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choices primarily when responses are fast (early RT quantiles), whereas history-dependent 
shift in drift leads to biased choices across all trials, including those with slow responses 
(Figure 1). We simulated choices and RTs from the four different model variants and 
computed so-called ‘conditional bias functions’ (see White and Poldrack (2014) and Materials 
and Methods): the fraction of choices in line with each observer’s choice repetition tendency 
(i.e., repetition probability) within each quantile of their RT distribution. For observers whose 
choice repetition probability was > 0.5, this was the fraction of repetitions; for the remaining 
observers, this was the fraction of alternations. Consistent with a shift in drift, observers 
exhibited history-dependent choice biases across the entire range of RTs across data sets 
(Figure 4b). In particular, the biased choices on slow RTs could only be captured by models 
that included a history-dependent shift in drift (Figure 4c, blue bars). 
 

 
Figure 4. Model comparison and simulations. (a) For each dataset, we compared the DIC (Materials 
and Methods) between models where drift bias, starting point bias or both were allowed to vary as a 
function of previous choice. The DIC for a model without history dependence was used as a baseline 
for each data set. Lower DIC values indicate a model that is better able to explain the data, after taking 
into account the model complexity; a DIC of 10 is generally taken as a threshold for considering one 
model a sufficiently better fit. (b) Conditional bias functions. For each of four simulated models, as well 
as the observed data, we divided all trials into quantiles of the RT distribution. For each quantile, the 
fraction of choices biased towards each individual’s history bias (repetition or alternation) indicates the 
degree to which behavior is biased, within that range of RTs. For the 2IFC data set, conditional bias 
functions were computed separately for each difficulty level and subsequently averaged to visualize 
the effect of history bias over and above the effect of stimulus difficulty on both RTs and choices. The 
best-fitting model is shown in thicker lines. (c) Choice bias on slow response trials (last three quantiles 
of the RT distribution) can be captured only by models that include history-dependent drift bias. Black 
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error bars indicate mean ± 95% confidence interval across all data sets, bars indicate the predicted 
fraction of choices in late RT quantiles. 
 

We used the parameter estimates obtained from the full model (with both history-
dependent starting point and drift bias) to investigate how the choice history-dependent 
variations in starting point and drift bias related to each individual’s tendency to repeat their 
previous choices. We call each bias parameter’s dependence on the previous choice its 
‘history shift’. For instance, in the left vs. right motion discrimination task, the history shift in 
starting point was computed as the difference between the starting point estimate for 
previous ‘left’ and previous ‘right’ choices. Across all five data sets, the history shift in drift 
bias, but not the history shift in starting point, was robustly correlated to the individual 
probability of choice repetition (Figure 5, significant correlations indicated with solid 
regression lines). In four out of five data sets, the correlation with the history shift in drift bias 
was significantly stronger than the correlation with the history shift in starting point (Figure 5, 
Dr values).   

 
Figure 5. Individual choice history biases are explained by history-dependent changes in drift 
bias, not starting point. Correlations between individual choice repetition probabilities, P(repeat), and 
history shift in starting point (left column, green) and drift (right column, blue). Parameter estimates 
were obtained from a model in which both bias terms were allowed to vary with previous choice. 
Horizontal and vertical lines, unbiased references. Thick black crosses, group mean ± s.e.m. in both 
directions. Black lines best fit of a linear regression (only plotted for significant correlations). Dr 
quantifies the extent to which the two DDM parameters are differentially able to predict individual 
choice repetition (p-values from Steiger’s test). 
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We quantified the total evidence by computing a Bayes factor for each correlation (Wetzels 
and Wagenmakers, 2012), and multiplying these across data sets (Scheibehenne et al., 2016). 
This further confirmed that individual choice history biases were not captured by history shifts 
in starting point, but consistently captured by history shifts in drift (Figure 6). Specifically, the 
Bayes factor for the history shift in starting point approached zero, indicating strong evidence 
for the null hypothesis of no correlation. The Bayes factor for the history shift in drift indicated 
strong evidence for a correlation (Kass and Raftery, 1995).  
 The same qualitative pattern of results was obtained with an alternative fitting 
procedure (non-hierarchical G2 optimization procedure (Ratcliff and Tuerlinckx, 2002), Figure 
S3a), as well as a model that allowed for additional across-trial variability in starting point 
(Figure S3b). These findings are thus robust to specifics of the model and fitting method. The 
fifth data set (Visual motion 2IFC #2) also entailed two distinct pharmacological interventions 
in two sub-groups of participants (Materials and Methods). The same effects as in Figures 5 
and 6 were found for both sub-groups as well as the placebo group (Figure S5). 
 

