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Correct taxonomic identification of DNA sequences is central to studies of biodiversity 37 

using both shotgun metagenomic and metabarcoding approaches. However, there is no 38 

genetic marker that gives sufficient performance across all the biological kingdoms, 39 

hampering studies of taxonomic diversity in many groups of organisms. We here present 40 

a major update to Metaxa2 (http://microbiology.se/software/metaxa2/) that enables 41 

the use of any genetic marker for taxonomic classification of metagenome and amplicon 42 

sequence data. 43 

Sequencing of DNA has revolutionized taxonomy, providing unprecedented resolution for 44 

species identification and definition1,2. Similarly, the advent of large-scale sequencing techniques 45 

has opened entirely new windows on ecology, both for microbes and multicellular species3. In 46 

particular, high-throughput assignment of species and genus designations based on mixed 47 

samples of organisms or environmental substrates, so called DNA metabarcoding4, has made it 48 

possible to perform fine-tuned investigations of taxonomic diversity and to understand ecological 49 

interactions in different types of environments. However, an important bottleneck in such 50 

analyses is the size and quality of the reference sequence data to which the newly generated 51 

sequence reads are compared5,6. Furthermore, while the ribosomal small-subunit (16S/18S/SSU) 52 

is a popular marker choice, no single genetic marker seems to be sufficient for covering all 53 

taxonomic groups with satisfactory accuracy for species or even genus assignments7-9. This has 54 

led to the establishment of a wide range of other genetic markers for DNA barcoding and 55 

metabarcoding in different organisms, such as rbcL, matK, trnL, and trnH for plants10, the ITS 56 

region for fungi11, and the COI gene for animals12. This broad diversity of DNA barcodes 57 

challenges sequence classification tools, which usually have been developed with the rRNA genes 58 
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in mind13-15. Although some of these software tools can be re-trained on other reference datasets, 59 

or have their reference databases exchanged for datasets representing other genes, they still make 60 

assumptions with regards to the reference data – such as global alignability – that often negatively 61 

affect performance, or prevent software operation altogether. In addition, increasing stringency 62 

with regards to correct taxonomic assignment often comes at the cost of lower proportions of 63 

classified sequences16. This tendency has been shown for some taxonomic classifiers also when 64 

operating on the rRNA genes17. The classification tool that appear least prone to show such a 65 

relationship is Metaxa2, which is based on a combination of hidden Markov models (HMMs) and 66 

sequence alignments17. Metaxa2 examines arbitrary DNA sequence datasets, such as genomes, 67 

metagenomes, or amplicons, and extracts the SSU and/or LSU rRNA genes; classifies the 68 

sequences to taxonomic origin; and optionally computes a range of diversity estimates for the 69 

studied community. However, Metaxa2 has so far been strictly limited to operation on the rRNA 70 

genes, preventing its use for other DNA barcodes. Yet, the capability of Metaxa2 to achieve high 71 

precision for its classifications while maintaining relatively high sensitivity would be highly 72 

desirable also for other genetic markers, particularly as these genes often are under-sampled in 73 

terms of species coverage16. Against this backdrop, the aim of this study was to adapt the 74 

Metaxa2 software for any additional DNA barcode. To this end, the paper presents an update to 75 

Metaxa2 itself, allowing the use of custom databases. We also introduce the Metaxa2 Database 76 

