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Abstract 20 

Human pigmentation is a highly diverse trait among populations, and has drawn 21 

particular attention from both academic and non-academic investigators for thousands 22 

of years. To explain the diversity of human pigmentation, researchers have proposed 23 

that human pigmentation is adapted for ultraviolet radiation and driven by natural 24 

selection. Although studies have detected signals of natural selection in several human 25 

pigmentation genes, none have quantitatively investigated the historical selective 26 

pressures on pigmentation genes during different epochs and thoroughly compared the 27 

differences in selective pressures between different populations. In the present study, 28 

we developed a new approach to dissect historical changes of selective pressures in a 29 

multiple population model by summarizing selective pressures on multiple genes. We 30 

collected genotype data of 16 critical human pigmentation genes from 15 public 31 

datasets, and obtained data for 3399 individuals of five representative populations 32 

from worldwide. Our new approach quantified not only a recent incremental change 33 

of selective pressure (0.68 × 10-2/generation) in modern Europeans, but also a 34 

significant historical increase of selective pressure (1.78 × 10-2/generation) on light 35 

pigmentation shared by all Eurasians during the out-of-Africa event. We excluded the 36 

relaxation of selective pressures, and favored diversifying selection as the single 37 

explanation for the cause of light pigmentation in Eurasians, a long-standing puzzle in 38 

the evolution of human pigmentation. Our results suggest that epistasis plays 39 

important roles in the evolution of human pigmentation, partially explaining 40 

diversifying selection on human pigmentation among populations. 41 

42 
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Significance 43 

The color variation of human skin, hair, and eye is affected by multiple genes with 44 

different roles. This diversity may be shaped by natural selection and adapted for 45 

ultraviolet radiation in different environments around the world, since anatomically 46 

modern human migrated out from Africa to Eurasia. Here, we developed a new 47 

approach and quantified incremental changes of selective pressures on light 48 

pigmentation not only in modern Europeans but also in proto-Eurasians. Our results 49 

support diversifying selection as the single explanation for the cause of light 50 

pigmentation in Eurasians, and suggest that epistasis might have played important 51 

roles in the evolution of human pigmentation during the out-of-Africa event. 52 
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Introduction 54 

Human pigmentation—the color of the skin, hair, and eye—is one of the most diverse 55 

traits among populations. Its obvious diversity has attracted particular attention from 56 

both academic and non-academic investigators for thousands of years, as noted by 57 

Charles Darwin one century ago (1, p. 192) and as noticed by ancient Egyptians more 58 

than 4000 years ago (2, p. 6). Why human pigmentation diverges, however, remains a 59 

central puzzle in human biology (3). Some researchers have proposed that the 60 

diversity of human pigmentation is adapted for ultraviolet radiation (UVR) and driven 61 

by natural selection (4). Natural selection may favor dark skin for effectively 62 

absorbing sunlight and light skin for efficiently producing vitamin D. Dark skin may 63 

protect individuals against sunburn and skin cancer in low latitude areas with high 64 

UVR (4, 5), while light skin may prevent rickets amongst infants in high latitude areas 65 

with low UVR (6, 7). A better understanding of how natural selection shapes the 66 

diversity of human pigmentation could provide relevant and beneficial information for 67 

public health (4). 68 

 During the last 10 years, studies have applied statistical tests to detect signals of 69 

natural selection in several human pigmentation genes (8–18). These genes encode 70 

different proteins, including: signal regulators—ASIP, KITLG, MC1R—stimulating 71 

the melanogenic pathway; possible enhancers—BNC2, HERC2—regulating 72 

pigmentation gene expression; important enzymes—TYR, TYRP1—converting 73 

tyrosine into melanin; putative exchangers—OCA2, SLC24A4, SLC24A5, SLC45A2, 74 

TPCN2—controlling the environment within melanosomes; and an exocyst complex 75 
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unit and molecular motor—EXOC2, MYO5A—conveying vesicles and organelles 76 

within the cytoplasm (19–33). These proteins work at different stages of the 77 

melanogenic pathway, illustrating that human pigmentation is a complex trait affected 78 

by multiple genes with different roles. 79 

 Previous studies applied two groups of methods for detecting natural selection. 80 

