, A.R., Necsulea, A., Joye, E., Mascrez, B. and Duboule, D. (2016) Hotair Is Dispensible for Mouse Development. PLoS Genet, 12, e1006232.
11. Li, L., Helms, J.A. and Chang, H.Y. (2016) Comment on "Hotair Is Dispensable for Mouse Development". PLoS Genet, 12, e1006406.
12. Selleri, L., Bartolomei, M.S., Bickmore, W.A., He, L., Stubbs, L., Reik, W. and Barsh, G.S. (2016) A Hox-Embedded Long Noncoding RNA: Is It All Hot Air? PLoS Genet, 12, e1006485.
13. Orom, U.A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q. et al. (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell, 143, 46-58.
14. Bassett, A.R., Akhtar, A., Barlow, D.P., Bird, A.P., Brockdorff, N., Duboule, D., Ephrussi, A., Ferguson-Smith, A.C., Gingeras, T.R., Haerty, W. et al. (2014) Considerations when investigating IncRNA function in vivo. Elife, 3, e03058.
15. Paralkar, V.R., Taborda, C.C., Huang, P., Yao, Y., Kossenkov, A.V., Prasad, R., Luan, J., Davies, J.O., Hughes, J.R., Hardison, R.C. et al. (2016) Unlinking an IncRNA from Its Associated cis Element. Mol Cell, 62, 104-110.
16. Engreitz, J.M., Haines, J.E., Perez, E.M., Munson, G., Chen, J., Kane, M., McDonel, P.E., Guttman, M. and Lander, E.S. (2016) Local regulation of gene expression by IncRNA promoters, transcription and splicing. Nature, 539, 452-455.
17. Yin, Y., Yan, P., Lu, J., Song, G., Zhu, Y., Li, Z., Zhao, Y., Shen, B., Huang, X., Zhu, H. et al. (2015) Opposing Roles for the IncRNA Haunt and Its Genomic Locus in Regulating HOXA Gene Activation during Embryonic Stem Cell Differentiation. Cell Stem Cell, 16, 504-516.
18. Lee, A.P., Koh, E.G., Tay, A., Brenner, S. and Venkatesh, B. (2006) Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proc Natl Acad Sci U S A, 103, 69946999.
19. Engstrom, P.G., Fredman, D. and Lenhard, B. (2008) Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes. Genome Biol, 9, R34.
20. He, S., Liu, S. and Zhu, H. (2011) The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evol Biol, 11, 102.
21. Nepal, C., Hadzhiev, Y., Previti, C., Haberle, V., Li, N., Takahashi, H., Suzuki, A.M., Sheng, Y., Abdelhamid, R.F., Anand, S. et al. (2013) Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res, 23, 1938-1950.
22. Hezroni, H., Koppstein, D., Schwartz, M.G., Avrutin, A., Bartel, D.P. and Ulitsky, I. (2015) Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep, 11, 1110-1122.
23. Haberle, V., Li, N., Hadzhiev, Y., Plessy, C., Previti, C., Nepal, C., Gehrig, J., Dong, X., Akalin, A., Suzuki, A.M. et al. (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature, 507, 381-385.
24. Holland, P.W., Garcia-Fernandez, J., Williams, N.A. and Sidow, A. (1994) Gene duplications and the origins of vertebrate development. Dev Suppl, 125-133.
25. Soshnikova, N., Dewaele, R., Janvier, P., Krumlauf, R. and Duboule, D. (2013) Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol, 378, 194-199.
26. Peng, J.C., Shen, J. and Ran, Z.H. (2013) Transcribed ultraconserved region in human cancers. RNA Biol, 10, 1771-1777.
27. Basu, S., Hadzhiev, Y., Petrosino, G., Nepal, C., Gehrig, J., Armant, O., Ferg, M., Strahle, U., Sanges, R. and Muller, F. (2016) The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome. Sci Rep, 6, 33210.
28. Harmston, N., Baresic, A. and Lenhard, B. (2013) The mystery of extreme non-coding conservation. Philos Trans R Soc Lond B Biol Sci, 368, 20130021.
29. Pennacchio, L.A., Ahituv, N., Moses, A.M., Prabhakar, S., Nobrega, M.A., Shoukry, M., Minovitsky, S., Dubchak, I., Holt, A., Lewis, K.D. et al. (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature, 444, 499-502.
