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Abstract

Polygenic scores (PGS) are estimated scores representing the genetic tendency of an individual for a

disease or trait and have become an indispensible tool in a variety of analyses. Typically they are

linear combination of the genotypes of a large number of SNPs, with the weights calculated from an

external source, such as summary statistics from large meta-analyses. Recently cohorts with genetic

data have become very large, rendering external summary statistics superfluous. Making use of raw

data in calculating PGS, however, presents us with problems of overfitting. Here we discuss the essence

of overfitting as applied to PGS calculations, with one of the consequences being the conflation of genetic

correlation with environmental correlation. Our simulations show that the impact of overfitting due to

the overlap between the Target and the Validation data (OTV) is much less than overfitting due to

the overlap between the Target and the Discovery data (OTD), and that a large sample size can vastly

reduce OTD in terms of correlation. However, tests of genetic correlations will still be affected by OTD

due to increased power. A proposal called cross prediction is offered whereby both OTD and OTV can

be avoided when calculating PGS without external summary statistics. Software is made available for

implementation of the methods.
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Introduction

Polygenic scores, or polygenic risk scores (PGS), have become an indispensible tool in genetic studies

(Purcell et al., 2009; Opherk et al., 2014; Stahl et al., 2012; Agerbo et al., 2015; Krapohl et al., 2017,

2016; Byrne et al., 2014; Marquez-Luna et al., 2016; Ruderfer et al., 2013; Socrates et al., 2017; Power

et al., 2015; Plomin and von Stumm, 2018; Hagenaars et al., 2016; Ripke et al., 2014). Polygenic scores

are routinely calculated in small and large cohorts with genotype data, and they represent individual

genetic tendencies for particular traits or diseases. As such they can be used for stratifying individuals

into different risk group based on their genetic makeup (Ripke et al., 2014; Stahl et al., 2012; Agerbo

et al., 2015; Chatterjee et al., 2016). Potentially, different interventions could be given to individuals

with different risks, which is part of the vision in personalized medicine (Tremblay and Hamet, 2013;

Lenfant, 2013).

Currently, however, the predictive ability of PGS for complex traits remains considerably lower than

the heritability, although with increasing sample sizes and the number of Genome-wide association

studies, the power is set to increase (Chatterjee et al., 2013; Wray et al., 2014; Plomin and von Stumm,

2018). Nonetheless, even before the objective of personalized medicine can be achieved, PGS can be used

for studying the genetic influence of different phenotypes. By examining the correlation between PGS

and various phenotypes, researchers can gather evidence for whether the genetic influence on certain

traits were pleiotropic or specific (Domingue et al., 2014; Tesli et al., 2014; Chang et al., 2014; Machiela

et al., 2011; Power et al., 2015; Krapohl et al., 2016; Byrne et al., 2014). For example, using PGS, Power

et al. (2015) showed that genetic tendency for schizophrenia and bipolar disorder were predictive of

creativity, confirming earlier suggestions that creativity and tendency towards major psychotic illnesses

may share some common roots.

Polygenic scores are calculated as weighted sums of the genotype, with weights typically derived from

large cohorts or meta-analyses. A key requirement in the calculation of PGS is that the same individuals

should not be used both in the calculation of the weights (in the discovery dataset) and the PGS (in the

target dataset). Indeed, preferably, in order to avoid inflation in the assessment of correlation, samples

in the discovery and target dataset should not even be related (Wray et al., 2013). Recently, cohorts

with genotype data have become very large. Examples of such cohorts include the UK Biobank (n ≈
500,000), the 23andMe cohort (Diogo et al., 2017) (n ≈ 600,000), and the deCode cohort (Nielsen et al.,

2018) (n ≈ 350,000). An important question that surfaces is how we are to calculate PGS in these large

datasets. In studies to date using the UK Biobank, for example, following the recommended practice,

weights for the PGS were calculated from summary statistics and data external to the cohort (Hagenaars

et al., 2016; Liu et al., 2017; Nielsen et al., 2018). However, the exclusion of the target dataset from the

calculation of the summary statistics seems wasteful, given they have such large sample sizes. Moreover,

there may be phenotypes within these large cohorts which are not available elsewhere.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2018. ; https://doi.org/10.1101/252270doi: bioRxiv preprint 