 
Figure 6. Consistent evidence across data sets.  Summary of the correlations between individual 
choice repetition probability and the history shifts in starting point (green; left) and drift bias (blue; right). 
Error bars indicate the 95% confidence interval of the correlation coefficient. Dr quantifies the extent 
to which the two DDM parameters are differentially able to predict individual choice repetition 
probability, p-values from Steiger’s test. The black diamond indicates the mean correlation coefficient 
across data sets. The Bayes factor (BF10) quantifies the relative evidence for the alternative over the null 
hypothesis, with values < 1 indicating evidence for the null hypothesis of no correlation, and > 1 
indicating evidence for a correlation.  
 
DISCUSSION 
Observers’ perceptual choices often depend on choices made before, even when 
subsequent stimuli in the environment are uncorrelated. Such choice biases are ubiquitous 
across domains of decision-making. So far, it has remained unknown how these history 
biases shape the dynamics of the subsequent decision process. We here fit bounded 
accumulation (drift diffusion) decision models to behavioral data from a range of 
psychophysical experiments. This allowed us to tease apart two alternative effects of choice 
history on the current decision process: a shift in the starting point of the decision variable, 
or a change in the rate at which evidence for one versus the other option is accumulated. 
These two scenarios can lead to identical (history-dependent) choice patterns, but they can 
be distinguished based on their effects on RT distributions. Surprisingly, we obtained strong 
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and consistent evidence for the second scenario, a history-dependent shift of the drift. This 
result calls for a revision of current models of history biases (Yu and Cohen, 2008; Glaze et 
al., 2015). 
 A number of previous studies have used the drift diffusion model to tease apart shifts 
in starting point and drift bias as a consequence of experimentally induced choice bias. When 
choice bias is induced by assigning asymmetric prior probabilities to the two available choice 
options, the starting point of evidence accumulation shifts in the direction of the more likely 
choice option (Leite and Ratcliff, 2011; Mulder et al., 2012; White and Poldrack, 2014; but 
see Hanks et al., 2011). Similarly, a higher reward associated with one response option moves 
the starting point towards that option (Rorie et al., 2010; Gao et al., 2011; Leite and Ratcliff, 
2011; Mulder et al., 2012; White and Poldrack, 2014; but see Cicmil et al., 2015). In both 
these cases, shifts in starting point correspond to optimal behavior; within the DDM, 
performance is maximized by shifting the starting point by a distance proportional to the 
relative probability or payoff between the two alternatives (Edwards, 1965; Bogacz et al., 
2006; van Ravenzwaaij et al., 2012). By contrast, drift bias can be induced by instructing 
observers on the criterion separating stimulus classes - for example, when judging whether 
there are ‘many’ or ‘few’ items in a display based on an arbitrary cutoff (Leite and Ratcliff, 
2011; White and Poldrack, 2014).  
 This previous work used bias manipulations that were under experimental control: 
either constant within experimental blocks, or cued at the single-trial level. By contrast, the 
choice history biases studied here emerge spontaneously, in an idiosyncratic fashion (with 
different signs and largely varying magnitudes between individuals, Figure 2e). While these 
biases are systematic properties of each individual’s behavior, they vary dynamically from 
trial to trial. For example, in a ‘repeating’ observer performing the visual motion 2AFC task, a 
leftward choice will be followed by tendency to accumulate towards the bound for leftward 
choices, and a rightward choice will be followed by a tendency to accumulate towards the 
bound for rightward choices. Traditional analyses of perceptual decision-making mistakenly 
attribute such dynamic biases to ‘noise’ in the decision process by ignoring choice history 
(Shadlen et al., 1996; Renart and Machens, 2014; Wyart and Koechlin, 2016), thus 
underestimating the true perceptual sensitivity of the observer (Fründ et al., 2014; 
Abrahamyan et al., 2016). Specifically, our present results imply that choice history 
systematically contributes to the trial-to-trial variability in drift. This is analogous to trial-to-
trial variations of drift bias due to phasic boosts of arousal as indexed by pupil dilation (de 
Gee et al., 2017). Tracking ‘contextual factors’ such as choice history allows for the 
partitioning of drift variability into systematic components, and residual variability that might 
reflect noise at the level of the underlying neural computations (Glimcher, 2005; Renart and 
Machens, 2014). 