Builder – a software tool that allows users to create customized databases from DNA sequences 77 

and their associated taxonomic affiliations – and a repository for additional reference sets to meet 78 

the needs of the user. 79 
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The Metaxa2 Database builder has three different operating modes. The divergent mode is 80 

adapted to deal with barcoding regions for which fairly large sequence variability occurs among 81 

the target taxa, such as the eukaryotic ITS region18, the trnH gene used in plant barcoding16 and 82 

the COI gene used, e.g., for insects12. The conserved mode, on the other hand, is suitable for 83 

barcoding regions that are highly conserved among the target taxa, such as the SSU rRNA genes19 84 

and the bacterial rpoB gene20. In addition, this mode is advisable for certain barcoding genes used 85 

in narrower taxonomic groups, such as Oomycota. In the conserved mode, the software extracts 86 

the barcoding regions from every input sequence and aligns them in order to determine the level 87 

of conservation across every position in the alignment. The most conserved regions are then 88 

extracted from the alignment and used to build HMMs that can be used to extract the barcoding 89 

region from metagenomic data. In the divergent mode, the database builder instead clusters the 90 

input sequences, aligns every individual cluster and builds one HMM for each cluster. The third 91 

mode – the hybrid mode – combines the features and advantages of the two others, but also their 92 

drawbacks. It should therefore only be used when none of those produces satisfactory results. 93 

A key component for the high accuracy of Metaxa2 is the hand-curated classification database17. 94 

In the database builder, we have tried to emulate this curation by automating as much of our 95 

procedure as possible. There are three ways in which the software attempts to improve the 96 

taxonomic information. First, it can remove uninformative sequences from unknown specimens 97 

or mixed environmental samples. Second, it can make an effort to standardize the input 98 

taxonomy into seven levels. Finally, it can filter out entries without taxonomic affiliation at, for 99 

example, the genus or species level. 100 
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We evaluated the Metaxa2 Database Builder on 11 different barcoding regions, targeting a variety 101 

of uses (Supplementary Table 1). We first assessed the software performance on full-length 102 

sequences using the self-evaluation function, measured in terms of sensitivity, specificity, and 103 

error per assignment rate (Supplementary Fig. 1, see methods for details). In general, we found 104 

that at least one of the methods produced more than 80% correct assignments at the family level 105 

for half of the markers (Fig. 1a). However, three of the genetic markers – rpb1, rpb2 and cpn60 –106 

 consistently showed lower performance across all groups, even at the order level. When we 107 

multiplied the proportion of correct assignments with the total proportion of sequences assigned, 108 

it was clear that the divergent mode consistently was the best performing setting by this measure 109 

(Fig. 1b), mostly because the divergent mode always included the largest proportion of the input 110 

sequences in the final database (Supplementary Fig. 2). However, since the divergent mode 111 

includes essentially all input sequences in the classification database, it necessitates more careful 112 

manual curation of the dataset used for database creation. Therefore, if the data at hand is of 113 

uncertain quality, it may still be more adequate to use the conserved mode. 114 

 115 
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Fig. 1. Self-evaluated performance of the Metaxa2 Database Builder in different operating modes (conserved, 116 
divergent and hybrid) on ten different DNA barcoding regions. A) Proportion of assigned sequences classified to the 117 
correct order (circles), family (diamonds) and genera (triangles). B) Proportion of correctly assigned sequences 118 
multiplied with the proportion of sequences included in the final classification databases (see Supplementary Fig. 2). 119 
The ATP9-NAD9 genetic marker is not shown, because it only had relevant taxonomic differences at the species 120 
level. 121 

 122 

As an additional performance assessment, we followed the procedure from the original Metaxa2 123 

evaluation17 and generated fragments of 150 nucleotides from each barcoding region to estimate 124 

the performance on shotgun metagenomic data. Here, we found that for most regions, the 125 

divergent mode generated the highest proportion of correct classifications (Fig. 2a). For 126 

EF1alpha, the hybrid mode performed better, for matK the operating modes were essentially tied, 127 

and for ATP9-NAD9 the conserved and hybrid modes performed the best. However, the 128 

divergent mode also produced higher numbers of misclassifications than the conserved mode did 129 

for ITS2, matK and rbcL, although the hybrid mode showed the largest numbers of incorrect 130 

assignments overall (Fig. 2b). Generally, the divergent mode showed the lowest levels of 131 

unclassified input sequences and over-predictions (Fig. 2c, 2d). Still, there are obvious differences 132 

in performance between different genetic markers. Particularly, it seems to be difficult to build 133 

appropriate models for the rpb genes and cpn60, at least based on the sequence data we used. 134 

