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Abstract 25 

Information on species’ distributions and abundances, environmental associations, and 26 

how these change over time are central to the study and conservation of wildlife 27 

populations. This information is challenging to obtain at relevant scales across range-28 

wide extents for two main reasons. First, local and regional processes that affect 29 

populations vary throughout the year and across species’ ranges, requiring fine-scale, 30 

year-round information across broad — sometimes hemispheric — spatial extents. 31 

Second, while citizen science projects can collect data at these scales, using these data 32 

requires additional steps to address known sources of bias. Here we present an analytical 33 

framework to address these challenges and generate year-round, range-wide distributional 34 

information using citizen science data. To illustrate this approach, we apply the 35 

framework to Wood Thrush (Hylocichla mustelina), a long distance Neotropical migrant 36 

and species of conservation concern, using data from the citizen science project eBird. 37 

We estimate relative occupancy and abundance with enough spatiotemporal resolution to 38 

support inference across a range of spatial scales throughout the annual cycle. This 39 

includes intra-annual estimates of the range (quantified as the area of occupancy), intra-40 

annual estimates of the associations between species and features of their local 41 

environment, and inter-annual season-specific trends in relative abundance. This is the 42 

first example of an analysis to capture intra- and inter-annual distributional dynamics 43 

across the entire range of a broadly distributed, highly mobile species.  44 

 45 

Keywords: conservation, biogeography, macroecology, eBird, bird 46 

migration, biodiversity monitoring, Wood Thrush 47 
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MAIN TEXT:  48 

(a) Introduction 49 

Information about species’ distribution and abundance are essential to the fields of 50 

applied ecology and conservation biology, for they are critical in the study of the 51 

processes that limit and regulate populations. Because the biotic and abiotic processes 52 

affecting species’ populations vary seasonally and regionally, it is also important to 53 

generate this information both at the spatiotemporal scales at which these processes 54 

operate and across the full spatiotemporal extents over which these processes vary 55 

(Heffernan et al. 2014). Finally, for broadly distributed species, information that supports 56 

inference across spatial and temporal scales is necessary to understand how local, 57 

regional, and seasonal-scale processes interact to affect entire populations at continental 58 

extents. 59 

 60 

For most well studies species groups, we still lack basic information on species 61 

distributions, especially at relevant spatiotemporal resolutions and extents. A limiting 62 

factor has been the ability to collect sufficient quantities of observational data both at fine 63 

scales and across broad spatiotemporal extents. Current information on species 64 

distributions often suffer from strong regional biases (Boakes et al. 2010) in coverage. 65 

Although range maps are available for a growing number of taxa, these often provide 66 

coarse spatial (Hurlbert & Jetz 2007) and temporal resolutions (Ridgeley et al. 2012). 67 

Further, most of this information depicts only the most basic information on species’ 68 

range, often as expert drawn polygons, lacking more informative and ecologically 69 

valuable measures of occupancy rates, relative abundance, and habitat associations within 70 
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a species’ range.  71 

 72 

Most information on species distributions is also static and does not capture intra- or 73 

inter-annual dynamics. The majority of studies on amphibians, reptiles, birds, and 74 

mammals have been conducted only during the breeding season (Marra et al. 2015). Even 75 

for birds, one of the best-surveyed classes of organisms, continental-scale trends in 76 

abundance are routinely estimated only for the breeding season and only in North 77 

America (Sauer & Link 2011) and Europe (European Bird Census Council 2016). The 78 

inability to estimate changes in distribution and abundance is a serious deficiency in our 79 

ecological knowledgebase, and underscores the need for scalable approaches to collect 80 

biodiversity data and model intra- and inter-annual dynamics. 81 

 82 

Citizen science projects that use crowdsourcing techniques to engage the public have 83 

been very successful at collecting observational data across large areas throughout the 84 

year (Dickinson et al. 2010). However, using these data to generate robust distributional 85 

information is fraught with analytical challenges (Hochachka et al. 2012; Bird et al. 86 

2014). These challenges have led to the development and application of a number of new 87 

analytical tools. For example, bias related to heterogeneity in species’ detection is a 88 

significant challenge when analyzing citizen science data. Several approaches have been 89 

used to deal with heterogeneous and imperfect observation processes, from the inclusion 90 

of relevant fixed and random effects (Sauer & Link, 2011) to the development of 91 

detection process models (Kéry & Royle, 2015). When citizen scientist participants 92 

choose where and when to conduct their surveys, site selection biases lead to repeated 93 
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surveys in popular search locations and missing surveys in areas that are hard to access. 94 

Data-sampling methods have proven useful to mitigate the effects of these site-selection 95 

biases (Robinson et al. 2017). The ability to accurately capture the complex species-96 

environment relationships underlying regional patterns of species’ distributions and 97 

abundance is another challenge. Machine and statistical learning models have proven to 98 

be efficient tools for learning these species-environment relationships from large sets of 99 

environmental covariates (Elith & Leathwich 2009). Using citizen science data to 100 

estimate abundance often presents the statistical challenge of “zero inflation” where too 101 

many zero counts can degrade model performance. A wide variety of new abundance 102 

models have been proposed to deal with zero-inflation (Denes et. al. 2015).  103 

 104 

Most of the methodological developments discussed above have been used to study 105 

regional-scale patterns of species’ distribution and abundance during a single season of 106 

the year. To generate distributional information across larger spatiotemporal extents with 107 

citizen science data, requires tacking two additional challenges. First, most broad-scale 108 

citizen science projects exhibit strong variation in data density across large regions which 109 

can degrade model performance. Adaptive knot designs (Gelfand et al. 2012) and 110 

partitioning methods (Fink et al. 2013) have been proposed to deal with this challenge by 111 

adding multi-scale structure to broad extent analyses. Second, the spatial and temporal 112 

variation in a species’ response to the same environmental conditions, statistical non-113 

stationarity, can also degrade model performance. Non-stationary regression techniques 114 

function to add multi-scale structure to analyses and have proven to be a useful solution 115 

to this challenge (Fink et al. 2010; Finley 2011).  116 
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 117 