The lack of a correlation between history-dependent starting point shifts and 
individual choice history bias is surprising in light of previous accounts (Yu and Cohen, 2008; 
Gao et al., 2009; Glaze et al., 2015). History shift in starting point were mostly negative (i.e., 
tendency towards choice alternation) across participants, regardless of their individual 
tendency towards choice repetition or alternation (Figure S4, significant in 2 out of five data 
sets). Further, a model without any history-dependent shift in starting point accounted for the 
diagnostic features of RT distributions just as well as the model with shifts in both starting 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/251595doi: bioRxiv preprint first posted online Jan. 22, 2018; 

http://dx.doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


10 

point and drift (Figure 4d, compare two most rightward bars). We remain agnostic about the 
significance of the history shift in starting point.  

It is possible that on a subset of trials, observers’ behavior results from processes not 
incorporated in the bounded accumulation framework underlying the DDM – for example, 
fast guesses (Noorbaloochi et al., 2015), automatic decision processing (Servant et al., 2014; 
Ulrich et al., 2015), or post-accumulation bias (Erlich et al., 2015). Further, the DDM is a valid 
reduction of biophysically plausible (high-dimensional) decision-making models for certain 
parameter regimes (Bogacz et al., 2006; Wong and Wang, 2006), but in more general settings 
it may fail to capture subtle patterns in the behavioral data. The lower dimensionality of the 
DDM enables fits to behavioral data, a prerequisite for the insights gained here. It remains to 
be seen whether alternative reductions of biophysical decision-making models (Roxin and 
Ledberg, 2008) might identify similar history-dependent changes in evidence accumulation, 
possibly without shifts in starting point.  

The current work has important implications for the neural mechanisms underlying 
choice history bias. Shifts in starting point reflect additive effects at the stage of (Platt and 
Glimcher, 1999) or downstream from (Basso and Wurtz, 1997) the evidence accumulator, 
likely comprising posterior parietal (Gold and Shadlen, 2007; but see Brody and Hanks, 2016) 
or motor cortex (Pape and Siegel, 2016). By contrast, changes in drift bias can come about 
either through a selective modulation of the sensory representation that feeds into the 
accumulator, or through a change in the read-out of this sensory representation by the 
accumulator (i.e., the effective connectivity between sensory cortices and downstream brain 
regions). The robust effect on drift bias we observed is clearly in line with the latter scenario. 
It indicates that choice history signals could bias sensory representations, possibly through 
feedback connections from decision-related areas to sensory cortex (Wimmer et al., 2015; 
St. John-Saaltink et al., 2016). This is in line with the idea that choice history signals bias 
perceptual decision-making in a manner akin to top-down (feature-based) attention: previous 
choices may act as endogenous ‘cues’ that direct attention towards or away from previously 
chosen options.  
 