One group of methods detects unusually long extended haplotype homozygosity 81 

(8–12, 14–16). The other group of methods identifies extreme local population 82 

differentiation (8, 9, 11–14, 16). Using both groups of methods, previous studies have 83 

been devoted to understanding the evolution of individual pigmentation genes; 84 

however, few studies have examined how multiple genes contributed to the evolution 85 

of human pigmentation. Moreover, none have quantitatively investigated the historical 86 

selective pressures of pigmentation genes during different epochs, and thoroughly 87 

compared the differences of selective pressures between different populations. To 88 

overcome these weaknesses, it is necessary to perform an extensive investigation with 89 

a creative approach. 90 

 In the present study, we extended an established method (34) to dissect historical 91 

changes of selective pressures for different epochs of human evolution. Using genetic 92 

variants from worldwide populations, we quantitatively investigated the selective 93 

pressures on human pigmentation during different stages of human evolutionary 94 

history. Our results well explain the current features of human pigmentation among 95 

representative populations. Using individual variants of pigmentation genes, we 96 

thoroughly compared the differences of selective pressures between populations. Our 97 
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results indicate epistasis plays an important role in the evolution of human 98 

pigmentation, partially leading to diversifying selection on human pigmentation 99 

among populations. 100 
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Results 102 

Selection model of multiple populations. We developed a new approach for 103 

dissecting historical changes of selective pressures during different epochs of human 104 

evolutionary history. The evolutionary history of five representative human 105 

populations was simplified as a binary tree (Fig. 1). Based on our previous work (34), 106 

we measured selective pressures by selection coefficients. For a single locus, we can 107 

estimate the selection (coefficient) difference per generation between populations i 108 

and j by 109 
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where Ap  and Dp  are the frequencies of ancestral and derived alleles, and jit ,  is 111 

the divergence time of populations i and j. Further, we extended Eq. 1 to estimate 112 

selection differences using multiple loci (Materials and Methods). 113 

 In a scenario with multiple populations, we can determine selection differences in 114 

multiple loci between paired populations by selection (coefficient) changes and 115 

durations of evolutionary stages. Then we can present selection differences between 116 

all the paired populations as an underdetermined system of equations: 117 

 Tδd = , (Eq. 2) 118 

where d  and δ  are vectors that denote the overall selection differences of 119 

population pairs and selection changes in history, and T  is a matrix containing 120 

durations of evolutionary stages (Materials and Methods).  121 

To investigate selection changes in our demographic model (Fig. 1), we 122 
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considered four independent equations from Eq. 2, and assumed that the selection 123 

change happens in only one of the two child processes after branching occurred 124 

(Materials and Methods). Therefore, we can dissect the evolutionary history of human 125 

pigmentation by parameterizing and solving the non-linear equations below: 126 
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Multistage selection changes of human pigmentation. To apply our new approach, 128 

we first summarized the overall selection differences (vector d  in Eq. 2) between all 129 

the population pairs in 15 loci associated with human pigmentation (Materials and 130 

Methods). Figure 2 plots the overall selection differences, and Table S1 provides more 131 

details. The maximum difference (3.059 × 10-2/generation) was observed between 132 

Europeans and West Africans, while the minimum difference (0.680 × 10-2/generation) 133 

was observed between Europeans and Siberians. The estimated 95% confidence 134 

intervals (CIs) indicate that these selection differences were significantly deviated 135 

from zero, except for the pair of East and West Africans (Table S2). The large 95% CI 136 

of the pair of East and West Africans (between -0.139 × 10-2 and 2.768 × 137 

10-2/generation) was likely due to the genetic drift between East and West Africans. 138 

Our results of selection differences are consistent with differences of skin reflectance 139 

between populations (Spearman correlation coefficient ρ = 0.95, p < 0.001, Table S3), 140 
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suggesting that selective pressures on multiple genes can result in different skin colors 141 

among populations. We also note that selective pressure in Siberians was slightly 142 

stronger than that in East Asians (Fig. 2), which is consistent with the view that 143 

latitude is one of the important factors in the evolution of human pigmentation (6, 35). 144 

 We next parameterized and solved Eq. 3 to dissect the overall selection 145 

differences into multistage selection changes for different evolutionary processes. 146 

This investigation gave eight possible solutions for the multistage selection changes, 147 

any of which can fully explain the observed selection differences between the 148 

population pairs (Table 1). Further analysis suggests that solution #1 is the optimal 149 

solution in our evolutionary scenario (Materials and Methods). We present the 150 

sequential selection changes of solution #1 in Fig. 3. This solution indicates that the 151 

largest selection change may have occurred during the out-of-Africa event (δ8 = 1.78 152 