While previous studies have dealt with one or more of the analytical challenges outlined 118 

above (e.g. Johnston et al. 2015), to date, none have dealt with all of these challenges 119 

simultaneously at the relevant scales necessary to study broadly distributed species across 120 

the annual cycle. Here, we describe a simple analytical framework capable of estimating 121 

species’ relative occupancy and abundance, year-round and range-wide with enough 122 

spatial and temporal resolution to support inference across a range scales. This includes 123 

intra-annual estimates of species ranges’ (quantified as the area of occupancy), intra-124 

annual estimates of the associations between species and features of their local 125 

environment, and inter-annual trends in relative abundance. For convenience, we will 126 

refer to this suite of parameter estimates as Cross-Scale Full-Annual Cycle (CS-FAC) 127 

distributional information.   128 

 129 

As a case study, we analyzed data from the global citizen science project eBird (Sullivan 130 

et al. 2014) for the long-distance migratory songbird, Wood Thrush (Hylocichla 131 

mustelina) that breeds in eastern North America and winters largely in Mesoamerica. The 132 

Wood Thrush is a species of conservation concern, having suffered steep population 133 

declines over the past several decades. Despite numerous regional studies (e.g. Rushing 134 

et al. 2017), comprehensive information on abundance and distribution is still lacking. 135 

We used the CS-FAC analysis to fill important information gaps for this species, 136 

illustrating a method that is widely applicable to other species and taxonomical groups. 137 

 138 

 (b) Materials and methods 139 
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 140 

Observational Data  141 

The bird observation data were obtained from the global bird monitoring project, eBird 142 

(Sullivan et al. 2014) using the eBird Reference Dataset (ERD2016, Fink et al. 2017).  143 

We used a subset of data in which the time, date, and location of the survey period were 144 

reported and observers recorded the number of individuals of all bird species detected 145 

and identified during the survey period, resulting in a complete ‘checklist’ of species on 146 

the survey (Sullivan et al. 2009). The checklists used here were restricted to those using 147 

the ‘stationary’, ‘traveling’, or ‘areal search’ protocols from January 1, 2004 to December 148 

31, 2016 within the spatial extent between 180° to 30° W Longitude. Areal surveys were 149 

restricted to those covering less than 56 sq. km. and traveling surveys were restricted to 150 

those ≤ 15km. This resulted in a dataset consisting of 14 million checklists, of which 10% 151 

were withheld for model validation.  152 

 153 

Predictor Data 154 

We incorporated three classes of predictors in the models: (1) Four observation-effort 155 

predictors to account for variation in detection rates, (2) Three temporal predictors to 156 

account trends at different scales, and (3) 79 site-specific predictors from remote sensing 157 

data to capture associations of birds with elevation and a variety of habitats across the 158 

hemisphere. The effort predictors included the duration spent searching for birds, whether 159 

the observer was stationary or not, the distance traveled during the search, and the 160 

number of people in the search party. The observation time of the day was used to model 161 

variation in availability for detection, e.g. variation in behavior such as participation in 162 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251868doi: bioRxiv preprint 

https://doi.org/10.1101/251868
http://creativecommons.org/licenses/by-nc/4.0/


  9 

the dawn chorus (Diefenbach et al. 2007). The day of the year (1-366) on which the 163 

search was conducted was used to capture intra-annual variation and the year of the 164 

observation was included to account for inter-annual variation.  165 

 166 

Elevation defines basic abiotic conditions that influence species distributions. To account 167 

for the effects of elevation and topography, each checklist location was associated with 168 

elevation, eastness, and northness at 1km2 resolution (Amatulli et al. 2017). To account 169 

for species’ local habitat-selectivity each checklist was linked to a series of covariates 170 

derived from the NASA MODIS land cover data (Friedl et al. 2010). We selected this 171 

data product for its moderately high spatial resolution, annual temporal resolution, and 172 

global coverage. We used the University of Maryland (UMD) land cover classifications 173 

(Hansen et al. 2000) and derived water cover classes from the MODIS Land Cover Type 174 

QA Science Dataset resulting in a class label for each 500m pixel into one of 19 classes 175 

(Table 1). 176 

 177 

Checklists were linked to the MODIS data by-year from 2004-2013 (checklist data after 178 

2013 are matched to the 2013 data). All cover classes were summarized within a 2.8km × 179 

2.8km (784 hectare) neighborhood centered on the checklist location. In each 180 

neighborhood, we computed the proportion of each class in the neighborhood (PLAND). 181 

To describe the spatial configuration of each class within each neighborhood we 182 

computed three statistics using FRAGSTATS (McGarigal et al. 2012; VanDerWal et al. 183 

2014): LPI an index of the largest contiguous patch, PD an index of the patch density, 184 

and ED an index of the edge density. 185 
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 186 

Analysis Overview 187 

To meet the analytical challenges of CS-FAC modeling with eBird data, we adopted an 188 

ensemble modeling strategy combining pattern discovery and inference based on the 189 

Spatio-Temporal Exploratory Model (STEM; Fink et al. 2010). STEM is an ensemble of 190 

regional-seasonal regression models generated by repeatedly subsampling and 191 

partitioning the study extent into 100 randomly located grids of overlapping 192 

spatiotemporal blocks, called stixels, and then fitting an independent regression model, 193 

called a base model, within each stixel. Together, the base models are used to form an 194 

ensemble of local parameter estimates distributed uniformly across the study extent. 195 