MATERIALS AND METHODS  
DATA SETS: BEHAVIORAL TASKS AND PARTICIPANTS 
We analyzed five different data sets, four of which were previously published. These spanned 
different modalities (visual or auditory), decision-relevant features (motion direction, contrast, 
tone presence, motion coherence), and tasks (detection or discrimination). Those tasks 
where the decision-relevant sensory evidence was presented until the observer generated a 
response were called reaction time (RT) tasks; those tasks where the sensory evidence is 
presented for a fixed duration, and its offset cues the observer’s response, were called fixed 
duration (FD) tasks in line with the terminology from Mazurek et al. (2003). These two 
protocols have also been termed ‘free response protocol’ and ‘interrogation protocol’, 
respectively (Bogacz et al., 2006).  
 
2AFC VISUAL MOTION DIRECTION DISCRIMINATION TASK (RT) 
These data were previously published (Murphy et al., 2014), and are available at 
https://doi.org/10.5061/dryad.tb542. Twenty-six observers (22 women and 4 men, aged 18-
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29) performed a motion direction (left vs. right) discrimination task. Stationary white dots were 
presented on a black screen for an interval of 4.3-5.8 s. After this fixation interval, the 
decision-relevant sensory evidence was presented: some percentage of dots (the ‘motion 
coherence’ level) moved to the left or the right. The coherence was individually titrated to 
yield an accuracy level of 85% correct, estimated from a psychometric function fit, before 
the start of the main experiment. The moving dots were presented until observers indicated 
their choice with a button press. After the response, the fixation cross changed color for 700 
ms to indicate single-trial feedback. Each observer performed 500 trials of the task (one 
session). We refer to this task as ‘Visual motion 2AFC (RT)’. 
 
VISUAL CONTRAST YES/NO DETECTION TASK (RT) 
These data were previously published (de Gee et al., 2014), and are available at 
https://doi.org/10.6084/m9.figshare.4806559. Twenty-nine observers (14 women and 15 men, 
aged 18–38) performed a yes/no contrast detection task. During a fixation interval of 4-6 
seconds, observers viewed dynamic noise (a binary noise pattern that was refreshed each 
frame, at 100 Hz). A beep indicated the start of the decision-relevant sensory evidence: on 
half the trials, a vertical grating was superimposed onto the dynamic noise; on the other half 
of trials, only the dynamic noise was shown. The sensory evidence (signal+noise or noise-
only) was presented until the observers reported their choice (yes, grating was present; or 
no, grating was absent), or after a maximum of 2.5s. The signal contrast was individually 
titrated to yield an accuracy level of 75% correct using a method of constant stimuli. 
Observers performed between 480–800 trials over 6-10 sessions. Six observers in the original 
paper (de Gee et al., 2014) performed a longer version of the task in which they also reported 
their confidence levels and received feedback; these were left out of the current analysis, 
leaving twenty-three subjects to be included. We refer to this task as ‘Visual contrast yes/no 
(RT)’. 
 
AUDITORY TONE YES/NO DETECTION TASK (RT) 
These data were previously published (de Gee et al., 2017), and are available at 
https://doi.org/10.6084/m9.figshare.4806562. Twenty-four observers (20 women and 4 men, 
aged 19–23) performed an auditory tone detection task. After an inter-trial interval of 3-4 
seconds, decision-relevant sensory evidence was presented: on half the trials, a sine wave 
(2 KHz) superimposed onto dynamic noise (so-called TORCs, (McGinley et al., 2015) was 
presented); on the other half of trials only the dynamic noise was presented. The sensory 
evidence was presented until the participant reported their choice button press or after a 
maximum of 2.5s. No feedback was provided. Each individual’s signal volume was titrated 
to an accuracy level of 75% correct before the start of the main experiment, using an adaptive 
staircase procedure. Participants performed between 1320 and 1560 trials each, divided over 
two sessions. We refer to this task as ‘Auditory yes/no (RT)’. 
 