30. Roadmap Epigenomics, C., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J. et al. (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317-330.
31. Pundhir, S., Bagger, F.O., Lauridsen, F.B., Rapin, N. and Porse, B.T. (2016) Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality. Nucleic Acids Res, 44, 4037-4051.
32. Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B.D. et al. (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355-364.
33. Chronis, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., Ernst, J. and Plath, K. (2017) Cooperative Binding of Transcription Factors Orchestrates Reprogramming. Cell, 168, 442-459 e420.
34. Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A. and Wysocka, J. (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 470, 279-283.
35. Gerstein, M.B., Kundaje, A., Hariharan, M., Landt, S.G., Yan, K.K., Cheng, C., Mu, X.J., Khurana, E., Rozowsky, J., Alexander, R. et al. (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100.
36. Deng, Z., Cao, P., Wan, M.M. and Sui, G. (2010) Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription, 1, 81-84.
37. Sigova, A.A., Abraham, B.J., Ji, X., Molinie, B., Hannett, N.M., Guo, Y.E., Jangi, M., Giallourakis, C.C., Sharp, P.A. and Young, R.A. (2015) Transcription factor trapping by RNA in gene regulatory elements. Science, 350, 978-981.
38. Schoenfelder, S., Sugar, R., Dimond, A., Javierre, B.M., Armstrong, H., Mifsud, B., Dimitrova, E., Matheson, L., Tavares-Cadete, F., Furlan-Magaril, M. et al. (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat Genet, 47, 1179-1186.
39. Cruz-Molina, S., Respuela, P., Tebartz, C., Kolovos, P., Nikolic, M., Fueyo, R., van ljcken, W.F.J., Grosveld, F., Frommolt, P., Bazzi, H. et al. (2017) PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell, 20, 689-705 e689.
40. Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T. et al. (2014) An atlas of active enhancers across human cell types and tissues. Nature, 507, 455-461.
41. Consortium, F., the, R.P., Clst, Forrest, A.R., Kawaji, H., Rehli, M., Baillie, J.K., de Hoon, M.J., Haberle, V., Lassmann, T. et al. (2014) A promoter-level mammalian expression atlas. Nature, 507, 462-470.
42. Andrey, G., Schopflin, R., Jerkovic, I., Heinrich, V., Ibrahim, D.M., Paliou, C., Hochradel, M., Timmermann, B., Haas, S., Vingron, M. et al. (2017) Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding. Genome Res, 27, 223-233.
43. Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K., Provenzano, E., Bardwell, H.A., Pugh, M., Jones, L., Russell, R., Sammut, S.J. et al. (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun, 7, 11479.
44. Beckers, J., Gerard, M. and Duboule, D. (1996) Transgenic analysis of a potential Hoxd-11 limb regulatory element present in tetrapods and fish. Dev Biol, 180, 543553.
45. Beckers, J. and Duboule, D. (1998) Genetic analysis of a conserved sequence in the HoxD complex: regulatory redundancy or limitations of the transgenic approach? Dev Dyn, 213, 1-11.
46. Speir, M.L., Zweig, A.S., Rosenbloom, K.R., Raney, B.J., Paten, B., Nejad, P., Lee, B.T., Learned, K., Karolchik, D., Hinrichs, A.S. et al. (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res, 44, D717-725.
47. Arner, E., Daub, C.O., Vitting-Seerup, K., Andersson, R., Lilje, B., Drablos, F., Lennartsson, A., Ronnerblad, M., Hrydziuszko, O., Vitezic, M. et al. (2015)

Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 347, 1010-1014.
48. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods, 9, 357-359.
49. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389-3402.
50. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res, 31, 3497-3500.
51. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. and Barton, G.J. (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189-1191.
52. Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res, 14, 1188-1190.
53. Quinlan, A.R. and Hall, I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841-842.
bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

Supplementary Figure S1. A genome browser view of HOTAIR in human and mouse to show sequence conservation. (A) Conserved noncoding elements (CNEs) track from ANCORA browser is shown as horizontal black bars on top. CNE that is conserved across all mammals and vertebrates is highlighted. CNE is located eight nucleotides away from splice site. CNE is mapped across all vertebrates, but flanking sequences (corresponding HOTAIR exons) are mapped in other fish and tetrapod (excluding teleost). (B) Structure of mouse Hotair transcript is different than in human. Homolog of CNE is also located eight nucleotides away from splice site of Hotair transcript. CNE is conserved across mammals and vertebrates.

Supplementary Figure S2. Alignment of CNEs and flanking sequences across HoxC and HoxD clusters within and across species. (A) Schematic representation on the origin of HoxC and HoxD cluster from the ancestral HoxC/D cluster after second round of whole genome duplication (2R-WGD). Alignment of flanking sequences around paralogous CNEs, in human and elephant shark, show little conservation despite both sequences are duplicated from the same ancestral sequences. (B) Schematic representation of alignment HoxC and HoxD CNE and flanking sequences across vertebrates. Alignment of 70 nucleotides flanking the HOTAIR CNE (across 22 vertebrates (excluding aves and teleosts)) and HOXD CNE (across 32 vertebrates) show conservation of flanking sequences across vertebrates. Species are aligned in the same order as in Supplementary Figure S1A.
bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
A

C

D

E

Supplementary Figure S3. Evidence of HOTAIR and HoxD11 noncoding transcript across multiple species and sequence complementarity of paralogous CNEs. (A) The HOTAIR CNE is represented by rectangular blue bar. A homolog of the HOTAIR CNE is undetected in chicken. Intergenic region between hoxc11 and hoxc12 remains unassembled as hoxc11 and hoxc12 genes are assembled in different contigs. Zebrafish hoxc11 and hoxc12 is assembled but lacks the CNE. (B) The HoxD CNE is represented by rectangular red bar. HoxD11 noncoding transcript is detected across tetrapods but not in teleosts. (C-D) Schematic representation to show how the orientation of missing Hotair and HoxD11 noncoding transcripts were inferred. HOTAIR is antisense to HoxC11 genes across species, and thus the same convention was used to infer the orientation of Hotair CNE. HoxD11 noncoding transcript is an alternative splice variant of HoxD11 across multiple species; thus, the same convention was used. Expected transcripts are represented by dashed rectangular boxes and lines and arrows indicate transcript orientation. The CNE sequences are zoomed in on to show the genomic DNA. Aligning sequences in 5' to 3' orientation show paralogous CNEs are complementary. (E) Sequence logos of HOTAIR CNE and HoxD CNE show paralogous CNEs exhibit sequence complementarity in transcribed orientation.

Supplementary Figure S4. Chromatin environment of the HOTAIR CNE. (A) Twenty-nine cell lines were separated into HOTAIR-expressed and HOTAIR-unexpressed cell lines using a threshold of 0.5 RPKM (reads per kilobase per million mapped reads). HOTAIR-unexpressed cell lines were further separated into stem cells ($\mathrm{N}=1$) and terminally differentiated cells ($\mathrm{N}=18$). (B) Heatmaps show the normalized read counts in 250 nucleotides flanking HOTAIR CNE across 29 cell lines from Roadmap Epigenome Consortium. Cell line IDs are the same as provided by Roadmap Epigenome Consortium. (C) DHS signals around the HOXD CNE across three groups (HOTAIR-expressed cells, HOTAIR-unexpressed stem cells and HOTAIR-unexpressed cells) show similar trends as that of the HOTAIR CNE. Y-axis represents normalized read counts in reads per million (RPM). (D) Open chromatin state of mouse Hotair CNE is dynamically acquired during reprogramming of mouse embryonic fibroblast to iPSC. (E) Human HOXD CNE is not a poised enhancer as it lacks p300, H3K4me1 and bimodal H3K27me3 peaks in H9-hESC cell line. (F) Pattern of H3K27me3 marks around HOTAIR CNE across three groups are different. H3K27me3 patterns around the HOXD CNE show similar enrichment across three groups.