Using the fact that stixels overlap in space and time, parameters at a given location and 196 

time are estimated by averaging across overlapping base models. Combining estimates 197 

across the ensemble controls for inter-model variability (Efron 2014), providing a simple 198 

way to control for overfitting while naturally adapting to non-stationary species-199 

environment relationships (Fink et al. 2010). Utilizing the fact that data are subsampled 200 

for each base model, resampling techniques are employed to generate uncertainty 201 

estimates for the ensemble parameter estimates.  All analysis was conducted in R, version 202 

3.4.2 (R Development Core Team 2017) and deployed using Apache Spark 2.1 (Zaharia, 203 

et. al. 2016).  204 

 205 

In the following sections, we describe the STEM base models, ensemble design, and the 206 

spatial case-control sampling procedure. Then we describe how we used the ensemble to 207 

estimate four population parameters: (1) landscape-scale relative occupancy and 208 
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abundance, (2) landscape-scale range boundaries quantified as the area of occupancy, (3) 209 

regional-scale habitat use and avoidance, and (4) regional-scale trends in occupancy and 210 

abundance.  211 

 212 

STEM Base Models 213 

Within each stixel, predictor-response (i.e. species-environment) relationships were 214 

assumed to be stationary. To estimate relative occupancy and abundance from the large 215 

predictor set while accounting for high numbers of zero counts, we used a two-step Zero-216 

Inflated Boosted Regression Tree (ZI-BRT) model (Johnston et. al. 2015; Ridgeway et al. 217 

2017). Effort and time covariates were included in both steps of the ZI-BRT to account 218 

for variation in detectability and variation in availability for detection. To generate 219 

estimates of the binary un/occupied state, the occupancy threshold value that maximized 220 

the Kappa statistic (Cohen 1960) was recorded for each ZI-BRT base model. 221 

 222 

While the ZI-BRT base model can produce good estimates of the spatial patterns of 223 

occupancy and abundance from large sets of predictors, it is not well suited to making 224 

inference about inter-annual trends. Instead, we used the Zero-Inflated Generalized 225 

Additive Model (ZI-GAM) fit with the mcv package (Wood et al. 2016) to estimate 226 

trends, employing the additive structure to focus inference. The model equations defining 227 

the occupancy and abundance sub-models had the forms 228 

𝑙𝑜𝑔𝑖𝑡 𝜓 = 𝛽) + 𝑠 𝑌𝑒𝑎𝑟 + 	𝑠 𝜓𝑠𝑝𝑎𝑡 + 𝑠 𝑙𝑎𝑡, 𝑙𝑜𝑛 + 	𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒229 

+ 𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 230 

𝑙𝑜𝑔 𝑁 = 𝛼) + 𝑠 𝑌𝑒𝑎𝑟 + 𝑠 𝑁𝑠𝑝𝑎𝑡 + 𝑠 𝑙𝑎𝑡, 𝑙𝑜𝑛 ,	 231 
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where 𝜓 is the occupancy and 𝑁 is the abundance. Inter-annual variation in occupancy 232 

and abundance were both modeled using smooth functions, 𝑠, of the Year. To account for 233 

variation in the observation process, smooth functions of search duration, search distance, 234 

and the number of observers were included. The stationary indicator, was used to identify 235 

stationary counts, accounting for differences in search protocols. Spatial variation for 236 

both occupancy and abundance was modeled at two scales. Coarse-scale spatial patterns 237 

were captured by smooth two dimensional smooth functions of latitude and longitude 238 

with a limited number of knots. Fine-scale variation was modeled as smooth functions of 239 

ZI-BRT derived covariates describing landscape-scale variation in occupancy, 𝜓spat, and 240 

abundance, Nspat.  241 

 242 

The ZI-BRT derived covariates were constructed to encapsulate landscape-scale spatial 243 

variation as a pair of covariates that could be used within the ZI-GAM. To do this we 244 

leveraged the strength of the ZI-BRT model as a high-dimensional regression model. The 245 

idea was to use the ZI-BRT model to adaptively select and estimate intra-seasonal 246 

landscape-scale effects from the large set of predictors describing land and water cover 247 

class and elevation. This was done by fitting the ZI-BRT model as described above, then 248 

predicting the expected relative occupancy and abundance for each checklist in the 249 

training data to generate the two covariates. Because we want to describe inter-annual 250 

variation in the ZI-GAM, an important part of generating these predictors was removing 251 

any inter-annual variation from the covariates. This was done simply by holding the 252 

checklist year predictor constant when predicting the covariate values. Similarly, to 253 

remove variation in detection associated with the effort predictors, all effort predictors 254 
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were also held constant.  255 

 256 

By including the derived covariates in the ZI-GAM as smooth additive functions, the Zi-257 

GAM was able to adaptively calibrate the covariate information. Note, that by allowing 258 

the day of the year predictor to vary when computing the derived covariates, the 259 

covariates captured strong intra-seasonal changes in the spatial patterns of occupancy and 260 

abundance. This is especially useful for modeling data from non-stationary periods. 261 

Finally, we note that both ZI-BRT and ZI-GAM were fit independently within each stixel 262 

in the ensemble. Thus, averaging across the ensemble naturally controls for the joint 263 

variation of the ZI-BRT, the ZI-BRT derived covariates, and the ZI-GAM.  264 

 265 

Ensemble Design 266 

Stixel size controls a bias-variance tradeoff (Fink et al. 2013) and must strike a balance 267 

between stixels that are large enough to achieve sufficient sample sizes, controlling 268 

variance, and small enough to assume stationarity, controlling bias. For estimating 269 

occupancy and abundance with ZI-BRT base model, 10° longitude × 10° latitude × 30-270 

contiguous day stixels were small enough to meet these requirements across much of the 271 

northern study extent. To account for the relatively low data density south of 12° north 272 

latitude we doubled the length of stixels to 20° longitude × 20° latitude × 30-days. For 273 

estimating trends with ZI-GAM base model larger sample sizes were required to insure 274 

representative sampling across years. To estimate breeding season trends, the same 10° 275 

longitude × 10° latitude × 30-contiguous day stixels were used. To estimate trends during 276 

the non-breeding season, when data density is lower, we increased stixel size to cover the 277 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 22, 2018. ; https://doi.org/10.1101/251868doi: bioRxiv preprint 

https://doi.org/10.1101/251868
http://creativecommons.org/licenses/by-nc/4.0/


  14 

spatiotemporal region from southern Mexico to Panama from December 1 to February 28. 278 