VISUAL MOTION COHERENCE DISCRIMINATION 2IFC TASK (FD): DATA SET 1 
These data were previously published in (Urai et al., 2017), and are available at 
http://dx.doi.org/10.6084/m9.figshare.4300043. Twenty-seven observers (17 women and 10 
men, aged 18-43) performed a two-interval motion coherence discrimination task. They 
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viewed two consecutive intervals of random dot motion, containing coherent motion signals 
in a constant direction towards one of the four diagonals (counterbalanced across 
participants) and judged whether the second interval (variable coherence) contained stronger 
or weaker motion than the first (constant coherence) interval. After a fixation interval of 0.5-
1s, they viewed two consecutive intervals of 500 ms each, separated by a delay of 300-700 
ms. The decision-relevant sensory evidence (i.e., the difference in motion coherence between 
intervals), was chosen pseudo-randomly for each trial from the set (0.625, 1.25, 2.5, 5, 10, 
20, 30%). Observers received auditory feedback on their choice after a delay of 1.5-2.5s. 
After continuing to view noise dots for 2-2.5 s, stationary dots indicated an inter-trial interval. 
Observers self-initiated the start of the next trial (range of median inter-trial intervals across 
observers: 0.68–2.05 s). Each observer performed 2500 trials of the task, divided over five 
sessions. We refer to this task as ‘Visual motion 2IFC (FD) #1’. 
 
2IFC VISUAL MOTION COHERENCE DISCRIMINATION TASK (FD): DATA SET 2 
These data were not previously published, so we here provide a more detailed description of 
the participants and informed consent, in addition to the task protocol. 

Participants and informed consent. Sixty-one participants (aged 19-35 years, 43 
women and 21 men) participated in the study after screening for psychiatric, neurological or 
medical conditions. All subjects had normal or corrected to normal vision, were non-smokers, 
and gave their informed consent before the start of the study. The experiment was approved 
by the ethical review board of the University Medical Center Hamburg-Eppendorf.  

Task protocol. Observers performed 5 sessions, of which the first and the last took 
place in the MEG scanner (600 trials divided over 10 blocks per session) and the three 
sessions in between took place in a behavioral lab (1500 trials divided over 15 blocks per 
session). The task was as described above for ‘Visual motion 2IFC (FD) #1’, with the following 
exceptions. The strength of the decision-relevant sensory evidence was constant across all 
trials, and individually titrated to an accuracy level of 70% correct, estimated from a 
psychometric function fit, before the start of the main experiment.  In the MEG sessions, 
auditory feedback was presented 1.5-3 s after response, and an inter-trial interval with 
stationary dots started 2-3 s after feedback. Participants initiated the next trial with a button 
press (across-subject range of median inter-trial interval duration: 0.64 to 2.52 s, group 
average: 1.18 s). In the training sessions, auditory feedback was presented immediately after 
the response. This was followed by an inter-trial interval of 1 s, after which the next trial 
started. We refer to this task as ‘Visual motion 2IFC (FD) #2’. In this experiment, three sub-
groups of observers received different pharmacological treatments prior to each session, 
receiving placebo, atomoxetine (a noradrenaline reuptake inhibitor), or donepezil (an 
acetylcholinesterase inhibitor). See Figure S5a for a description of the treatment. These 
groups did not differ in their choice history bias and were pooled for the purpose of the 
present study (Figure S5b). 
 
MODEL-FREE ANALYSIS OF SENSITIVITY AND CHOICE HISTORY BIAS 
We quantified perceptual sensitivity in terms of signal detection-theoretic d’ (Green and 
Swets, 1966): 

d" = Φ%&(H) −	Φ%&(FA) (1) 
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where Φ was the normal cumulative distribution function, H was the fraction of hits and FA 
the fraction of false alarms. In the 2AFC and 2IFC data sets, one of the two stimulus 
categories was arbitrarily treated as signal absent. Both H and FA were bounded between 
0.001 and 0.999 to allow for computation of d’ in case of near-perfect performance (Stanislaw 
and Todorov, 1999). We estimated d’ separately for each individual and, for the visual motion 
2IFC (FD) #1 data, for each level of sensory evidence. 
 We quantified individual choice history bias in terms of the probability of repeating a 
choice, termed P(repeat), regardless of the category of the (previous or current) stimulus. This 
yielded a measure of bias that ranged between 0 (maximum alternation bias) and 1 (maximum 
repetition bias), whereby 0.5 indicated no bias.  
 