https://doi.org/10.1101/252270
http://creativecommons.org/licenses/by-nc-nd/4.0/


To address this problem, we studied the statistical issues involved in the use of the same sample

in both the discovery and the target datasets, which are in essence those of overfitting. Overfitting is

defined as the inflation of the correlation of the PGS with the genetic component in the target dataset

over a completely independent (unseen) external dataset, and we show that three types of overfitting can

be delineated, and we considered their relative impact on PGS calculation. Particular emphasis is placed

on the possibility of obtaining false positive results due to overfitting, for example, when correlating an

overfitted PGS with a phenotype. Overfitting can lead to apparent genetic correlation even when there

is none. We propose a method we call cross prediction which avoids overfitting, which is made available

publicly as an R package.

Material and Methods

Three types of overfitting in calculating polygenic scores

In their review article, Wray et al. (2013) pointed out that if the same individuals were used in both

the target dataset and the discovery dataset or if they were related, estimates of the predictive power

of PGS would be inflated. Although not specifically mentioned, we believe that this phenomenon can

largely be explained by the overfitting of the data to the target dataset. Here, we define overfitting to

be the inflation of the correlation of the PGS with the genetic component in the target dataset over a

completely independent (unseen) external dataset. More precisely, let us assume the following linear

model

y = Xβ + ε (1)

ε ∼ N(0, σ2I) (2)

where y = (y1, y2, . . . , yn)′ denotes a vector of phenotype from n independent individuals from the

target dataset and is determined by a genetic component Xβ, and residual environmental effects

ε = (ε1, ε2, . . . , εn)′, with εi assumed independently and identically distributed. We assume X =

(x′1,x
′
2, . . . ,x

′
n)′ is a n-by-p genotype matrix and β a vector of causal effects. We also assume without

loss of generality that there is no population stratification because if there is, we assume that y and

X have the principal components of X regressed out of them as in Price et al. (2006). A PGS for an

individual i is an estimate of xiβ, denoted PGSi = xiβ̂. We define overfitting as

Cor(xiβ̂, yi) > Cor(xEi β̂, y
E
i ). (3)

where (xi, yi) is a randomly chosen sample from the target dataset, and (xEi , y
E
i ) is a randomly chosen

sample from an independent external dataset. Given the independence of Xβ and ε, equation (3) can
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be expressed as

Cor(xiβ̂,xiβ) + Cor(xiβ̂, εi) > Cor(xEi β̂,x
E
i β) + Cor(xEi β̂, ε

E
i ). (4)

where Cor(xEi β̂, ε
E
i ) = 0 by definition. A sufficient condition for no overfitting is thus

Cor(xiβ̂,xiβ) = Cor(xEi β̂,x
E
i β) (5)

Cor(xiβ̂, εi) = 0. (6)

The fact that when the target data is used to calculate the summary statistics β̂, overfitting occurs, can

be seen by considering a Directed Acyclic Graph (DAG)1 showing the relationship between Xβ̂ and Xβ

(Figure 1a). We see that Xβ̂ is connected to ε through y and thus expected to be correlated. Moreover,

because in general we expect Cor(xiβ̂, yi) > 0 and Cor(yi, εi) > 0, we expect Cor(xiβ̂, εi) > 0, resulting

in overfitting. In this article, we refer to this type of overfitting as OTD (Overfitting due to the overlap

between the Target and the Discovery data).

In Figure 1b we see that if we use an external discovery dataset for estimating β, Cor(xiβ̂, εi) = 0,

because the path between β̂ and y is broken. Moreover, if the external discovery sample xD, xE, and

x are all drawn from the same population, Cor(xiβ̂,xiβ) = Cor(xEi β̂,x
E
i β) and overfitting is avoided.

However, overfitting can still occur if we use the target dataset for selecting the tuning parameters or

p-value thresholds, which appears to be common in practice (e.g. Hagenaars et al., 2016; Socrates et al.,

2017; Stahl et al., 2017). This situation is illustrated in Figure 1c where there are now arrows pointing to

β̂ from X and y. Moreover, the fact that we generally choose the tuning parameter or p-value threshold

that maximizes the correlation between the PGS and the phenotype means that there is a Winner’s

curse such that the apparent correlation between the PGS and the phenotype is higher than it would

be in an external dataset. In this article we refer to overfitting due to the target data being used in

validation OTV (Overfitting due to the overlap between the Target and the Validation data).