Depending on what the user values the highest (comprehensiveness, stringency, precision etc.), 135 

different settings would be desirable, and several combinations of modes and filtering options 136 

should be evaluated against each other to find the optimal settings for each genetic marker and 137 

reference dataset. We furthermore compared the evaluation of the fragments to the internal 138 

software evaluation for each dataset (Supplementary Fig. 3). We found an essentially linear 139 

relationship between the proportion of sequences included in the database times the proportion 140 
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of correct sequences in the internal evaluation and the proportion of correctly assigned sequence 141 

fragments (Supplementary Fig. 3e), and thus this may provide a robust measure of overall 142 

database performance. 143 

 144 

Fig. 2. Family level Metaxa2 performance on randomly generated 150 bp fragments originating from the sequence datasets used 145 
to build the respective databases in the three different modes (Conserved, Divergent and Hybrid). A) Proportions of fragments 146 
assigned to the correct taxonomic family. B) Proportions of fragments assigned to an incorrect family. C) Proportions of 147 
fragments not assigned, or not recognized as belonging to the investigated barcoding region, at the family level. D) Family-level 148 
overpredictions, i.e. the proportions of sequence fragments belonging to a family not present in the final database, which were 149 
still assigned to a (different) family by Metaxa2. Note that the ATP9-NAD9 dataset is only used for species identification and thus 150 
this marker would be expected to show perfect performance on the family level. Note also that the Y-axis scales are different for 151 
B and for D compared to A and B. 152 

We also compared the classification performance of the native Metaxa2 database to those 153 

resulting from automated construction based on SILVA. We built databases from release 111 154 

(which was used as a starting point for the native Metaxa2 database) and release 128 in the 155 

conserved mode, with two versions for each release; one in which no filtering was applied and 156 

one in which we applied the filtering designed to mimic the manual curation process. We then 157 

classified simulated SSU fragments using Metaxa2, replacing the native database with the newly 158 
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built ones. Overall, the results were surprisingly similar (Supplementary Fig. 4), contrary to what 159 

was previously shown when the native database was replaced with the GreenGenes database17. 160 

Interestingly, there were also rather small differences between the non-filtered and the 161 

automatically filtered databases, although applying filtering increased the number of classified 162 

sequence fragments with full taxonomic annotation and lowered the proportion of incorrect 163 

assignments, particularly at short fragment lengths. This indicates that the automated approach to 164 

database building is feasible, at least when the underlying sequence and taxonomy data are of 165 

high quality. 166 

Evaluations of which taxonomic classification tools show the most consistent performance in 167 

terms of sensitivity and specificity are still largely incomplete21, particularly for non-standard 168 

barcoding regions, but commonly used software for taxonomic assignment, such as the RDP 169 

Naïve Bayesian Classifier13 and Rtax14, have all been shown to perform subpar or inconsistently in 170 

different settings15-17. We believe that the lack of comprehensive evaluation does not excuse the 171 

use of methods that produce incorrect or irrelevant results. With decreasing cost of DNA 172 

sequencing and increasing use of shotgun metagenomics for studies of biological communities, 173 

these updates to the Metaxa2 software – vastly extending its capabilities to virtually any high-174 

quality DNA barcode in use – will enable a leap forward for molecular ecologists and others in 175 

need of precise taxonomic assignment among groups of taxa that are not feasibly targeted by 176 

traditional barcoding markers. 177 

  178 
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Methods 179 

Software implementation. The Metaxa2 Database Builder (metaxa2_dbb) is a command-line, 180 

open source, Unix/Linux tool implemented in Perl. The software requires, on top of Perl, the 181 

Metaxa217, HMMER322, NCBI BLAST23, and MAFFT24 software to be installed. In addition, 182 