DRIFT DIFFUSION MODEL (DDM) FITS 
DDM: GENERAL  
This section describes the general DDM, with a focus on the biasing mechanisms described 
in Results and illustrated in Figure 1 (Ratcliff and McKoon, 2008). In the DDM, the 
accumulation of noisy sensory evidence is given by a drift diffusion process: 

dy = s ∙ v ∙ dt + cdW (2) 
where y is the decision variable (gray example traces in Figure 1), s is the stimulus category 
(coded as [-1,1]), v is the drift rate, and cdW is Gaussian distributed white noise with mean 0 
and variance c2dt (Bogacz et al., 2006). In an unbiased case, the starting point of the decision 
variably y(0) = z, is situated midway between the two decision bounds 0 and a: 

y(0) = 	z =
a
2

 (3) 

where a is the separation between the two decision bounds. A bias in the starting point is 
implemented by an additive offset z:;<= from the midpoint between the two bounds (Figure 
1a): 

y(0) = 	z =
a
2
+ z:;<= (4) 

A drift bias can be implemented by adding a stimulus-independent constant v:;<= , also 
referred to as drift bias (Ratcliff and McKoon, 2008), to the (stimulus-dependent) mean drift 
(Figure 1b): 

dy = (s ∙ v + v:;<=)dt + cdW (5) 
These two biasing mechanisms result in the same (asymmetric) fraction of choices, but they 
differ in terms of the resulting shapes of RT distributions (Figure 1). We allowed both bias 
parameters to vary as a function of observers’ previous choice, to test their relative 
contributions to the individual differences in overt choice history biases. 
 
ESTIMATING DDM BIAS PARAMETERS 
We used hierarchical drift diffusion modeling as implemented in the HDDM toolbox (Wiecki 
et al., 2013) to fit the model and estimate its parameters. RTs faster than 250 ms were 
discarded from the model fits. As recommended by the HDDM toolbox, we specified 5% of 
responses to be contaminants, meaning they arise from a process other than the 
accumulation of evidence - for example, a lapse in attention (Ratcliff and Tuerlinckx, 2002). 
We fit the DDM to RT distributions for the two choice categories, conditioned on the stimulus 
category for each trial (s in eq. 2) - a procedure referred to as ‘stimulus coding’. This fitting 
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method deviates from a widely used expression of the model, where RT distributions for 
correct and incorrect choices are fit (also called ‘accuracy coding’). Only the former can fit 
decision biases towards one choice over the other.  

First, we estimated a model without history-dependent bias parameters. Overall drift 
rate, boundary separation, non-decision time, starting point, and drift bias were estimated 
for each individual (Figure S1). Across-trial variability in drift rate was estimated at the group-
level only (Ratcliff and Childers, 2015). For the data set including variations of sensory 
evidence strength (Visual motion 2IFC (FD) #1, see above), we allowed drift rate to vary with 
evidence strength. This model was used to confirm that the DDM was able to fit all data sets 
well, and to serve as a baseline model when comparing diagnostic features. 
 Second, we estimated three different models of history bias, allowing (i) starting point, 
(ii) drift or (iii) both to vary as a function of the observer’s immediately preceding choice (thus 
capturing only so-called first-order sequential effects; cf Gao et al., 2009; Wilder et al., 2009). 
The effect of the preceding choice on each bias parameter was then termed its ‘history shift’. 
For example, for the visual motion direction discrimination task we separately estimated the 
starting point parameter for trials following ‘left’ and ‘right’ choices. The difference between 
these two parameters then reflects individual observers’ history shift in starting point, 
computed such that a positive value reflected a tendency towards repetition and a negative 
value reflected a tendency towards alternation. The history shift in drift bias was computed 
in the same way.  
 