See Appendix S1 in Supporting Information for additional information about the 279 

specification of the stixel ensemble design.  280 

 281 

Spatial Case-Control Sampling 282 

Within each stixel, a spatial case-control sampling strategy was used to address the 283 

challenges of highly imbalanced data and site selection bias. Imbalanced data arise when 284 

there are a very small number of species detections and a very large number of non-285 

detections. This is a modeling concern because binary regression methods, like the first 286 

component of ZI-BRT model, become overwhelmed by the non-detections and perform 287 

poorly (Robinson et al. 2017). The low detection rates of many species, especially along 288 

seasonal range boundaries, can generate highly imbalanced training data and make data 289 

imbalance a defining challenge for broad-scale, year-round modeling. By sampling 290 

non/detection cases separately, case-control sampling (e.g. Fithian & Hastie 2014) 291 

improves data balance and model performance. Additionally, to alleviate spatial biases 292 

caused by the eBird site selection process, spatially balanced samples were drawn as part 293 

of the case-control sampling.   294 

 295 

To generate spatially balanced samples for the case-control sampling, training data were 296 

drawn from a randomly located regular grid, with one checklist randomly selected per 297 

grid cell. North of 12° latitude, the grid cells were 10km × 10km and south of the cutoff 298 

they were 20km × 20km. As part of the case-control sampling, detection data were over-299 

sampled, using the same spatially balanced procedure, when they represented less than 300 
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25% of the spatially balanced data. Because boosting, used in the ZI-BRT base models, is 301 

driven more by the set of distinct data points than the number of tied data points 302 

generated when oversampling, the spatial predictors of tied checklists were jittered to 303 

break the ties (Mease et al. 2007). Finally, because case control sampling changes the 304 

training data prevalence we back-transformed occupancy estimates to match the original 305 

stixel prevalence rate. 306 

 307 

For the ZI-GAM models, we also stratified the spatial case control samples by year and 308 

restricted the total number of samples per year to control for inter-annual increases in 309 

sample sizes resulting from increases in eBird participation rates. eBird participation rates 310 

have been increasing at 20-30% per year since 2005. We set 2007 as our reference year, 311 

fixing the sample size of spatially balanced training data for each year to equal that of 312 

2007. We selected 2007 as the reference year as a balance between the amount of per-313 

year information available to estimate trends and the length of the trend.       314 

 315 

Local Relative Occupancy and Abundance  316 

We estimated relative occupancy and abundance once per week for all 52 weeks of the 317 

calendar year. Estimates were made at 614,575 locations across the terrestrial Western 318 

Hemisphere from a regular spatial grid with a density of one location per 8.4km × 8.4km 319 

grid cell. Estimates at each location and date were made based on predictor values at that 320 

location from all base models that contained the location and date. Then we averaged 321 

across the model estimates using the upper 5% trimmed mean, a robust estimator 322 

designed to guard against bias due to large outlying values. Uncertainty of the estimates 323 
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was estimated using the subsampling approach of Politis et al. (2009) following the 324 

computational strategy of Geyer (2013). See the Appendix S2 for more information about 325 

the subsampling procedures. 326 

 327 

For all estimates we controlled for variation in detection rates associated with search 328 

effort by holding predictors for search duration, protocol, search length, and number of 329 

observers constant. Thus, the quantity we used to estimate relative occupancy was 330 

defined as the probability that an average eBird participant would detect the species on a 331 

search from 7–8AM while traveling 1 km on the given day at the given location. Relative 332 

abundance was estimated as the expected count of individuals of the species on the same 333 

standardized checklist. Although this approach accounts for variation in detection rates, it 334 

can not directly estimate the absolute detection probability. For this reason, we refer to 335 

the quantities estimated by the model as relative measures of occupancy and abundance.  336 

 337 

Local Area of Occupancy  338 

To estimate the Area of Occupancy (AOO) we predicted the binary un/occupied state for 339 

all weeks using the same 8.4km × 8.4km spatial grid of locations used for relative 340 

occupancy and abundance estimates. At each location and week, the AOO was estimated 341 

as the proportion of base model occupancy estimates that were larger than the thresholds 342 

for the corresponding base models. We call this the Proportion Above local Threshold 343 

(PAT) estimator. We say the site was occupied, and, therefore within the species’ range, 344 

if the PAT estimator exceeded a specified value. One benefit of this ensemble estimator 345 

is that it naturally adapts to regional and seasonal variation in species prevalence and 346 
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detectability. By averaging across the ensemble, PAT controls for inter-model variation 347 

in both occupancy and base model threshold estimates. 348 

 349 

Regional Habitat Associations  350 

For each base model, we quantified the strength and direction of association for each 351 

cover class predictor. Predictor importance (PI) statistics measured the strength of the 352 

over-all contribution of individual predictors as the change in predictive performance 353 

between the model that includes all predictors and the same model with permuted values 354 

of the given predictor (Breiman 2001). PI statistics capture both positive and negative 355 

effects arising from both additive and interacting model components. Partial Dependence 356 