USEARCH25 or VSEARCH26 is highly recommended for full functionality. In short, the 183 

metaxa2_dbb tool creates the hidden Markov models (HMMs) and BLAST reference databases 184 

required to build a custom Metaxa2 classification database. Importantly, metaxa2_dbb can be run 185 

in three different operating modes, depending on how similar the sequences in the reference 186 

database are to each other. 187 

In the conserved mode, used when sequences have regions of relatively high sequence similarity, 188 

the software first identifies a suitable main reference sequence, either by user selection or by 189 

clustering the sequences at 80% identity using USEARCH, and then selecting the representative 190 

sequence of the largest cluster. Next, it uses the (5’) start and (3’) end of the main reference 191 

sequence to define which of the other sequences in the input dataset should be considered full-192 

length, and extracts those regions using Metaxa2. Thereafter, the identified full-length sequences 193 

are aligned using MAFFT, and the regions outside of the start and end of the main reference 194 

sequence are trimmed away before re-aligning the trimmed sequences again. This alignment is 195 

then used to determine the degree of sequence conservation across the alignment, to identify the 196 

regions of high and low conservation. The conserved regions of the alignment are extracted and 197 

aligned individually using MAFFT. Those alignments are used to build separate HMMs for each 198 

conserved region with hmmbuild of the HMMER package. The full-length input sequences 199 

matching at least half of those HMMs are then used to build the BLAST database used for 200 
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classification, and their sequence IDs are edited to be compatible with the Metaxa2 database 201 

structure. 202 

In the divergent mode, the input sequences are first clustered into groups with at least 20% 203 

sequence identity using USEARCH. Each such cluster is then aligned separately using MAFFT. 204 

The alignments are subsequently split at the mid position (including gaps), and each pair of 205 

alignments is used to build two separate HMMs using hmmbuild. The input sequences matching 206 

at least one of those HMMs are then used to build the BLAST database for classification, and 207 

their sequence IDs are edited as above. The hybrid mode is a combination of the conserved and 208 

divergent modes, in which the database builder will cluster the input sequences at 20% identity 209 

using USEARCH, and then proceed with same approach as in the conserved mode on each 210 

resulting cluster separately. 211 

From this point, the analysis proceeds identically for the three modes. The software reads 212 

taxonomy data in any of the following formats: ASN.1, NCBI XML, and INSD XML formats, as 213 

provided by GenBank27; FASTA format with taxonomy data as part of the sequence headers, as 214 

provided by the SILVA28 and Greengenes29 databases; and the Metaxa2 tabulated taxonomy 215 

format. Optionally, the taxonomy data can be filtered to exclude sequences from uncultured or 216 

unknown organisms or with low-resolution taxonomic annotation information. The sequence 217 

data and taxonomic information are subsequently crosschecked such that entries are only 218 

retained if both sequence and taxonomy data are present. The remaining sequences are then 219 

compiled into a BLAST database using formatdb or makeblastdb of the BLAST/BLAST+ 220 

packages. Thereafter, unless pre-determined sequence identity cutoffs are provided by the user, 221 

suitable identity thresholds for taxonomic assignments at different classification levels are 222 
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automatically determined. This is done by aligning the sequences in the BLAST database using 223 

MAFFT and then calculating the pairwise percent identity within and between taxonomic groups 224 

(intra- and inter-specific sequence identity). The identity cutoff for each taxonomic level is then 225 

set to be below the lowest intra-specific pairwise identity and, if possible, above the highest inter-226 

specific pairwise identity. The cutoff can never be set to be above 99% identity for any 227 

taxonomic level. 228 

Finally, the metaxa2_dbb software can perform an optional database evaluation step, which is 229 

further described below. A more thorough description of the database construction process can 230 

be found in the software manual (Supplementary Item 1). It should also be noted that to make 231 

the Metaxa2 classifier more reliable across a variety of barcoding regions, we have modified the 232 

algorithm for assigning reliability scores (see the manual for details; Supplementary Item 1). 233 