Supplementary Figure S5. Transcriptional dynamics of HOTAIR promoters. (A) Expression levels of HOTAIR promoter, alternative promoters and CNE across nine different stages during differentiation from myoblast to myotube. (B) Expression correlation of HOTAIR promoter, alternative promoters and CNE across FANTOM5 samples are positively correlated except for distal promoter (dp1). (C) No significant CAGE tags are identified on mouse Hotair across FANTOM5 samples as it lacks tissues (embryonic hindlimbs, genital tubercle and a piece of trunk corresponding to sacro-caudal region) where Hotair is expressed. Orthologs of promoter region of HOTAIR are aligned to mouse. (D) Hotair CNE is flanked by bidirectional H3K27ac on mouse hindlimbs (E10.5 days).
bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure S6. Co-expression analysis of HOTAIR with four HOXC clusters genes across FANTOM5 samples. (A) Heatmap shows the expression level of HOTAIR and four HOX cluster genes. Cell types are sorted based on HOTAIR CNE and HOTAIR distal promoter expression. Expression levels are scaled between 0-1 across each column, where the most highly expressed gene is assigned 1. (B) Expression levels of HOTAIR with HOXC and HOXD cluster posterior genes on individual breast cancer patients show a trend of positive correlation with HOXC cluster genes and a trend of weak negative correlation with HOXD cluster genes.

List of supplementary tables

Table Supplemental S1
Table Supplemental S2
Table Supplemental S3 Table Supplemental S4 Table Supplemental S5

Coordinates of CNE in HoxC and HoxD cluster across vertebrates.
Summary of annotation of hoxc cluster genes in aves and telesot.
Roadmap Epigenome cell lines classified into three groups based on HOTAIR expression.
Enrichment of transcription factors (TFs) bound on HOTAIR CNE and promoter.
Expression levels of HOTAIR CNE, promoter and distal promoter across FANTOM5 samples
bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table Supplemental S1. Coordinates of CNE in HoxC and HoxD cluster across vertebrates.
Sequence used for homology search
hg19_chr12:54359708-54359739_HOXC CTAACTTGACCTTCACTTTGTCATGGCGCCCC
hg19_chr2:176969157-176969189_HOXD CTAACTTGACCTTAACTTTGTCAGGGCGCCCC