(PD) statistics measured the functional form of the additive association for each 357 

individual cover class predictor by averaging out the effects of all other predictors (Hastie 358 

et al. 2009). To measure the direction of association, we estimated the slope of each PD 359 

estimate using simple linear regression. Because the PI and PD statistics account for the 360 

effects of all other predictors in the base models, they account for variation in 361 

detectability associated with effort and the time of day. 362 

 363 

To examine how species’ habitat use and avoidance varied among regions and seasons, 364 

we computed regional trajectories of the strength and direction of the cover class 365 

associations. Given the region and the set of predictors to compare, the PI statistics were 366 

standardized to sum to 1 across the predictor set for each base model within the specified 367 

region. Then, a loess smoother (Cleveland et al. 1992) was used to estimate the 368 

trajectories of relative predictor importance throughout the year for each predictor. 369 
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Similarly, a loess smoother was used to estimate the proportion of increasing PD 370 

estimates throughout the year for each predictor. Predictors with proportions greater than 371 

70% were considered to be increasing and predictors with proportions less than 30% 372 

were considered to be decreasing. Predictors with inconsistent directions, those between 373 

30 and 70%, were excluded from summaries. 374 

 375 

Regional Trends  376 

We estimated the inter-annual trends using ensembles of partial effect estimates for year 377 

from the ZI-GAM base models. These partial effects are regional-scale estimates that 378 

describe the systematic change in relative abundance averaged across the stixel, after 379 

accounting for landscape-scale spatial variation associated with elevation and the cover 380 

classes. The partial effects of abundance are quantified on the log-link scale where they 381 

can be interpreted in units of percent-per-year change. 382 

 383 

Three types of trend summaries were computed.  First, to understand how seasonal trends 384 

varied geographically, we used a GAM (Wood et al. 2016) to generate a spatially explicit 385 

estimate of the average percent change per year based on the ensemble of base models 386 

with stixel centroid dates falling within a specified season. Second, to identify regions 387 

consistently estimated to be in decline, we use a binary response GAM to generate the 388 

corresponding spatial estimate of the probability of decline. Third, we estimated the 389 

expected trend within a specified region and season by averaging across the set of partial 390 

effect estimates with stixel centroids lying within the specified extent. To generate 391 

estimates of uncertainty for the expected trend, we computed 90% point-wise confidence 392 
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intervals from a Monte Carlo sample of expected trends. To insure that the uncertainty 393 

estimates were conservative, each expected trend was based on an average of 5 partial 394 

effect estimates, far fewer than the number available.   395 

 396 

Model Validation 397 

To assess model quality, we validated the model’s ability to predict the observed patterns 398 

of occupancy and abundance using independent validation data. The statistics were 399 

evaluated using a Monte Carlo design of 25 spatially balanced samples to help control for 400 

the uneven spatial distribution of the validation data (Fink et al. 2010; Roberts et al. 401 

2017). To quantify the predictive performance for the AOO we used the Area Under the 402 

Curve (AUC) and Kappa (Cohen 1960) statistics to describe the models’ ability to 403 

classify un/occupied sites (Freeman & Moisen 2008). AUC measures a model’s ability to 404 

discriminate between positive and negative observations (Fielding & Bell 1997) as the 405 

probability that the model will rank a randomly chosen positive observation higher than a 406 

randomly chosen negative one. Cohen’s Kappa statistic (Cohen 1960) was designed to 407 

measure classification performance taking into account the background prevalence. To 408 

quantify the quality of the relative occupancy estimate as a rate within the AOO, we 409 

evaluated AUC and Kappa. To quantify the quality of the abundance estimates we 410 

computed Spearman’s Rank Correlation (SRC) and the percent Poisson Deviance 411 

Explained (P-DE). SRC measures how well the abundance estimates rank the observed 412 

abundances and the P-DE measures the correspondence between the magnitude of the 413 

estimated counts and observed counts. 414 

 415 
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(c) Results 416 

 417 

Weekly AOO, Relative Occupancy and Abundance  418 

Using the Wood Thrush as exemplar analysis, we generated CS-FAC estimates of AOO, 419 

relative occupancy and abundance at a spatiotemporal resolution of 8.4km × 8.4km × 420 

1week (Fig 1). A site was considered occupied if the PAT estimator was at least 0.05, 421 

meaning that at least one individual of the species is expected to be detected on at least 1 422 

out of every 20 independent, standardized eBird surveys of the site on the given day. 423 

Unoccupied grid cells were considered to have zero occupancy and abundance, thus the 424 

AOO was depicted as the boundary between pixels with and without color.  425 

 426 

To assess the accuracy of estimates, we calculated range-wide validation estimates based 427 

on spatially balanced samples of independent eBird observations. AOO weekly median 428 

AUC scores were between 0.72 and 0.98 with mean 0.81 (Fig 2a) and AOO weekly 429 

median Kappa scores were between 0.16 and 0.38 with mean 0.24 (Fig 2b). Relative 430 

occupancy weekly median AUC scores were between 0.66 and 0.86 with mean 0.75 (Fig 431 

2c) and relative occupancy weekly median Kappa scores were between 0.18 and 0.51 432 

with mean 0.30 (Fig 2d). Relative abundance weekly median P-DE scores were between 433 

0.01 and 0.71 with mean 0.20 (Fig 2e) and relative abundance weekly median SRC 434 

scores were between 0.24 and 0.52 with mean 0.31 (Fig 2f). Weeks with insufficient 435 

validation data were shown as zero. These weeks occurred during the migrations, when 436 

detection rates and counts are lowest. Variation in predictive performance was highest 437 

during the non-breeding season for all metrics, reflecting lower data densities in 438 
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Mesoamerica.  439 

 440 

The AOO shows the seasonal changes in the population range size and shape while the 441 

abundance estimates capture regional and seasonal variation in population structure 442 

within the range. The breeding season range fills in the eastern deciduous forests east of 443 

the Great Plains with highest population concentrations in the Appalachian Mountains 444 

(Fig 1a). During autumn migration, the population concentrates in the southern part of the 445 

Appalachian Mountains (Fig 1b) before crossing the Gulf of Mexico into Central 446 