× 10-2/generation, Table 1), which implies a dramatic environmental change at the 153 

first stage of the great human migration. 154 

 We then summarized all the selection changes on the evolutionary path of each 155 

population (Table S4). All the eight possible solutions exhibited the same pattern that 156 

the summarized selection changes were positive for all Eurasians since the 157 

out-of-Africa event (in the range between 0.36 × 10-2 and 3.33 × 10-2/generation, 158 

Table S4), which indicates that light skin is favorable for all Eurasians. All the 159 

solutions suggest that the modern European lineage had the largest selective pressure 160 

on derived alleles, whereas the modern East Asian lineage experienced the smallest 161 

selective pressure of light pigmentation. From the optimal solution, our results 162 
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suggest that the modern European lineage had an incremental selection change (δ3 = 163 

0.68 × 10-2/generation, Table 1), while the modern East Asian lineage had a 164 

decremental change (δ5 = -1.42 × 10-2/generation, Table 1), experiencing a possible 165 

relaxation of selective pressure on derived alleles. These observations are consistent 166 

with the lower skin reflectance in East Asians than in Europeans (7, Table S3). 167 

Quantification of selection differences in individual loci. Finally, we separately 168 

quantified selection differences of the selected 31 single nucleotide polymorphisms 169 

(SNPs) to explore selection patterns of the individual loci (Materials and Methods). 170 

Our pilot analysis illustrates that linkage disequilibrium was generally weak between 171 

these SNPs (Fig. S1). Statistical tests suggest that most of the selection differences 172 

between populations were highly significant (Table S5). Therefore, these differences 173 

probably could not be explained by population history or the relaxation of selective 174 

pressures. Based on the selection patterns of the individual loci, we categorized the 31 175 

selected SNPs into four groups (Fig. 4). 176 

 In the first group, all Eurasians presented directional selection on derived alleles 177 

of the SNPs (Fig. 4A). This result is consistent with the observation that reduced 178 

pigmentation occurred in most populations outside Africa. In this group, rs6119471 179 

(ASIP), rs2228479 (MC1R), and rs885479 (MC1R) showed extreme selection 180 

differences between Africans and Eurasians. Among them, the selection difference of 181 

rs6119471 was ranked the second largest in our study (ΔsEAS-WAF = 2.274 × 182 

10-3/generation). We note that these two genes are the major regulators upstream of 183 

the melanogenic pathway (Fig. 5). Conversely, rs4776053 (MYO5A) and rs4959270 184 
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(EXOC2) had small selection differences, suggesting their little contribution to the 185 

diversity of human pigmentation. 186 

 The second and third groups showed European- and Asian-specific selection, 187 

respectively (Fig. 4B and 4C). One notable SNP is rs1426654 (SLC24A5), which had 188 

the largest selection difference in our study (ΔsEUR-EAS = 2.625 × 10-3/generation). 189 

Previous studies reported that this SNP is under strong directional selection in 190 

Europeans (8–10, 12–14, 36). Another notable SNP is rs1800414 (OCA2), which had 191 

the third largest selection difference in our study (ΔsEAS-WAF = 2.217 × 192 

10-3/generation). Several studies have suggested directional selection on this SNP in 193 

East Asians (15, 37, 38). These large selection differences indicate the significant 194 

contributions of these SNPs to light pigmentation in Europeans and East Asians, 195 

respectively. In addition, other SNPs in these groups support the hypothesis that 196 

recent natural selection for light pigmentation independently occurred in Europeans 197 

and Asians since their divergence. In these two groups, most of the genes work 198 

downstream of the melanogenic pathway (Fig. 5). 199 

 The last group included the remaining four SNPs (Fig. 4D), which exhibited 200 

specific selection differences between limited populations pairs. Among them, the 201 

derived allele of rs1800401 (OCA2) is associated with dark pigmentation (20, 21, 39). 202 

Our study indicates a rare case that the variant associated with dark pigmentation 203 

might be favored by natural selection.  204 
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Discussion 205 

In the present study, we dissected historical changes of selective pressures by 206 

summarizing the selection differences in multiple human pigmentation genes. Our 207 

results quantify not only a recent incremental change of selective pressure (δ3 = 0.68 208 

× 10-2/generation, Table 1) in Europeans, but also a significant historical increase of 209 

selective pressure (δ8 = 1.78 × 10-2/generation, Table 1) that favored light 210 

pigmentation in all Eurasians during the out-of-Africa event. Recent studies using 211 

ancient DNA support our observation of recent directional selection in Europeans (17, 212 