	Coordinates of CNE homologs		Count	Host Transcript Evidence	
	HoxC cluster Chr:Start-End(Strand)	HoxD cluster Chr:Start-End(Strand)	Mismatches	HoxC	HoxD
Primates					
Human(hg19)	chr12:54359707-54359739(-)	chr2:176969157-176969189(+)	2	Y	Y
Chimp(panTro4)	chr12:35284661-35284693(+)	chr2B:180579781-180579813(+)	2	Y	Y
Gorilla(gorGor3)	chr12:52012160-52012192(-)	chr2B:64029540-64029572(+)	3	Y	Y
Orangutan(ponAbe2)	chr12:53740632-53740664(-)	chr2b:66260351-66260383(+)	3	Y	Y
Euarchontoglires					
Squirrel(speTri2)	JH393322:11187590-11187622(-)	JH393319:5591308-5591340(+)	3		
Mouse(mm10)	chr15:102947454-102947486(-)	chr2:74679612-74679644(+)	4	Y	Y
Rat(rn5)	chr7:142349588-142349620(-)	chr3:68068756-68068788(+)	4		Y
GuineaPig(chiLan1)	scaffold_9:45845103-45845135(+)	scaffold_3:14206941-14206973(-)	4		
Rabbit(oryCun2)	chr4:37750144-37750176(-)	chr7:115664606-115664638(+)	3		
Laurasiatheria					
Cow(bosTau8)	chr5:26225443-26225475(+)	chr2:20844410-20844442(-)	2		
Dog(canFam3)	chr27:1296692-1296724(+)	chr36:19912089-19912121(+)	3	Y	Y
HedgeHog(eriEur3)	JH835374:2711697-2711729(+)	JH835538:1267467-1267499(+)	4		
Afrotheria					
Elephant(loxAfr3)	scaffold_2:40399191-40399223(-)	scaffold_3:51280894-51280926(-)	3	NA	NA
Tenrec(echTel2)	JH980427:730939-730971(-)	JH980302:1668675-1668707(+)	4	NA	NA
Manatee(triMan1)	JH594633:22473672-22473704(+)	JH594643:8289255-8289287(-)	3	NA	NA
Mammals					
Armadilo(dasNov3)	JH569064:163083-163115(+)	JH575655:3643342-3643374(+)	0		
Platypus(ornAna1)	Contig13135:14368-14400(+)	Contig13670:14779-14811(+)	3		
Aves					
MediumGroundFinch(geoFor1)	--	JH739888:20155410-20155442(+)	-	NA	
ZebraFinch(taeGut2)	--	chr7:17035450-17035482(+)	-	NA	
Budgegerigar(melUnd1)	--	JH556613:11953860-11953892(-)	-	NA	
Chicken(galGal4)	--	chr7:15818298-15818330(-)	-	NA	Y
Turkey(melGal1)	--	chr7:16893541-16893573(-)	-	NA	
Sarcopterygii					
AmericanAlligator(allMis1)	JH739658:224031-224063(-)	JH736379:590770-590802(-)	3		
PaintedTurtle(chrPic2)	JH584844:1113401-1113433(+)	JH584712:2171341-2171373(+)	3		
Frog(xenTro3)	GL172862:354043-354075(-)	GL172799:638809-638841(-)	7		Y
Coelacanth(latCha1)	JH126829:1709983-1710015(+)	JH127184:433817-433849(-)	4	Y	Y
Holesti Fish					
Spottedgar (lepOcu1)	LG12:15577478-15577509(-)	LG4:15815626-15815646(-)	3		
Teleost Fish					
Tetraodon(tetNig2)	--	chr2:13442915-13442947(-)	-	N	N
Fugu(fr3)	--	chr1:15039680-15039712(-)	-	N	N
Medaka(oryLat2)	--	chr21:24604991-24605023(+)	-	N	N
AtlanticCod(gadMor1)	--	HE566826:374754-374786(-)	-	N	N
Zebrafish(danRer7)	--	chr9:1970782-1970814(-)	-	N	N
Cartilaginous Fish					
ElephantShark(calMal1)	KI636119:205590-205622(-)	KI635868:5106636-5106668(+)	7		
Jawless Vertebrates					
Lamprey(petMar2)	--	--	-	-	-
Deuterostome					
C.Intestinalis(ci2)	--	--	-	-	-
Insect					
D.melanogaster(dm6)	--	--	-	-	-
Nematode					
C.elegans(ce6)	--	--	-	-	-

bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table Supplemental S2. Summary of annotation of hoxc cluster genes in aves and telesot.

	hoxa		hoxb		hoxc		hoxd		Annotation		Same Chr	Annotation		Same Chr
	Genes	Chr	Genes	Chr	Genes	Chr	Genes	Chr	hoxc11	hoxc12		hoxd11	hoxd12	
Aves														
ZebraFinch	9	1	5	1	2	2	5	2	NO	NO	NA	YES	YES	YES
Chicken	8	1	9	1	5	5	7	1	YES	YES	Diff	YES	YES	YES
Turkey	4	1	4	2	2	1	5	1	NO	NO	NA	YES	YES	YES
Teleost														
Tetraodon	13	2	9	2	11	2	6	1	YES	YES	YES	YES	YES	YES
Fugu	9	3	7	3	6	1	4	1	NO	YES	NA	NO	YES	NA
Atlantic Cod	12	5	9	3	10	1	6	1	YES	YES	YES	YES	YES	YES
Zebrafish	12	2	15	2	15	2	7	1	YES	YES	YES	YES	YES	YES

bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table Supplemental S3: Roadmap Epigenome cell lines classified into three groups based on HOTAIR expression.