MODEL FITTING PROCEDURES 
The HDDM (Wiecki et al., 2013) uses Markov-chain Monte Carlo sampling for generating 
posterior distributions over model parameters (Andrieu et al., 2003). Two features of this 
method deviate from more standard model optimization. First, the Bayesian MCMC 
generates full posterior distributions over parameter estimates, quantifying not only the most 
likely parameter value but also the uncertainty associated with that estimate (see e.g. Figure 
S4). Second, the hierarchical nature of the model assumes that all observers in a dataset are 
drawn from a group, with specific group-level prior distributions that are informed by the 
literature (Figure S1 and Wiecki et al., 2013). In practice, this results in more stable parameter 
estimates for individual subjects, who are constrained by the group-level inference. Note that 
we also repeated our model fits with more traditional G2 optimization (Ratcliff and Tuerlinckx, 
2002) and obtained qualitatively identical results. 

For each variant of the model, we ran 15 separate Markov chains with 10000 samples 
each. Of those, half were discarded as burn-in and every second sample was discarded for 
thinning, reducing autocorrelation in the chains. This left 2500 samples per chain, which were 
concatenated across chains. Individual parameter estimates were then estimated from the 
posterior distributions across the resulting 37500 samples. All group-level chains were 
visually inspected to ensure convergence. Additionally, we computed the Gelman-Rubin R? 
statistic (which compares within-chain and between-chain variance) and checked that all 
group-level parameters had an R? between 0.98-1.02. 
 Formal comparison between the different model variants (see above) was performed 
using the Deviance Information Criterion (Spiegelhalter et al., 2002), a commonly used 
method for assessing the goodness of fit in hierarchical models, for which a unique 
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‘likelihood’ is not defined, and the effective number of degrees of freedom is often unclear. 
Lower DIC values indicate a better fit, while taking into account the complexity of each model. 
A difference in DIC values of more than 10 is considered evidence for the winning model to 
reflect the data significantly better.    
 
CONDITIONAL BIAS FUNCTIONS 
For each variant of the model and each data set, we simulated data using the best-fitting 
parameters. Specifically, we simulated 100 responses (choices and RTs) for each trial 
performed by the observers. These predicted patterns for the ‘baseline model’ (without 
history-dependent bias parameters) were first used to compare the observed and predicted 
patterns of choices and RTs (Figure 3b). 
 We also used the simulated data, as well as the participants’ choices and RTs, to 
visualize specific features in our data that distinguish the different biased models (Palminteri 
et al., 2017). Specifically, we computed conditional bias functions (White and Poldrack, 2014) 
that visualize choice history bias as a function of RTs. Each choice was recoded into a 
repetition (1) or alternation (0) of the previous choice. We then expressed each choice as 
being either in line with or against the observer’s individual bias (classified into ‘repeaters’ 
and ‘alternators’ depending on choice repetition probability). This allowed us to visualize the 
effect of choice history bias as a function of time within each trial, together for all observers 
in each dataset. 
 To generate conditional bias functions, we divided each (simulated or real) observer’s 
RT distribution into five quantiles (0.1, 0.3, 0.5, 0.7 and 0.9) and computed the fraction of 
choices within each quantile. The shape of the conditional bias functions for models with zbias 
and vbias confirm that zbias predominantly produces biased choices with short RTs, whereas 
vbias leads to biased choices across the entire range of RTs (Figure 4b). 
 