40). Compared with these ancient DNA studies, our study has the advantage that we 213 

do not need to assume population continuity (17, 41), because our study is based on 214 

genetic data from only present-day populations. Thus, our results could provide more 215 

solid evidence of the recent directional selection in Europeans. Further, our results 216 

demonstrate independent selective pressures on light pigmentation in modern 217 

Europeans and East Asians as previous studies (12, 13, 37, 38), and a shared selective 218 

pressure that favored light pigmentation in proto-Eurasian populations. This shared 219 

selection is consistent with other studies, which revealed that ASIP, BNC2, and 220 

KITLG were under directional selection before the divergence of ancestral Europeans 221 

and Asians (9, 42). Unlike previous studies, we summarized selective pressures on 222 

multiple human pigmentation genes with larger sample size and more representative 223 

populations. Therefore, our results could be more relevant to the evolution of human 224 

pigmentation. Overall, our results suggest that natural selection continuously favors 225 

light pigmentation in Eurasians since the out-of-Africa event, supported by allele age 226 
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estimation from another study (43). 227 

 In addition, our results of individual loci strongly suggest that epistasis plays a 228 

critical role in the evolution of human pigmentation. Most of the selected genes 229 

shared by Eurasians are major regulators upstream of the melanogenic pathway (Fig. 230 

5), such as ASIP, KITLG, and MC1R (Fig. 4A). MC1R encodes a 231 

seven-transmembrane G-protein coupled receptor that can interact with 232 

α-melanocyte-stimulating hormone (α-MSH), and switch the melanogenic pathway 233 

from synthesizing the red/yellow phenomelanin to black/brown eumelanin. When 234 

UVR exists, MC1R is activated by α-MSH, resulting in the synthesis of eumelanin 235 

(21); α-MSH can be blocked or inhibited by agouti signaling protein (ASIP), leading 236 

to the production of phenomelanin (19). Most of the remaining genes (Fig. 4B and 4C) 237 

with continental-specific selection patterns work downstream of the melanogenic 238 

pathway (Fig. 5). These upstream genes can regulate the expression of genes 239 

downstream in the melanogenic pathway, such as TYR, TYRP1, OCA2, and SLC45A2 240 

(44, 45). Published genetic association studies could support our hypothesis about the 241 

role of epistasis in light pigmentation. The derived allele of rs12913832 (HERC2) 242 

significantly increases the risk of light skin, only when individuals also carry derived 243 

alleles of the upstream gene MC1R (46, 47). These upstream genes contributed large 244 

selection differences to all Eurasians (Fig. 4A), indicating that epistasis might have 245 

played an important role in the evolution of human pigmentation during the 246 

out-of-Africa event. 247 

 Finally, our results also solve the long-standing puzzle regarding whether light 248 
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pigmentation in low UVR areas is caused by diversifying selection or the relaxation 249 

of selective pressures (17, 48, 49). We used the statistical test that we recently 250 

developed (34) to exclude the relaxation of selective pressures, and favor diversifying 251 

selection as the single explanation. Before our study, multiple studies closely 252 

inspected MC1R because its coding region has unusually higher diversity in Eurasians 253 

than in Africans (9, 12, 13, 16, 50–52). These studies reached different conclusions, 254 

however, either diversifying selection or the relaxation of selective pressures. The 255 

relaxation of selective pressures (51) would suggest that the diversity of MC1R 256 

variants increased in Eurasians due to the lack of selective constraints. In this scenario, 257 

the genetic diversity of MC1R variants could be largely attributed by genetic drift. In 258 

contrast, diversifying selection (50) would suggest that MC1R variants were under 259 

directional selection in Eurasians. In this scenario, genetic drift cannot explain the 260 

genetic divergence of MC1R between Africans and Eurasians. Our results show that 261 

the divergences of rs2228479 (MC1R) and rs885479 (MC1R) between Africans and 262 

Eurasians are highly significant departure from neutral evolution (Table S5). 263 