Finally, let us note that the inflation of correlation as cautioned by Wray et al. (2013) concerns not

only the overlapping of samples. Rather, Wray et al. (2013) pointed out that inflation of correlation

was likely if the target dataset were genetically related to the discovery dataset. We illustrate this

situation in Figure 1d, where correlations are expected between x and xD. Here, although we still have

Cor(xiβ̂, εi) = 0, we cannot expect Cor(xiβ̂,xiβ) = Cor(xEi β̂,x
E
i β), leading to overfitting. However,

in this article we do not concern ourselves with this type of overfitting, since our primary aim is to

1For readers who are unfamiliar, a DAG can be seen as a graphical representation of the probabilistic dependency of the
different variables, and its interpretation is grounded in probability theory (Pearl, 2000). Two variables are ‘connected’
if a line can be traced through the graph connecting the two variables, except when a ‘collider’ is present along the path
that connects the two. A ‘collider’ is a variable within a path where the two edges connecting it are both arrows pointing
towards it, such as teh variables y, β̂, and Xβ̂, in Figure 1a. Probabilistically, variables that are connected are expected
to be dependent and correlated. Variables that are not connected are not dependent and thus not correlated.
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Figure 1: DAGs illustrating the relationship between the different variables in
PGS estimation (a) when the target data is also used in the estimation of β, (b)
when a separate discovery dataset (XD,yD) is used, (c) when the target dataset
is used in choosing the tuning paramter or the best β̂ among a set of different β̂s,
and (d) when the target dataset is genetically related to the discovery dataset.
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derive a method for calculating PGS in a large cohort. In other words, we define our xE to be the target

dataset x and do not worry if the target dataset gives an unbiased estimate of the predictive power of

the PGS. What we are concerned with, is when Cor(xiβ̂, εi) > 0, as happens under OTD and OTV,

there will be potential bias in using overfitted PGS in assessing genetic correlation, since the apparent

correlation between PGS and phenotypes could in fact be due to environmental correlations. Below we

introduce a method to avoid such possible false positive conclusions when assessing genetic correlations

between different phenotypes.

Cross-prediction as a method to overcome overfitting

As already noted above, overfitting can be avoided by breaking the path connecting y to β̂. One

way to do this in practice is to use an independent discovery dataset for estimating β (Figure 1(b)).

When faced with a large target dataset which we also want to use as our discovery dataset, we can

repeat this procedure in a cross-validation-like manner, i.e. we split the data into a number of folds,

and repeatedly estimate Xβ̂ for the different folds, using the remaining folds for discovery. We call

this procedure cross-prediction, to distinguish it from the more familiar procedure of cross-validation

where fold-splitting is used only for choosing tuning parameters (Varma and Simon, 2006; Abraham

et al., 2013; de Maturana et al., 2014). If external summary statistics are available, these can also be

meta-analysed with those calculated from the discovery folds. Moreover, in cross-prediction, we propose

that PGS from different folds be standardized before being stacked together in forming the final PGS.

This is so that the correlation of any variable with the resulting stacked PGS can represent the average

correlation between the particular variable and the fold-specific PGS (Appendix A). Moreover, we prove

that stacking the fold-specific PGS in this way preserves independence between individual elements of

Xβ̂ and ε (Appendix B).

In this section, we present two specific methods (Figure 2) for the implementing cross-prediction

using the following notations. Let the overall genotype matrix be X, the overall phenotype vector be

y, and the overall error be ε, with the three related as in (1). We assume without loss of generality

that there are no covariates for adjustment. If covariates adjustment is needed, simply let the covariates

be regressed out of X and y. We assume the data Ω = {X,y, ε} are split into N folds, such that

X = (X ′1,X
′
2, . . . ,X

′
N)′, y = (y′1,y

′
2, . . . ,y

′
N)′, ε = (ε′1, ε

′
2, . . . , ε

′
N)′. Let Ω−k = {X−k,y−k, ε−k}

denote the data without the kth fold. For estimating β, we use straightforward SNP-wise correlation

coefficients together with lassosum (Mak et al., 2017) to derive m different estimates of β indexed by

λ. Selection of the optimal λ differs between the two methods and is explained below.