These modifications in general have very little effect on SSU and LSU classifications, but can 234 

nevertheless result in slight differences when the same dataset is classified using this version of 235 

Metaxa2 and versions prior to 2.2. 236 

Automatic correction of taxonomic data. If the user chooses, metaxa2_dbb can attempt to 237 

adjust the supplied taxonomy data in order to better match the taxonomic levels to those 238 

proposed by the Metaxa2 software (domain, phylum/kingdom, class, order, family, genus, 239 

species, and strain/subspecies). The phylum level is sorted out first, by checking which input 240 

taxonomic level that corresponds to a list of recognized phyla/kingdoms. This is followed by 241 

searching for a taxonomic level below the phylum level with an annotation ending with “-ales” to 242 

define the order level (unless the entry seems to be of metazoan origin). Then, the class level is 243 

defined as the level above the order level, and the family level is defined as the first level below 244 
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the order level and with an annotation ending with “-ceae” (or “-idae” for metazoans). The 245 

species level is then identified by finding a taxonomic annotation similar to a Latin binomial 246 

using regular expressions. The genus level is finally defined as the level containing the genus part 247 

of the Latin binomial. This procedure can correct the vast majority of inconsistent taxonomic 248 

annotation data, although manual curation of the output data is highly recommended to catch 249 

exceptional cases. 250 

Use cases and software evaluation. We evaluated the metaxa2_dbb software by providing 12 251 

different use cases involving 11 different DNA barcodes used in different scenarios 252 

(Supplementary Table 1). Notably, the datasets used to evaluate the software were not collected 253 

for the specific purpose of this evaluation, but were rather typical representatives of reference 254 

datasets used in previous or ongoing studies, thereby representing realistically relevant use cases 255 

for the Metaxa2 Database Builder very well. For the ITS2, matK, rbcL, trnL and trnH genetic 256 

markers, references were obtained from Richardson et al. (2017)16. Briefly, all NCBI nucleotide 257 

sequences for vascular plant available on 2016-03-04 were downloaded, filtered by length, and all 258 

sequences with more than two sequential uncalled nucleotides were removed. The datasets were 259 

then filtered to remove duplicates and sequences from plants not present in Ohio and 260 

surrounding states and provinces. Taxonomic information was obtained from NCBI taxonomy30. 261 

Sequences with undefined taxonomic information at any rank were removed. For rpb1, rpb2 and 262 

EFalpha, references were obtained from the fungal six-gene phylogeny of James et al.31. Sequence 263 

data and taxonomic information were obtained from NCBI. For the 16S rRNA gene, sequences 264 

and taxonomic data for type-strains and cultured strains were downloaded from SILVA release 265 

12832, and SATIVA33 was used to remove mislabeled strains. For cpn60, sequences were 266 
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downloaded from the cpnDB34 as of 2016-10-21. The complete nucleotide sequences of group I 267 

chaperonins, i.e. cpn60 (also known as hsp60 or groEL), which is found in bacteria, some archaea, 268 

mitochondria and plastids, were used for building the database. Two datasets were downloaded, 269 

both the FASTA file of all group I sequences and a reduced file with only reference genome 270 

representatives. Taxonomic classifications were transferred from the SILVA annotation of 271 

release 111 and then manually curated. Finally, for ATP9-NAD9, we used a database assembled 272 

from curated sequences including 140 different Phytophthora species/hybrids (GenBank accession 273 

numbers JF771616.1 to JF772053.1 and JQ439009.1 to JQ439486.1, and Bilodeau and 274 

Robideau35; n.b. a total of 123 species are currently described; http://www.phytophthoradb.org). 275 