Experimental evidence suggests that the derived allele of rs2228479 (MC1R) could 264 

cause lower affinity for α-MSH than the ancestral allele (56). Another study showed 265 

that the derived allele of rs885479 (MC1R) carries a lower risk of developing freckles 266 

and severe solar lentigines than the ancestral allele in East Asians (57). These studies 267 

revealed the potential roles of these MC1R variants in pigmentation phenotypes. In 268 

addition to our results, one study reported possible diversifying selection in parts of 269 

the promoter sequence of MC1R (58). Combining our previous results with 270 
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aforementioned experimental evidence, we suggest that diversifying selection may 271 

have occurred since the out-of-Africa event, and favored light pigmentation through 272 

epistasis.  273 

 We note that our investigation has several limitations. First, we assumed that the 274 

selection change occurs in only one of the two branching processes. This assumption 275 

is consistent with the stepping stone model (59), which is a good and simple 276 

approximation to the history of human migration. Second, we obtained eight possible 277 

solutions of historical selection changes (Table 1). Although we chose the most 278 

conservative one as the optimal solution, we cannot exclude the possibility of other 279 

solutions. All the solutions, however, show the same trend of natural selection that 280 

light pigmentation is favored in all Eurasians. This reflects the difficulty of analyzing 281 

historical selective pressures, which is a well-recognized challenge in population 282 

genetics. 283 

 To summarize, our study provides information of historical selective pressures 284 

during different epochs of the evolution of human pigmentation. The results of our 285 

analysis suggest that epistasis partially explains the diversifying selection on human 286 

pigmentation among worldwide populations. Further studies are in progress to verify 287 

our present views on the evolution of human pigmentation. 288 

  289 
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Materials and Methods 290 

Data collection. Fifteen publicly available datasets containing genotype data from 291 

worldwide human populations were downloaded from web resources (60–74). 292 

Data preparation. All the downloaded data were transferred to genomic coordinates 293 

using NCBI dbSNP (build 144) with the Human Reference Genome hg19. A merged 294 

dataset containing 6119 individuals and 81,364 SNPs were obtained after removing 295 

duplicate and related individuals (Table S6, S7). PLINK 1.7 (75) was used to exclude 296 

SNPs for which genotyping rates were lower than 0.99 and major allele frequencies 297 

were lower than 0.05 (--geno 0.01 --maf 0.05). SNPs in strong linkage disequilibrium 298 

were removed by applying a window of 50 SNPs advanced by 5 SNPs and an r2 299 

threshold of 0.02 (--indep-pairwise 50 5 0.02) in PLINK. The remaining 13,499 SNPs 300 

were used for principal components analysis (PCA). PCA was performed using 301 

SMARTPCA (version: 13050) from EIGENSOFT 6.0.1 (76, 77). After removing 302 

individuals from admixed populations and outliers (Table S8) identified by PCA, 303 

3399 individuals (Table S9) were obtained and divided into five groups according to 304 

their geographic regions for further analysis. PCA plots (Fig. S2) showed these 3399 305 

individuals were properly separated into different population groups. 306 

Data imputation. Genotypes of 16 human pigmentation genes with 500-kb flanking 307 

sequences on both sides were obtained from the downloaded datasets. Haplotype 308 

inference and genotype imputation were performed on the selected genotypes using 309 

BEAGLE 4.1 with 1000 Genomes phase 3 haplotypes as the reference panel (78, 79, 310 
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Table S10). During phasing and imputation, the effective population size was assumed 311 

to be 10,000 (Ne=10000), and the other parameters were set to the default values. 312 

Forty-two SNPs were selected for analysis due to their strong association with human 313 

pigmentation in published genome-wide association studies or phenotype prediction 314 

models (Table S11). Eleven SNPs (rs1110400, rs11547464, rs12203592, rs12821256, 315 

rs1800407, rs1805005, rs1805006, rs1805007, rs1805008, rs1805009, rs74653330) 316 

were removed because of their low frequencies in our datasets after imputation (Fig. 317 

S3). Because rs12203592 (IRF4) was removed, 15 loci with the remaining 31 SNPs 318 

were used for further analysis. 319 

Selection difference estimation in a single locus. The logarithm odds ratios for the 320 

selected loci were calculated and used for estimating their selection differences 321 

between populations. The estimated CIs were calculated using the imputed genotype 322 

data of 31 SNPs. Variances of genetic drift between populations (Fig. S4, Table S12) 323 

were determined using 13,499 SNPs without strong linkage disequilibrium in the 324 

merged dataset (see Data preparation). Details of the calculations are described 325 

elsewhere (34). Results were presented in Table S5, and visualized in heat maps (Fig. 326 