Method 1 1. Use X−k,y−k to estimate β (for all values of λ). Let B̂k be the p-by-m estimated matrix of

β
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(a) Method 1: Ẑ is stacked before λ is chosen by validation.
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(b) Method 2: Validation is performed first to choose λ (green). The best column within Ẑ is
then chosen, although the values chosen for stacking are from a different half (red) to that used for
validation (green).

Figure 2: Cross-prediction by (a) Method 1, and (b) Method 2
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2. Calculate the PGS, XkB̂k for the kth fold, and let Ẑk be the column-standardized version of

XkB̂k

3. Repeat step 1 to 2 for all folds and stack together the Ẑk, such that Ẑ = (Ẑ
′
1, Ẑ

′
2, . . . , Ẑ

′
N)′.

4. Validate Ẑ against y, i.e. choose the column in Ẑ with the highest correlation with y, and

denote this by µ̂.

Method 2 1. As in Method 1, Use X−k,y−k to estimate β (for all values of λ). Let B̂k be the p-by-m

estimated matrix of β

2. Split the remaining fold into 2, such that Xk = (X ′k1,X
′
k2)
′.

3. Use one half to validate the estimated B̂k, i.e., to choose the column in B̂k which maximizes

the correlation between ykl and Ẑkl, the column standardized version of XklB̂k. Let β̂kl

denote the column thus identified.

4. Form the PGS using the other half and the chosen β̂kl. Let this be µ̂k,3−l = Xk,3−lβ̂kl.

5. Repeat step 3 to 4, reversing the role of the two halves.

6. Repeat step 1 to 5 for all other folds.

7. Stack together the µ̂k,3−l to form the final PGS, i.e. µ̂ = (µ̂′k1, µ̂
′
k2, . . . , µ̂

′
N2)
′.

Both Method 1 and Method 2 avoid OTD by separating the (sub-)dataset that estimate β from the (sub-

)dataset where the PGS is calculated. However, OTV still remains in Method 1. Method 2 avoids both

OTD and OTV by further separating the validation data from the data where the PGS is calculated.

However, Method 2 uses smaller samples for validation, and may lead to sub-optimal choices of λ. Our

simulation experiments as discussed below shed more light on the performance of these methods in

practice.

Implementation

The method proposed in this study is implemented an updated version of the lassosum package

(https://github.com/tshmak/lassosum) (Mak et al., 2017). Thus, in this framework, B̂ is estimated

in two stage. In the first stage, univariate summary statistics (correlation coefficients) are estimated

from the raw data. This stage can be performed efficiently using the highly optimized plink software

(Chang et al., 2015). If available, summary statistics from external sources can also be meta-analysed

together with those in the calculated from the data. In the second stage, LASSO or elastic net estimates

are derived using lassosum. A major advantage of this approach over performing LASSO or elastic net

on the raw dataset is that one can use only a subset of the data as the reference panel (while using

the entire dataset for the summary statistics). When dealing with data the size of the UK Biobank
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it becomes virtually impossible to carry out elastic net or LASSO in the usual manner with moderate

computing resources, particularly as we need to repeat calculations for the N folds. Using a subset of the

data for the reference panel is a compromise between subsetting the entire dataset and not subsetting

at all. In our simulation, a random sample of 1000 is taken as the reference panel.

Simulations

In the first set of simulations, we examined how severe a problem overfitting is in a relatively small

dataset. We used the Wellcome Trust Case Control Consortium (WTCCC) dataset of 15,605 individuals

and 359,973 SNPs (after QC). We randomly sampled 1,000 individuals. 1,000 SNPs were randomly

assigned to be causal. The causal effects followed a distribution of

βi ∼ N(0, 1) (7)

The phenotype was simulated as in equation (1), although to avoid unnecessary complication we assumed

no covariates. Further, we assumed a heritability of 0.5, i.e.,

εi ∼ N(0, V̂ar(Xβ)) (8)

We examined the correlation of the estimated PGS with the Xβ. We used 2-fold and 5-fold cross-

validation as well as the method of cross-prediction described above (both OTD and OTV). We also

examined the correlation of the PGS in an unrelated sample of 1,000 individuals from the same data.