America. The winter distribution (Fig 1c) is concentrated in the Yucatán Peninsula, with 447 

lower concentrations extending north into Veracruz and south to Costa Rica and Panama. 448 

During the spring migration (Fig 1d), Wood Thrush crosses the Gulf, concentrating on 449 

the Gulf Coast and again in the southern part of the Appalachian Mountains.  450 

 451 

Seasonal Habitat Use and Avoidance  452 

To quantify changes in habitat use and avoidance throughout the annual cycle, we made 453 

weekly estimates of the association between Wood Thrush occupancy and the amount of 454 

each habitat class in the local landscape (Fig 3). For each week, the associations were 455 

summarized across the population core area, the 5° longitude × 5° latitude area located at 456 

the population center for that week. For each cover class, values were combined for both 457 

PLAND and LPI predictors to describe the relative strength and direction of the 458 

association. Larger absolute values indicate stronger associations and the sign of the 459 

value indicates class use or avoidance. Classes with inconsistent direction of association, 460 

were removed, resulting in total weekly relative importance that sums to less than 1.  461 
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 462 

The accuracy of the habitat associations follows from the strong validation results (Fig 2).  463 

The Wood Thrush breeding season is characterized by the strong positive association 464 

with deciduous broadleaf forest and the non-breeding season is characterized by the 465 

strong positive association tropical broadleaf forest. During the migrations, the 466 

population is associated with a wider variety of cover classes, and a more even 467 

distribution of associations, both positive and negative. This includes a notable positive 468 

association with the urban developed class.   469 

 470 

Inter-annual Seasonal Trends  471 

We estimated the 2004–16 inter-annual trends during the breeding (May 30–July 3) and 472 

non-breeding (Dec 1–Feb 28) seasons. The Wood Thrush population declined across 473 

most of its range during the breeding season (Fig 4a).  The steepest declines reached 3 to 474 

4% per year along the east coast, and the southeastern and northwest portions of the 475 

breeding range (Fig 4a). The green contour indicates where at least 95% of base model 476 

trend estimates were declining, a large region including areas in the northeast, the Mid-477 

Atlantic coast, the Piedmont, and the Appalachian Mountains (Fig 4a). The breeding 478 

season trend in the Ohio/West Virginia area (Fig 4b), declined at an average of 1% per 479 

year, though this trend did show slight increases from 2009 to 2011. In the southern 480 

Appalachian Mountains area (Fig 4a) the breeding season trend declined at an average of 481 

3% per year, with the strongest declines from 2004-10 (Fig 4b). The winter population 482 

(Fig 5) has declined at an average rate of 5.6% per year, with the largest declines from 483 

2004-2010.  484 
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  485 

 (d) Discussion 486 

In this paper, we address challenges related to obtaining cross-scale, full annual cycle 487 

information on patterns of abundance and distribution of bird species using citizen 488 

science data. The resolution, extent, and comprehensiveness of the information generated 489 

with this methodology is unprecedented, and has the potential to increase our knowledge 490 

of information-poor species, regions and seasons (Runge et al. 2015).  491 

 492 

The approach we present generated robust inferences about species’ ranges, occupancy 493 

and abundance (Fig. 2), habitat associations, and seasonal trends, confirming the 494 

accuracy and utility of the approach. More broadly, the analysis presented here 495 

demonstrates how citizen science data can be used to generate accurate species-level 496 

information for broad-scale biodiversity monitoring like those outlined by the Group on 497 

Earth Observations Biodiversity Observation Network (Kissling et al. 2017). It is worth 498 

noting that without a single, comprehensive source of information, making population-499 

wide assessments requires the additional steps to acquire, analyze, and calibrate disparate 500 

sources of information. Similarly, without critical ancillary information describing 501 

participant search effort and information to infer the absence of species (e.g., complete 502 

checklists), we would have been unable to account for the bias of imperfect detection. For 503 

this reason, we advocate for other citizen science projects to collect ancillary information 504 

sufficient to untangle the complexities of heterogeneous observation and ecological 505 

processes. 506 

 507 
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To demonstrate how this methodology can be used to estimate complex patterns of 508 

species’ movement, phenology, and population concentration across the full annual cycle 509 

we analyzed eBird data for Wood Thrush. This analysis captured important, known 510 

patterns of movement, phenology, and concentration during the breeding (Fig 1a) and 511 

non-breeding seasons (Fig 1c). Additionally, theses results filled important knowledge 512 

gaps, providing novel population-level information during the less well-studied stages of 513 

the annual cycle, such as migration and the overwintering period (Fig 1b and Fig 1d).  514 

The estimated patterns of habitat use and avoidance (Fig 3) were consistent with 515 

documented seasonal (Zuckerberg et al. 2016) and regional (Evans et al. 2011) patterns. 516 

Notably, this is the first comprehensive population-level analysis of habitat associations 517 

for not just Wood Thrush, but for any Neotropical migrant. In general, comprehensive 518 

information on species’ habitat associations will be useful for conservation planning and 519 

prioritization, especially outside of the breeding season. 520 

 521 

The population trend estimate for the non-breeding season is, to the best of our 522 

knowledge, the first population-wide trend estimate for Wood Thrush outside the 523 

breeding season. This trend estimate fills an important gap in understanding the role of 524 

the autumn migration and non-breeding season on overall Wood Thrush population 525 

health. The population-wide rate of decline during the non-breeding season (-5.6%) was 526 

larger than the regional breeding season rates (1-3%), suggesting that limitation is 527 

happening during the autumn migration and/or the non-breeding season. Although this is 528 

consistent with the demographic models of Taylor & Stutchbury (2016), it contradicts the 529 
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results from Rushing et al. (2017), suggesting that there might be regional variation in 530 

population declines in Central America.  531 

 532 

Another novel aspect of the methodology is the ability to use citizen science data to 533 

estimate trends in relative abundance - a task usually left to monitoring programs which 534 

employ more stringent sampling protocols and are hard to deploy across broad extents.  535 