4) using Python 3.5.1 with Matplotlib 1.4.3 through Jupyter Notebook 4.1.0 in 327 

ANACONDA 2.4.0. 328 

Selection difference estimation in multiple loci. We extended Eq. 1 to estimate the 329 

selection difference in multiple loci. Here, we take two bi-allelic loci as an example. 330 

We can estimate the selection difference of the haplotype carrying two derived alleles 331 

between populations i and j by 332 
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where 
21AAp  is the frequency of the haplotype carrying two ancestral alleles, 

21DDp  334 

is the frequency of the haplotype carrying two derived alleles, and jit ,  is the 335 

divergence time between populations i and j. Assuming linkage equilibrium, we have 336 
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, 337 

where 
1Ap  and 

2Ap  are the frequencies of ancestral alleles in the first and second 338 

loci, respectively; 
1Dp  and 

2Dp  are the frequencies of derived alleles in the first 339 

and second loci, respectively; and 1
,
L

jis∆  are 2
,
L

jis∆  the selection differences between 340 

populations i and j in the first and second loci, respectively. Therefore, we can obtain 341 

the overall selection differences of multiple loci by summarizing estimations of 342 

individual loci. 343 

Selection difference dissection in a multiple population model. We developed an 344 

approach to calculate the selection differences for different evolutionary stages using 345 

our demographic model of five populations (Fig. 1). When k is the most recent 346 

common ancestral population of i and j, we can divide Δsi,j in Eq. 1 into separate 347 

terms: 348 
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 We can further divide the selection difference between paired populations into 350 

multiple terms, if there are multiple branches between them (Fig. 1). For example, 351 

using the notations and demographic model in Fig. 1, we can estimate the total 352 

selection difference between Europeans and West Africans as 353 
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have 357 

 ( ) ( )218317233111,3 ttsttstststs −+−−+−=∆ . (Eq. 4) 358 

Therefore, we can represent the selection difference between paired populations as a 359 

combination of multistage selection coefficients. Moreover, if we let s0 be the 360 

selection coefficient of the population in the root, we can express the selection 361 

coefficients of populations in different branches using s0 plus some selection changes 362 

(Fig. 1). Using the notations in Fig.1, we can rewrite Eq. 4 into 363 

1817233111,3 ttttts δδδδ +−+−=∆ . 364 

As a result, we can write down the selection differences of all the paired populations 365 
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in Fig. 1 as Eq. 2, where 366 

( )Ttstststststststststs 34,523,523,412,512,412,311,511,411,331,2 ∆∆∆∆∆∆∆∆∆∆=d367 

( )T87654321 δδδδδδδδ=δ , 368 

and 369 
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T . 370 

Here, the superscript T denotes the transpose of a vector. Because this system has 371 

collinearity, we chose four independent equations, and assumed that one population 372 

majorly contributes to the selection difference between any paired populations i and j 373 

sharing the most recent common ancestor k: 374 

0=jiδδ . 375 

 We also assumed 07 =δ , because the ancestral African population before the 376 

divergence of East and West Africans stayed in the same environment. Its selective 377 

pressure should be the same as that of the population in the root. In other words, 378 

07 ss = . Therefore, we can transform Eq. 2 into Eq. 3 and solve it in R 3.2.0 (80) with 379 

RStudio 1.0.136 (81). 380 
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Optimal solution. Under neutral evolution (NE), we considered each estimated δ as 381 

an independent random variable following a normal distribution with zero mean and 382 

σ2 variance. For each solution with four variables, the summation below follows a 383 

chi-square distribution with four degrees of freedom: 384 

( )4~1 22
2 χδ

σ ∑
i

i . 385 

 Therefore, we have Pr(|δ|2 > |δa|2 | NE) ≥ Pr(|δ|2 > |δb|2 | NE), if |δa|2 ≤ |δb|2 for 386 

solutions a and b. In other words, we can choose the most conservative solution with 387 

the least deviation from neutral evolution using a probabilistic approach.388 
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Figure Legends 600 

Fig. 1. Modeling selective pressures with multiple population phylogeny. We 601 

modeled the evolutionary history of five representative human populations as a binary 602 

tree. The details of demographic events were ignored. Here, si (i = 0, 1, ..., 8) denotes 603 

the selection coefficient of the i-th epoch. δi (i = 1, 2, ..., 8) denotes the selection 604 

change of the i-th epoch, and can be obtained by estimating selection differences 605 

between paired populations. The numbers on the branches indicate different epochs. 606 