As we aim to apply this method in a dataset the size of the UK Biobank, we also performed sim-

ulations on the UK Biobank data (UKBB). First, we extracted 7,185,952 variants with MAF ≥ 0.01

from the white British subset of the data (n = 300, 163). Here, we simulated our ‘true’ PGS using 2,000

causal SNPs chosen randomly, with the βi following the distribution of (7). In the UKBB simulations,

we assumed our phenotype was binary and simulated according to the liability threshold model:

zi =

1 if yi > t

0 otherwise
(9)

where t is a threshold determined by the prevalence of the disease and z = (z1, z2, . . . , zn)′ is the

phenotype. n =1,000, 10,000, and 100,000 individuals were randomly chosen from the dataset. When

n = 1, 000, the prevalence of disease was set as 0.1. When n = 10, 000, prevalence was either 0.01 or

0.1. When n = 100, 000, the prevalence was either 0.001, 0.01, or 0.1.

In the second set of simulations, we examined whether overfitting may lead to the detection of genetic

correlation between variables when there is none. Here, we simulated two phenotypes using (1), with β

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2018. ; https://doi.org/10.1101/252270doi: bioRxiv preprint 

https://doi.org/10.1101/252270
http://creativecommons.org/licenses/by-nc-nd/4.0/


simulated as before for both the WTCCC and the UKBB datasets. Denoting the two phenotypes by

y1 = Xβ1 + ε1 and y2 = Xβ2 + ε2, we further constrained Xβ1 and Xβ2 to have a correlation of 0

using a procedure described in Appendix C. We then simulated ε1 and ε2 such that Cor(ε1i, ε2i) = 0.5.

Thus, the two phenotypes had environmental correlation but not genetic correlation. We examined

whether the distribution of the p-values when testing for correlation between Xβ̂1 and Xβ̂2 as well as

between Xβ̂1 and y2 were significantly different from a null distribution.

WTCCC simulations were repeated 20 times and UKBB simulations were repeated 10 times.

Results

Figure 3 shows the comparison of correlation between the estimated PGS and Xβ using cross-validation

(CV) and cross-prediction (CP) from the WTCCC simulation. The most striking result is that the

correlation of the CV PGS in the dataset that generated the summary statistics (internal) was vastly

higher than in an external dataset, suggesting OTD overfitting had a large impact on the fit in CV.

This overfitting was much reduced when using CP. However, a small degree of overfitting could still be

observed in CP (Method 1), showing the much smaller impact of OTV. 5-fold CP was slightly more

predictive than 2-fold CP. Figure 4 shows the same with the UKBB data, using different sample sizes

and prevalence in a liability threshold model. When the sample size was 1,000 or 10,000, the same

pattern of overfitting was observed as in the WTCCC example. However, when the sample size was

100,000, the impact of OTD was also much less, and OTV was hardly noticeable.

Figure 5 shows the results of the second set of simulations using the WTCCC dataset. Similar to

the previous set, the CV PGS1 was highly correlated with Xβ1. The correlation with y1 was nearly

near 0.9, considerably higher than the true correlation between y1 and Xβ1, set at
√

0.5 ≈ 0.7 in

these simulations. However, a very high correlation with ε1 showed that this was in large part due to

correlation with ε1. This correlation with ε1 spilled over into correlation with ε2, and in turn with y2,

since ε1 and ε2 were correlated. Thus we see that apparent genetic correlation between a PGS calculated

using CV could in fact be due to environmental correlations. These overfits were largely abated when

using CP instead of CV, although as in the first set of simulation, the correlation of CP (Method 1)

PGS1 with ε1 and ε2 was slightly higher than expected. Figure 6 gives qq-plot of the p-values of a

regression of y2 on the estimated PGS. Inflation of the p-values were observed with CV but not with

CP (both Method 1 and Method 2), suggesting a negligible impact of OTV.

Figure 7 shows the same simulation in the UKBB dataset. When n = 1, 000 or n = 10, 000, a similar

pattern of overfitting was observed. When n = 100, 000 the degree of OTV was visibly less. Although

the CV PGS1 was still clearly associated with ε1, its association with ε2 and y2 was very low. Figure 8

gives the qq plots from the regression of y2 on PGS1. Although the correlation between y2 and PGS1

was apparently low in Figure 5, we see that an inflation of p-values is still very much evident when using
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Figure 3: Comparison of correlation of PGS with Xβ in the simulated data based
on the WTCCC (n = 1, 000): cross-validation versus PGS from cross-prediction.
Error bars represent the 95% confidence intervals.

CV.