The potential to use eBird data to accurately estimate population trends will grow with 536 

the increasing volume and density of data. Increasing volumes and density of data will 537 

further improve the precision and spatiotemporal resolution of trend estimates across a 538 

wider geographic area than is currently possible. This can be seen when comparing the 539 

Wood Thrush breeding and non-breeding season trends (Fig 4 & 5). The increased 540 

volume and density of data in the breeding season, made it possible to estimate trends 541 

with greater spatial resolution and higher precision than in the non-breeding season. The 542 

increasing availability of population trends during the non-breeding season will help to 543 

refine our understanding of where and when populations are limited or regulated, 544 

complimenting migratory connectivity information derived from individual-level tracking 545 

data.  546 

  547 

Aside from filling knowledge gaps, the comprehensive nature of CS-FAC information 548 

can be used for other novel and important applications. With CS-FAC distributional 549 

information, it is straightforward to make population-wide comparisons and 550 

prioritizations and to coordinate conservation activities across regions and seasons. 551 

Moreover, once regions of interest have been identified, the resolution of CS-FAC can be 552 
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leveraged to seamlessly compare and prioritize landscapes within regions (e.g. Reynolds 553 

et al. 2017).  In addition, the impact of regional and seasonal scale processes can be 554 

integrated across space throughout the year, making it possible to carry out accurate 555 

multi-scale population-wide impact assessments. This is important for studying a variety 556 

of broad-scale environmental and anthropogenic effects, many of which are themselves 557 

multi-scale processes, from land-use change to ecosystem services (e.g., La Sorte et al. 558 

2017).   The potential of our approach to to integrate effects also addresses an important 559 

multi-scale challenge in climate change studies (Ådahl et al. 2006; Small-Lorenz et al. 560 

2013) where nearly all facets of climate (e.g. temperature and precipitation) exhibit 561 

strong regional-scale intra-annual variation.  562 
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Table 1: Land and water cover classes used for distribution modeling. All cover classes 

were summarized within a 2.8km × 2.8km (784 hectares) landscape centered on each 

checklist location. Within each landscape, we computed the proportion of each class, and 

three descriptions of the spatial configuration of the class within the landscape. 

 

Figure 1: Wood Thrush estimates of area of occupancy and relative abundance at 8.4km 

× 8.4km resolution during (a) breeding (June 20), (b) autumn migration (October 3), (c) 

non-breeding (December 12), and (d) spring migration (March 28) seasons. Positive 

abundance is only shown in areas estimated to be occupied and the area of occupancy is 

depicted as the boundary between pixels with and without color. Brighter colors indicate 

areas occupied with higher abundance. Relative abundance was measured as the expected 

count of the species on a standardized 1km survey conducted from 7-8AM.  

 

Figure 2: Boxplots of range-wide weekly predictive performance for area of occupancy, 

relative occupancy and abundance estimates across 25 Monte Carlo samples of spatially 

balanced validation data. (a) AUC and (b) Kappa scores for area of occupancy estimates. 

(c) AUC and (d) Kappa scores for relative occupancy estimates. (e) Spearman’s Rank 

Correlation and (f) Percent Deviance Explained scores for relative abundance estimates. 

 

Figure 3: The weekly relative importance for the amount of each land and water cover 

class for the core Wood Thrush population. Positive importance indicates class use and 

negative importance indicates class avoidance. The strength of the association with each 

class is proportional to the width of the class color. Classes with inconsistent direction of 
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association were removed, resulting in total weekly relative importance that sums to less 

than 1. 

 

Figure 4: Wood Thrush breeding trend map and regional estimates. The map shows the 

average percent change per year in relative abundance from 2004–16 during the breeding 

season (May 30– July 3). The green contour indicates the region where the probability of 

decline is at least 95%. Breeding season regional trends and 90% point-wise confidence 

intervals are shown for the (A) Ohio-West Virginia and (B) Southern Appalachian 

regions as the deviation from the mean on the log scale. 

 

Figure 5: Wood Thrush non-breeding trend map and regional estimate. The map shows 

the average percent change per year in relative abundance from 2004–16 during the non-

breeding season (Dec 1–Feb 28). The regional trend and 90% point-wise confidence 

intervals are shown as the deviation from the mean on the log scale.  
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MODIS 

Class 

Codes 

Land Cover Water Cover 

0  Shallow Ocean 

1 Evergreen Needleleaf Forest  

2 Evergreen Broadleaf Forest Ocean coastlines and lake shores 

3 Deciduous Needleleaf Forest Shallow inland water 

4 Deciduous Broadleaf Forest  

5 Mixed Forest Deep Inland Water 

6 Closed Shrublands Moderate or continental ocean 

7 Open Shrublands Deep Ocean 

8 Woody Savannas  

9 Savannas  

10 Grasslands  

12 Croplands  

13 Urban and built-up  

16 Barren  

 

Table 1 
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Supporting Information for 

“Modeling Avian Full Annual Cycle Distribution and Population 

Trends with Citizen Science Data” 

Daniel Fink, Tom Auer, Viviana Ruiz-Gutierrez, Wesley M. Hochachka, Alison 

Johnston, Frank A. La Sorte, and Steve Kelling 

 

This document includes supplemental information on the  

1. STEM ensemble design, and  

2. Subsampling procedures to estimate uncertainty of the occupancy and abundance 

estimates.  

These are described in the appendices below.  

 

Appendix S1: Ensemble Design 

The ensemble of stixels was designed as a Monte Carlo sample of 100 randomly located 

spatiotemporal partitions of the spatiotemporal study extent. This results in a sample of 

stixels uniformly distributed through out the spatiotemporal extent of study. Averaging 

across this sample helps control for biases associated with the arbitrary partitioning of 

data into stixels. We also use the Monte Carlo sample to generate estimates of uncertainty 

by incorporating subsampling into the selection of training data within stixels.   