In the present study, we assumed that the divergence time of separation between 607 

Africans and Eurasians was ~3600 generations ago; the divergence time of separation 608 

between Europeans and Asians was ~3000 generations ago; the divergence time of 609 

separation between Siberians and East Asians was ~2000 generations ago; and the 610 

divergence time of separation between East and West Africans was ~2000 generations 611 

ago. 612 

Fig. 2. The overall selection differences in multiple loci between populations. We 613 

summarized the overall selection differences in 15 loci for paired representative 614 

populations using genotype data from 15 public datasets. Red color (positive numbers) 615 

indicates selective pressures of populations in rows are larger than those in columns; 616 

blue color (negative numbers) indicates selective pressures of populations in rows are 617 

smaller than those in columns. Populations are abbreviated as follows: WAF, West 618 

Africans; EAF, East Africans; EUR, Europeans; SIB, Siberians; EAS, East Asians. 619 

Fig. 3. Historical changes of selective pressures on human pigmentation during 620 
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different epochs of human migration. We determined historical changes of selective 621 

pressures on human pigmentation during different epochs by solving the non-linear 622 

equations developed in this study. The most conservative solution was chosen to 623 

represent the possible historical selection on the world map. We observed not only a 624 

recent incremental change of selective pressure in modern Europeans, but also a 625 

significant historical increase of selective pressure on light pigmentation in all 626 

Eurasians during the out-of-Africa event. Here, s0 is the selection coefficient of the 627 

ancestral population for all modern human populations. The numbers are the selection 628 

changes (× 10-2/generation) during different epochs. Zero changes are ignored. The 629 

arrows indicate the direction of human migration, and their color gradient indicates 630 

the trends of human skin color. 631 

Fig. 4. Selection differences in individual loci between populations. We used Eq. 1 632 

to quantify the selection differences of 31 SNPs associated with human pigmentation, 633 

and categorized them into four kinds of selection patterns: (A) Eurasian-shared 634 

pattern; (B) European-specific pattern; (C) Asian-specific pattern; and (D) Other. Red 635 

color (positive numbers) indicates selective pressures of populations in rows are 636 

larger than those in columns; blue color (negative numbers) indicates selective 637 

pressures of populations in rows are smaller than those in columns. All alleles are in 638 

the forward strand of the Human Reference Genome, and the arrows indicate 639 

substitutions from ancestral to derived alleles. Populations are abbreviated as follows: 640 

1, West Africans; 2, East Africans; 3, Europeans; 4, Siberians; 5, East Asians. 641 

Fig. 5. Human pigmentation genes under different population-specific selection 642 
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in the melanogenic pathway. We placed human pigmentation genes affected by 643 

population-specific selection into the melanogenic pathway. Two critical genes, ASIP 644 

and MC1R, are the major regulators upstream of the melanogenic pathway. The 645 

largest selection differences of these two genes were between Africans and Eurasians, 646 

indicating that epistasis plays important roles in the evolution of human pigmentation. 647 

Most of the remaining genes are downstream of the melanogenic pathway. The 648 

melanogenic pathway is based on previous publications (4, 30–32, 53–55). The 649 

arrows indicate the direction of the melanogenic pathway. 650 

 651 
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Table 1. Solutions of historical selection (coefficient) changes during different 

epochs (× 10-2/generation).  

Solution δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 

#1 -1.28 0 0.68 0 -1.42 0 0 1.78 

#2 -1.28 0 1.63 1.42 0 0 0 0.99 

#3 -1.28 0 0 0 -1.42 -0.68 0 2.35 

#4 -1.28 0 0 1.42 0 -1.63 0 2.35 

#5 0 1.28 0 0 -1.42 -0.68 0 3.06 

#6 0 1.28 0 1.42 0 -1.63 0 3.06 

#7 0 1.28 0.68 0 -1.42 0 0 2.49 

#8 0 1.28 1.63 1.42 0 0 0 1.70 

We applied our new approach to dissect historical changes of selective pressures in a 

multiple population model by summarizing selective pressures on multiple human 

pigmentation genes. Here, δi (i = 1, 2, ..., 8) denotes the selection change of the i-th 

epoch, as shown in Fig. 1. A positive change indicates a stronger directional selection 

on derived alleles than before; a negative change suggests a weaker positive selection 

on derived alleles than before. Further, we chose solution #1 as the most conservative 

solution using a probabilistic approach. 
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