Timings

Disregarding time taken to generate summary statistics, running CP on the WTCCC dataset took on

average 1,000 seconds for 2 folds and 2,300 seconds for 5 folds without parallelization. Running CP

on the UKBB dataset took on average 3,100 seconds (5 folds) when parallelized over 9 threads. Note

that results for Method 1 and Method 2 CP and CV can all be collected in one go. Note also that

the WTCCC simulations used s = (0.2, 0.5, 0.9, 1) while the UKBB simulations used s = (0.5, 1) as

parameters in lassosum. When s = 1, lassosum is much faster than when s < 1. Running CP in the

UKBB data using the same settings as in WTCCC would take around 3 times longer.

Discussion

In this article, we have given a theoretical account of overfitting when using the same sample both for

calculating summary statistics and PGS. It is shown that overfitting can be due to the target dataset

overlapping with the discovery dataset (OTD) and/or the validation dataset (OTV). It can also be due

to genetically related samples between the target and the discovery dataset (Type 3). We propose cross-

prediction (CP) as a practical method for overcoming this bias. Two methods for implementing cross-
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Figure 4: Comparison of correlation of PGS with Xβ in the simulated data based
on the UKBB: cross-validation versus PGS from cross-prediction. 5-fold CV and
CP were used. Error bars represent the 95% confidence intervals.
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Figure 5: Correlation of estimated PGS1 with (y1,Xβ1, ε1,y2,Xβ2, ε2) in the
second simulation based on the WTCCC data (n = 1, 000). Xβ1 and Xβ2

were uncorrelated but ε1 and ε2 were. rand1 and rand2 were randomly generated
Normal variables as controls. Error bars represent the 95% confidence intervals.
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Figure 6: qq-plot of p-values when regressing y2 on the estimated PGS1 in the
WTCCC simulation. Data from simulations with 2 and 5 folds were combined
together to increase samples.
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Figure 7: Correlation of estimated PGS1 with (y1,Xβ1, ε1,y2,Xβ2, ε2) in the
second simulation based on the UKBB data. Xβ1 and Xβ2 were uncorrelated
but ε1 and ε2 were. rand1 and rand2 were randomly generated Normal variables
as controls. Error bars represent the 95% confidence intervals.
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Figure 8: qq-plot of p-values when regressing y2 on the estimated PGS1 in the
UKBB simulation.
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prediction have been made available publicly in an R package (https://github.com/tshmak/lassosum).

CP (Method 1) has greater power, but does not eliminate Type 2 overfitting. CP (Method 2) completely

eliminates overfitting, but is less powerful. Simulations suggested the impact of OTV is relatively small,

and although the impact of OTD was large in smaller samples, in sample size approaching that of the

UK Biobank, the impact of OTD in terms of inflation in correlation was also small. However, p-value

calculations can still be inflated due to the larger power associated with larger samples.

We suggest using CP (Method 2) for examining genetic correlations in large samples, although in

smaller samples, CP (Method 1) can be used, and if a significant result is obtained, we further carry

out analysis using CP (Method 2) for verification. In situations where overfitting is not an issue (e.g. in

patient risk stratification), cross validation should be used since it has the most power. Due to the vast

demand on computational resources, we have not carried out an exhaustive simulation on the influence

of the number of folds in performance, although it appears from our simulation that using 5 folds has

greater power than using 2 folds. In general, larger number of folds means more information is captured

by the summary statistics, but it also means the validation data sets has a smaller sample size when

performing CP (Method 2), and a higher computational burden.

We have not discussed overfitting due to other kinds of overfitting in order to keep our focus. We note

that while CP (Method 2) may have avoided overfitting when being used to assess genetic correlations,

they can over-estimate prediction power if used within a sample that is related (Wray et al., 2013).

Moreover, we caution that when samples are very related, for example, in twin or family studies, then

their environmental components are also likely to be correlated. When Cor(εDi , εi) > 0, it is likely that

Cor(xiβ̂, εi) > 0, resulting in overfitting. One way to overcome this is to define the folds such that

families are not split across different folds.

Another note of caution concerns the use of PGS in genetic correlation calculations. Usually genetic

correlations can be assessed by examining the relationship between the PGS and various phenotypes.