HOTAIR-expressed differentiated cells

E055	Epithelial	Foreskin Fibroblast Primary Cells skin01
E056	Epithelial	Foreskin Fibroblast Primary Cells skin01
E117	CRVX.HELAS3.CNCR	HeLa-S3 Cervical Carcinoma Cell Line
E120	MUS.HSMM	HSMM Skeletal Muscle Myoblasts Cells
E057	Epithelial	Foreskin Keratinocyte Primary Cells skin02
E127	BONE.OSTEO	Osteoblast Primary Cells
E006	ES-deriv	H1 Derived Mesenchymal Stem Cells
E005	ES-deriv	H1 BMP4 Derived Trophoblast Cultured Cells

HOTAIR-unexpressed stem cells
E003 ESC H1-hESC cells

HOTAIR-unexpressed differentiated cells
E004 ES-deriv H1 BMP4 Derived Mesendoderm Cultured Cells

E007 ES-deriv
E028 Epithelial
H1 Derived Neuronal Progenitor Cultured Cells Breast variant Human Mammary Epithelial Cells (vHMEC)
E114 LNG.A549.ETOH002.CNCR
E119 BRST.HMEC
E100 Digestive
E059 SKIN.PEN.FRSK.MEL. 01
E085 Digestive
A549 EtOH 0.02pct Lung Carcinoma Cell Line HMEC Mammary Epithelial Primary Cells
Gastric

E123 BLD.K562.CNCR
Foreskin Melanocyte Primary Cells skin01
Fetal Intestine Small

E097 Ovary
E084 Digestive
E109 Digestive
E050 HSC \& B-cell
E082 Brain
K562 Leukemia Cells
Ovary
Fetal Intestine Large
Small Intestine
Primary hematopoietic stem cells G-CSF-mobilized Female
Fetal Brain Female
E094 GI.STMC.GAST
Gastric
Pancreas
E098 Pancreas
GM12878 Lymphoblastoid Cells
HepG2 Hepatocellular Carcinoma Cell Line
HUVEC Umbilical Vein Endothelial Primary Cells
NHLF Lung Fibroblast Primary Cells
bioRxiv preprint doi: https://doi.org/10.1101/250621; this version posted January 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Table Supplemental S4: Enrichment of transcription factors (TFs) bound on HOTAIR CNE and promoter.

chr	start	end	region	-	strand	chr	start_TFPeak	End_TFPeak	TF	PeakScore	Celllines
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359825	54360441	CHD1	261	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359540	54359800	TCF12	178	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359918	54360194	EGR1	319	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359520	54359844	SP1	240	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359673	54359803	SRF	631	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359955	54360245	ZNF143	158	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359398	54360436	СтВP2	262	H1-hESC
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54360179	54360920	SUZ12	224	H1-hESC,NT2-D1
chr12	54359507	54360239	HotairCNE	1000	-	chr12	54359205	54365366	EZH2	1000	GM12878,H1-hESC,HepG2,HUVEC,NH-A,NHLF
chr12	54362255	54362956	HotairPromoter	1000	-	chr12	54362190	54362660	POLR2A	204	PANC-1,SK-N-MC
chr12	54362255	54362956	HotairPromoter	1000	-	chr12	54362520	54363116	TCF7L2	426	PANC-1
chr12	54362255	54362956	HotairPromoter	1000	-	chr12	54359205	54365366	EZH2	1000	GM12878,H1-hESC,HepG2,HUVEC,NH-A,NHLF
chr12	54362255	54362956	HotairPromoter	1000	-	chr12	54362041	54362337	GATA3	234	T-47D
chr12	54362255	54362956	HotairPromoter	1000	-	chr12	54361277	54362537	SUZ12	167	H1-hESC,NT2-D1
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176969091	176969421	CTCF	526	A549,Fibrobl,Gliobla,HEK293,SK-N-SH_RA
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968367	176975129	EZH2	1000	H1-hESC,HepG2,HMEC,HSMM,HSMMtube,HUVEC,NH-A,NHDF-Ad,NHEK,NHLF
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968464	176968800	POLR2A	382	SK-N-MC
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968988	176969498	POLR2A	471	A549,SK-N-MC,Gliobla
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968889	176969429	EP300	381	A549
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176969019	176969197	FOSL2	813	A549
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968813	176969389	TCF12	356	A549
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176969043	176969353	SUZ12	96	H1-hESC
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968819	176969335	TCF7L2	185	HEK293
chr2	176968657	176969389	HoxD11CNE	1000	+	chr2	176968726	176969412	KAP1	329	HEK293, U2OS