 

An important part of the STEM implementation was determining the spatial and temporal 

dimensions of the stixels. When averaging across the ensemble, stixel size controls an 

important bias-variance tradeoff (Fink et al 2010; Fink et al. 2013). Stixel size needs to 
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be chosen small enough to capture local predictor-response (i.e. species-environment) 

relationships, controlling the bias of base model estimates. Stixel size also needs to be 

chosen large enough to meet the minimum sample size requirements necessary for fitting 

the base models: this controls the variance when averaging across the ensemble.  
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As stixel size gets smaller, the training data sample size within a stixel also decreases. 

When training sample sizes are too small to fit base models, the number of base model 

estimates available for ensemble averaging also decreases, increasing the variance of the 

ensemble estimator. The number of stixels used to compute a local estimate across the 

ensemble is called the ensemble support. Ensemble support is important because it 

determines effectiveness of ensemble averaging to control inter-model variability. In 

general, ensemble support follows patterns of data density, filtered through a combination 

of stixel geometry and the base model minimum sample size requirements.  

 

Because of the irregular and often sparse distribution of eBird data, selecting the spatial 

and temporal dimensions of stixels necessary to maintain ensemble support is a non-

trivial process. Our goal was to select the stixel size parameters to maximize the 

spatiotemporal coverage of the analysis while maintaining sufficient ensemble support to 

guarantee good model performance. To operationalize this, we required an ensemble 

support of at least 50 stixels, throughout at least 75% the Western Hemisphere for each 

week of the year. Estimates of occupancy and abundance were only produced when 

ensemble support was above 50.  

 

We began by specifying the temporal dimension of the partitions to be 30 contiguous 

days. A 30 day window is small enough to capture a wide variety of migration patterns 

across a diverse set of terrestrial species using eBird data (Johnston et al. 2015; La Sorte 

et al. 2017). For simplicity, we decided to divide space into longitude-latitude squares 
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using un-projected latitude × longitude space. To account for the relatively low data 

density (Fink et al. 2013) in the southern part of the study area we doubled the length of 

stixel squares south of 12° latitude. Given the 30-day temporal dimension and minimum 

sample size requirements (see below for details), we found that a stixel length of 10° in 

the north and 20° in the south met our requirements, resulting in a minimum weekly 

coverage of 79% of the terrestrial Western Hemisphere in December and up to 90% 

coverage of the Western Hemisphere in July. Figure S1 shows realizations of 3 randomly 

located spatial partitions used to define STEM stixels for the analysis. This image shows 

how stixels overlap across the randomly located partitions and it shows how stixel size 

varies between North and South America. 

 

The base model minimum sample size requirements affect base model bias and variance 

as well as ensemble support. To fit a base model, we required that the training data meet 

the following three criteria. First, we required a minimum sample size of 50 checklists. 

Second, to insure minimum spatial coverage within each base model, we required that at 

least 50 cells from the spatially balanced case-control sampling procedure (see below for 

details) contained checklists. Finally, to insure a minimum signal to predict positive 

relative occupancy and abundance, we required at least 10 species detections, i.e. non-

zero counts, among the checklists. To guard against the effects of replicate surveys at 

popular birding locations, only one detection per day is considered from each location.  
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FIGURE S1: Realizations of three randomly located spatial partitions used to 

define STEM stixels. This image shows how stixels overlap across the randomly 

located partitions and it shows how stixel size varies between North and South 

America. One hundred randomized partitions were used for the analysis.  

 

 

Appendix S2: Subsampling procedures to estimate uncertainty 

The ensemble means are used to estimate relative occupancy and abundance. 

Consequently, the variation across the ensemble itself provides a conservative estimate of 

uncertainty for the ensemble mean (Efron 2014). A straightforward, brute force approach 

way to generate more accurate estimates of uncertainty for the ensemble mean can be 

computed by bootstrapping the ensemble mean, however, this is computationally 

prohibitive.  
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Instead, we employed a subsampling approach (Politis et al. 2009) following the 

computational strategy of Geyer (2013). We faced two challenges to implement this 

approach. First, the sample size, here, the ensemble support, was very small, 100 at most. 

Second, the computational efficiency of the approach was very important because we 

needed to compute uncertainty estimates for up to 86M quantities per species (= 614K 

locations / week * 52 weeks * 2 estimates per location [occupancy & abundance] + 

another 28M for the 14M training & testing checklists * 2 estimates per checklist).  To 

deal these challenges we selected a set of parameter settings that balanced the quality of 

the interval estimates with the computational costs of generating them.  

 

When the sample size was less than 10, subsampling was not performed and quantiles of 

the original sample were to estimate uncertainty. For sample sizes greater than or equal to 

ten, we computed the upper 90th confidence limit and lower 10th confidence limit. The 

subsampling was performed with two different sizes to facilitate estimation of the rate 

parameter used to correct the uncertainty estimates. Following Geyer (2013), we 

subsampled the square root of the ensemble support value and the -1.5 power of the 

ensemble support value.  

 

To check these parameter settings, a small simulation test was run.  We found that for 

sample sizes of 25 or less, the rate parameter estimates tended to be too small, resulting in 

intervals that were too small and had poor coverage. To mitigate this, we adjusted the rate 

parameter estimate upwards by 0.5 of the rate parameter’s standard error, producing more 
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conservative uncertainty estimates. In the cases where the rate parameter estimate was 

negative, subsampling was not performed and quantiles of the entire sample were used 

producing conservative uncertainty estimates. Note that ensemble support requirements 

for the occupancy and abundance estimates excludes most of the estimates suffering from 

these small sample size complications.  
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