When sequence and taxonomic data had been obtained for each of these genetic markers, we ran 276 

the metaxa2_dbb software on each data set using the conserved, divergent and hybrid modes. We 277 

also enabled the self-evaluation option, which performs a cross-validation of the database 278 

performance similar to that of Richardson et al.16. For the self-evaluation we used the default 279 

settings, which correspond to rebuilding the database ten times, each time using 90% of the input 280 

sequences to build the database (the training set) and then subsequently classifying the remaining 281 

10% of input sequences (the testing set) using Metaxa2. The predicted taxonomic classifications 282 

were then compared against the taxonomic identity of each test sequence dervied from the 283 

source databases at every taxonomic level, generating measures for sensitivity (proportion of test 284 

sequences identified as matching the barcoding region), specificity (proportion of correctly 285 

classified sequences at the taxonomic level in question), and the error per classification ratio 286 

(proportion of incorrectly classified sequences per total classifications made). 287 
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In addition to the software self-evaluation, we also tested the classification performance of the 288 

different databases on sequence fragments derived from the sequences used to build the 289 

respective database. This evaluation followed the method used for the original Metaxa2 paper17, 290 

although we only generated fragments of a single length, viz. 150 nucleotides. The test sets were 291 

generated by randomly selecting a stretch of 150 nucleotides from every sequence in the input 292 

data for each barcoding region. We then used Metaxa2 version 2.2 to classify these simulated 293 

read data sets and calculated the performance for each barcoding region in terms of accuracy 294 

(proportion of correctly classified sequence fragments), misclassifications (incorrect assignments), 295 

sensitivity (proportion of non-detected sequence fragments), and over-prediction (incorrect 296 

assignment to a rank for which there is no reference belonging to the query taxa present in the 297 

database). Sequence fragments were regarded as correctly classified if their reported taxonomy 298 

corresponded to the known taxonomy of the input sequence that the fragment was derived from, 299 

at every taxonomic level as reported by Metaxa2. If any incorrect taxonomic affiliations were 300 

reported at any taxonomic level, the fragment was regarded as misclassified. 301 

We finally compared the performance of the hand-curated Metaxa2 SSU rRNA database that is 302 

bundled with the software to SSU rRNA databases built by metaxa2_dbb from the sequences in 303 

SILVA release 111 and 12828. The native Metaxa2 database is based on SILVA release 111, which 304 

means that the comparison between the native database and release 111 is relevant to understand 305 

the differences between the manual and automatic database constructions. The difference to 306 

release 128, on the other hand, is rather a test of whether the accuracy changes with the addition 307 

of more reference sequences. The SILVA databases were created by downloading the FASTA file 308 

representing the reference SSU sequences with 99% non-redundancy (SSURef_Nr99) with 309 
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taxonomy from SILVA. We then added the SSU sequences for the 12S rRNA used in the native 310 

Metaxa2 database from MitoZoa17,36. From these, we used Metaxa2 version 2.1.2 (default settings) 311 

to divide the SSU sequences by taxonomic domain. The resulting files were used as input for 312 

metaxa2_dbb, which was run by retaining the HMM profiles from the native database, i.e. only 313 

rebuilding the classification database. In all cases, taxonomy correction was used, and cutoffs 314 

were manually set to "0,60,70,75,85,90,97"17. The full options were: “metaxa2_dbb -o 315 

SSU_SILVAXXX -g SSU -p metaxa2_db/SSU/HMMs/ -t 316 

SILVA_XXX_SSURef_Nr99_tax_silva.fasta -a archaea.fasta -b bacteria.fasta -c chloroplast.fasta 317 

-e eukaryota.fasta -m mitochondria.fasta -n mitozoa_SSU.fasta --correct_taxonomy T --cutoffs 318 

‘0,60,70,75,85,90,97’ --cpu 16”. For each SILVA release, two databases were built, one with the 319 

command above, and one in which filtering of taxonomic information was applied, adding the “--320 

filter_uncultured T --filter_level 6” options. 321 

After these new SILVA-based classification databases had been constructed, we classified the 322 

simulated SSU read fragments with high-quality taxonomic information used in the original 323 