However, in principle we can also examine the correlation between PGS calculated for different pheno-

types. We note that overfitting can still occur when correlating different PGS calculated using CP. This

is because in CP we try to keep the discovery and the target samples separate. However, when two PGS

are both calculated using CP, their discovery samples can overlap, leading to overfitting.

We conclude with a number of suggestions for future work. First, depending on the number of folds

use, a proportion of the sample is left out in the calculation of the summary statistics. It is unsure

whether there can be a procedure that uses all data and also avoids OTD and OTV. Secondly, the

current procedure is stochastic as the folds are randomly defined. The resulting PGS is also not a linear

predictor in that it is not calculated as a linear combination of X. Rather it is a mixture of different

linear combinations. This has the disadvantage that theoretical properties of the PGS are less easily

obtained. In principle, it is possible to find estimates of β such that when multiplied with X, equals

the CP PGS as calculated in our study. However, in our preliminary simulations, these estimates of β
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had very poor performance in external validation and we have not pursued this approach further. It is

also possible in principle to extend this work further to the case where the number of folds used equals

the sample size, such that we have a jackknife-like procedure for cross-prediction. This approach has

not been studied. Thirdly, calculation of PGS using cross-prediction is currently very time consuming

for large cohorts, as it involves repeating the procedure for the N folds. Performing informed pruning

(clumping) (Euesden et al., 2015) on SNPs before CP is a possible remedy which has not been tested

in the current study.
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A Standardizing PGS within fold before stacking approxi-

mates the average correlation of the PGS with another

variable

Let x = (x′1,x
′
2, . . . ,x

′
N)′ denote a stacked column of PGS, and y a column of phenotype. Further

assume x is standardized within fold, such that 1′xk = 0 and x′kxk = nk, and that y is standardized

such that 1′y = 0 and y′y = n =
∑

k nk without loss of generality. The correlation of x with y is

x′y/n. Let the standard deviation of y within fold k be 1/sk. We have

x′y

n
=

∑
k

x′kyksk
nk

nk
skn

(10)

where
x′
kyksk
nk

is the fold-specific correlation. Thus, x′y
n

is a weighted average of the fold-specific correlation

with weights nk

skn
. In general sk approximates 1, such that the weights are approximately optimal.

B Proof that Xβ̂ remain independent of with ε after stacking

As in the main text, we assume thatX = (X ′1,X
′
2, . . . ,X

′
N)′, y = (y′1,y

′
2, . . . ,y

′
N)′, ε = (ε′1, ε

′
2, . . . , ε

′
N)′.

Denote zk = Xkβ̂. From Figure 1(b), we establish that zk is independent of ε if β̂ is derived from a

different fold from zk. It follows that the ith element of zk, denoted zki is independent of the ith element

of ε, within a particular fold F . In notation:

fzi,εi|F(zi, εi) = fzi|F(zi)fεi|F(εi) (11)

Proof: fzi,εi(zi, εi) = fεi(εi)fzi(zi).

fzi,εi(zi, εi) =
∑
F

p(F)fzi,εi|F(zi, εi) (12)

=
∑
F

p(F)fzi|F(zi)fεi|F(εi) (13)

Now, because εi are assumed i.i.d. regardless of fold, we have

fεi|F(εi) = fεi(εi) (14)

fzi,εi(zi, εi) = fεi(εi)
∑
F

p(F)fzi|F(zi) (15)

= fεi(εi)fzi(zi) (16)
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completing the proof.

C A procedure for simulation two PGS with zero correlation

We seek β1 and β2 such that

β′1X
′PXβ2 = 0 (17)

P = I − 11′/n (18)

where X is of dimension n by p, with n < p.

Letting x = X ′PXβ1, we randomly generate γ. Letting β2 be the residuals of regression γ on x,

i.e., if

β2 = γ − xx′γ/x′x (19)

Xβ2 would be uncorrelated with Xβ1.

However, we want a fixed number of values in Xβ2 to be zero. To achieve this, we generate γ in

such a way so that x′γ = x′x. In this way,

β2 = γ − x (20)

Moreover, letting C denote the set of i where βi = 0, and 6 C its complement, we set

δi ∼ N(0, 1) (21)

γi =

xi if βi = 0

δic otherwise
(22)

c = x′6Cx 6C/x
′
6Cδ 6C (23)

This ensures
∑

i∈6C xiδic = x′6Cx 6C, and thus x′γ = x′x.
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