STATISTICAL TESTS 
We quantified across-subject correlations between P(repeat) and the individual history 
components in DDM bias parameter estimates using Pearson’s correlation coefficient. Even 
though individual subject parameter estimates are not independent due to the hierarchical 
nature of the HDDM fit, between-subject variance in parameter point estimates can reliably 
be correlated to an external variable - in our case, P(repeat) - without inflation of the false 
positive rate (Katahira, 2016). The difference between two correlation coefficients that shared 
a common variable, and its associated p-value, was computed using Steiger’s test (Steiger, 
1980). 
 We used Bayes factors to quantify the strength of evidence across our different data 
sets. We first computed the Bayes factor for each correlation (between P(repeat) and the 
history shift in starting point, and between P(repeat) and the history shift in drift bias) (Wetzels 
and Wagenmakers, 2012). We then multiplied these Bayes factors across data sets to 
quantify the total evidence in favor or against the null hypothesis of no correlation 
(Scheibehenne et al., 2016). BF10 quantifies the evidence in favor of the null or the alternative 
hypothesis, where BF10 = 1 indicates inconclusive evidence to draw conclusions from the 
data. BF10 < 1/10 or > 10 is taken to indicate substantial evidence for H0 or H1, respectively 
(Kass and Raftery, 1995).  
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CODE AVAILABILITY 
Code to fit the HDDM models and reproduce all figures is available at 
https://github.com/anne-urai/serialDDM.  
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SUPPLEMENTARY FIGURES 

 
Figure S1. Graphical representation of the hierarchical model structure. The full model (with both 
history-dependent drift bias and starting point) is depicted. Round nodes represent random variables, 
and the shaded node x represented the observed data (choices and RTs for all observers within each 
task). Subject-specific parameter estimates were distributed according to the group-level posterior 
values, thereby ‘shrinking’ individual values towards the group average. Colors indicate the 
distributions used for each node; see (Wiecki et al., 2013) for the specific parameters defining each 
distribution. Note that for the 2IFC #1 dataset, we additionally estimated a separate drift rate (v) for 
each difficulty level (Figure 3a, inset).  
 

 
Figure S3. Control model fits. (a) Summary figure based on non-hierarchical G2 fits (Ratcliff and 
Tuerlinckx, 2002). (b) Summary figure based on the full hierarchical model, where across-trial variability 
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in starting point sz was added as a free parameter. Like the across-trial variability in drift rate sv, the sz 
parameter was only estimated at the group level (Ratcliff and Childers, 2015). 
 

 
 
Figure S4. Group-level posterior distributions of history bias parameters. History shift in (a) 
starting point and (b) drift bias, for each dataset. P-values were derived directly from the group posterior 
(Kruschke, 2013). 
 
 

 
Figure S5. Same biasing mechanism under two pharmacological interventions. (a) Participants in 
the MEG study were assigned to one of three pharmacological groups. At the start of each experimental 
session, they orally took 40 mg atomoxetine (Strattera®), 5 mg donepezil (Aricept®), or placebo. Since 
the time of peak plasma concentration is 3 hours for donepezil (Rogers and Friedhoff, 1998) and 1-2 
hours for atomoxetine (Sauer et al., 2005), we used a placebo-controlled, double-blind, double-dummy 
design, entailing an identical number of pills at the same times before every session for all participants. 
Participants in the donepezil group took 5 mg of donepezil 3 hours, and placebo 1.5 hours before 
starting the experimental session. Participants in the atomoxetine group took placebo 3 hours, and 40 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/251595doi: bioRxiv preprint first posted online Jan. 22, 2018; 

http://dx.doi.org/10.1101/251595
http://creativecommons.org/licenses/by/4.0/


23 

mg of atomoxetine 1.5 hours before the experimental session. Those in the placebo group took 
identical-looking sugar capsules both 3 and 1.5 hours before starting the session. This ensured that 
either drug reached its peak plasma concentration at the start of the experimental training. The drug 
doses were based previous studies with healthy participants (Chamberlain et al., 2009; Rokem and 
Silver, 2010). Blood pressure and heart rate were measured and registered before subjects took their 
first and second pill. In the three hours before any MEG or training session, participants waited in a 
quiet room. In total, 19 people in the placebo, 22 in the atomoxetine, and 20 in the donepezil group 
completed the full study. Schematic adapted from (Pfeffer et al., 2017) with permission. (b, c) Choice 
history biases separately for each pharmacological group. Since we did not observe differences in 
choice history bias between these groups, we pooled all observers for the main analyses. 
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