Metaxa2 evaluation, and ran this in the same way as in the original paper17. The results of the 324 

classifications were investigated manually to make sure that errors made by Metaxa2 were due to 325 

actual classification errors and not renaming of taxa, inconsistencies in taxonomy between 326 

database versions, synonymous names used for one taxon, or misspellings. As in the original 327 

Metaxa2 paper, a sequence fragment was regarded correctly classified if the reported taxonomy 328 

corresponded to the known taxonomy of the input sequence at every taxonomic level, as 329 

reported by Metaxa2. If the Metaxa2 classification was found to completely correspond to the 330 

known taxonomic affiliation at all investigated taxonomic levels, the sequence fragment was 331 
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regarded as perfectly classified. If Metaxa2 reported any incorrect taxonomic affiliation at any 332 

taxonomic level the fragment was regarded as misclassified. 333 
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Figure legends 352 

Fig. 1. Self-evaluated performance of the Metaxa2 Database Builder in different operating modes 353 

(conserved, divergent and hybrid) on ten different DNA barcoding regions. A) Proportion of 354 

assigned sequences classified to the correct order (circles), family (diamonds) and genera 355 

(triangles). B) Proportion of correctly assigned sequences multiplied with the proportion of 356 

sequences included in the final classification databases (see Supplementary Fig. 2). The ATP9-357 

NAD9 genetic marker is not shown, because it only had relevant taxonomic differences at the 358 

species level. 359 

 360 

Fig. 2. Family level Metaxa2 performance on randomly generated 150 bp fragments originating 361 

from the sequence datasets used to build the respective databases in the three different modes 362 

(Conserved, Divergent and Hybrid). A) Proportions of fragments assigned to the correct 363 

taxonomic family. B) Proportions of fragments assigned to an incorrect family. C) Proportions of 364 

fragments not assigned, or not recognized as belonging to the investigated barcoding region, at 365 

the family level. D) Family-level overpredictions, i.e. the proportions of sequence fragments 366 

belonging to a family not present in the final database, which were still assigned to a (different) 367 

family by Metaxa2. Note that the ATP9-NAD9 dataset is only used for species identification and 368 

thus this marker would be expected to show perfect performance on the family level. Note also 369 

that the Y-axis scales are different for B and for D compared to A and B.  370 



20 

 

 

References 371 

1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: 372 
proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 373 
4576–4579 (1990). 374 

2. Hibbett, D. et al. Sequence-based classification and identification of Fungi. Mycologia 375 
(2016). doi:10.3852/16-130 376 

3. Yoccoz, N. G. The future of environmental DNA in ecology. Mol Ecol 21, 2031–2038 377 
(2012). 378 

4. Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-379 
generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21, 2045–2050 380 
(2012). 381 

5. Bengtsson-Palme, J. et al. Strategies to improve usability and preserve accuracy in 382 
biological sequence databases. Proteomics 16, 2454–2460 (2016). 383 

6. Nilsson, R. H. et al. Taxonomic reliability of DNA sequences in public sequence databases: 384 
a fungal perspective. PLoS ONE 1, e59 (2006). 385 

7. Wang, X.-C. et al. ITS1: a DNA barcode better than ITS2 in eukaryotes? Mol Ecol Resour 386 
15, 573–586 (2015). 387 

8. Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of 388 
amplified markers - a user's guide. New Phytol (2013). doi:10.1111/nph.12243 389 

9. Bruns, T. D. & Taylor, J. W. Comment on "Global assessment of arbuscular mycorrhizal 390 
fungus diversity reveals very low endemism". Science 351, 826 (2016). 391 

10. Richardson, R. T. et al. Rank-based characterization of pollen assemblages collected by 392 
honey bees using a multi-locus metabarcoding approach. Appl Plant Sci 3, (2015). 393 

11. Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a 394 
universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109, 6241–6246 (2012). 395 

12. Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: cytochrome c 396 
oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270 Suppl 1, 397 
S96–9 (2003). 398 

13. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid 399 
assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73, 400 
5261–5267 (2007). 401 

14. Soergel, D. A. W., Dey, N., Knight, R. & Brenner, S. E. Selection of primers for optimal 402 
taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6, 1440–403 
1444 (2012). 404 

15. Edgar, R. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 405 
bioRxiv 074161 (2016). doi:10.1101/074161 406 

16. Richardson, R. T., Bengtsson-Palme, J. & Johnson, R. M. Evaluating and optimizing the 407 
performance of software commonly used for the taxonomic classification of DNA 408 
metabarcoding sequence data. Mol Ecol Resour 17, 760–769 (2017). 409 

17. Bengtsson-Palme, J. et al. Metaxa2: Improved identification and taxonomic classification 410 
of small and large subunit rRNA in metagenomic data. Mol Ecol Resour 15, 1403–1414 411 
(2015). 412 

18. Nilsson, R. H. et al. Five simple guidelines for establishing basic authenticity and reliability 413 
of newly generated fungal ITS sequences. MycoKeys 4, 37–63 (2012). 414 



21 

 

 

19. Hartmann, M., Howes, C. G., Abarenkov, K., Mohn, W. W. & Nilsson, R. H. V-Xtractor: 415 
an open-source, high-throughput software tool to identify and extract hypervariable 416 
regions of small subunit (16S/18S) ribosomal RNA gene sequences. J Microbiol Methods 83, 417 
250–253 (2010). 418 

20. Dahllöf, I., Baillie, H. & Kjelleberg, S. rpoB-based microbial community analysis avoids 419 
limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 420 
66, 3376–3380 (2000). 421 

21. Bengtsson-Palme, J. Strategies for Taxonomic and Functional Annotation of 422 
Metagenomes in Metagenomics: Perspectives, Methods, and Applications (ed. Nagarajan, M.) 55–423 
79 (Academic Press, Elsevier, Oxford, 2018). 424 

22. Eddy, S. HMMER. http://hmmer.janelia.org (2010). 425 
23. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein 426 

database search programs. Nucleic Acids Res 25, 3389–3402 (1997). 427 
24. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: 428 

improvements in performance and usability. Mol Biol Evol 30, 772–780 (2013). 429 
25. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 430 

26, 2460–2461 (2010). 431 
26. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open 432 

source tool for metagenomics. PeerJ 4, e2584 (2016). 433 
27. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic 434 

Acids Res 44, D67–72 (2016). 435 
28. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data 436 

processing and web-based tools. Nucleic Acids Res 41, D590–6 (2013). 437 
29. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological 438 

and evolutionary analyses of bacteria and archaea. ISME J 6, 610–618 (2012). 439 
30. Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res 40, D136–43 (2012). 440 
31. James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. 441 

Nature 443, 818–822 (2006). 442 
32. Yilmaz, P. et al. The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic 443 

frameworks. Nucleic Acids Res 42, D643–8 (2014). 444 
33. Kozlov, A. M., Zhang, J., Yilmaz, P., Glöckner, F. O. & Stamatakis, A. Phylogeny-aware 445 

identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res 44, 446 
5022–5033 (2016). 447 

34. Hill, J. E., Penny, S. L., Crowell, K. G., Goh, S. H. & Hemmingsen, S. M. cpnDB: a 448 
chaperonin sequence database. Genome Res 14, 1669–1675 (2004). 449 

35. Bilodeau, G. J. & Robideau, G. P. Optimization of nucleic acid extraction from field and 450 
bulk samples for sensitive direct detection of plant pests. Phytopathology 104, S3.14 (2014). 451 

36. D'Onorio de Meo, P. et al. MitoZoa 2.0: a database resource and search tools for 452 
comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids 453 
Res 40, D1168–72 (2012). 454 

 455 


